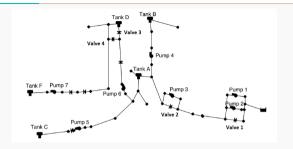
MONOTROPIC BILEVEL PROGRAMMING: DUALITY IN HYDRAULIC NETWORK OPTIMIZATION

Sophie Demassey (Mines Paris – PSL) GDR ROAD - GrT OR - 20/10/2023 How do hydraulic simulators work? How to use them in hydraulic network optimization?

DRINKING WATER DISTRIBUTION NETWORK



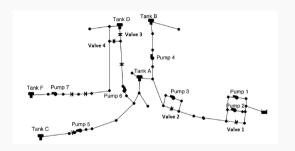
- simple directed graph G = (I, A)
- $\cdot a \in A = \{ \text{ pipes, pumps, valves } \}$
- $\cdot j \in J = S$ ervice $\cup R$ eservoirs
- · incidence matrix $E \in \{0, 1, -1\}^{A \times J}$:

$$a = (i, j) : E_{ai} = -1, E_{aj} = 1, E_{an} = 0$$

Hypothesis (for this exposé):

- · no pressure-induced leakage, no aging
- fixed speed pumps (on/off), controlled gate valves (close/open)

DRINKING WATER DISTRIBUTION NETWORK



- flow q_a on arcs $a \in A$
- head h_j at nodes $j \in J$
- · demand D_s at service nodes $s \in S$
- · level/height H_r of reservoirs $r \in R$
- · resistance ϕ_a on arcs $a \in A$

Network Analysis Problem: find (q_A, h_I) meeting (D_S, H_R, ϕ_A) ?

HYDRAULIC NETWORK ANALYSIS PROBLEM

$$NAP(D_S, H_R, \phi_A) =$$

$$\{(q_A, h_J) \in \mathbb{R}^A \times \mathbb{R}^J, \qquad \qquad \text{(flow, head)}$$

$$q_S = D_S \qquad \qquad \forall s \in S, \qquad \text{demand}$$

$$h_r = H_r \qquad \qquad \forall r \in R, \qquad \text{level}$$

$$v_a = \phi_a(q_a) \qquad \qquad \forall a \in A\} \qquad \text{resistance}$$

$$v_a = \phi_a(q_a)$$
 $\forall a \in A\}$ resistance where $q_j := \sum_a E_{aj}q_a$ residual flow at node $j \in J$ $v_a := \sum_j -E_{aj}h_j$ head loss on arc $a \in A$. $\Longrightarrow \sum_a v_a q_a = -\sum_j h_j q_j$

HYDRAULIC SIMULATOR

compute an element of NAP and check the bounds:

$$NAP(D_S, H_R, \phi_A) =$$

$$\{(q_A, h_S) \in \mathbb{R}^A \times \mathbb{R}^S,$$

$$q_s = D_s \qquad \forall s \in S,$$

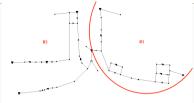
$$v_a = \phi_a(q_a) \qquad \forall a \in A\}.$$

System of equations solved by the Newton-Raphson algorithm [TODINI&PILATI 88, SALGADO 89] example: EPANET

DECOMPOSITION OF NAP

$$G = \bigcup_{b \in B} (J_b, A_b)$$

graph partition along nodes in R



$$NAP(D_S, H_R, \phi_A) =$$

$$\bigcup_{b \in B} NAP(D_{S_b}, H_{R_b}, \phi_{A_b})$$

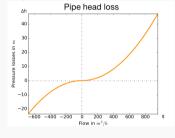
$$= \bigcup_{b \in B} \{(q_{A_b}, h_{S_b}) :$$

$$q_s = D_s \qquad \forall s \in S_b$$

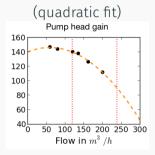
$$v_a = \phi_a(q_a) \qquad \forall a \in A_b\}$$

RESISTANCE

pipes: frictions (Darcy-Weisbach/Swamee-Jain)



pumps: discharge pressure



- quadratic approximation $\phi_a(q) = \alpha_a q|q| + \beta_a q + \gamma_a$ with $\alpha_a > 0$: continuous, strictly increasing, bijective on \mathbb{R}
- · integral $f_a(q) = \int_0^q \phi_a(x) dx$ is smooth, strictly convex, and coercive
- inverse ϕ_a^{-1} has the same property

second option for solving NAP: primal/dual reformulation

PRIMAL REFORMULATION OF NAP

$$(q_A, h_S)$$
 in

$$NAP: q_s = D_s \forall s \in S, v_a = \phi_a(q_a) \forall a \in A$$

if and only if

q_A solves

$$P_{NAP}: \min_{q_A} \sum_{a \in A} f_a(q_a) + H_R^\top q_R \ : \ q_s = D_s \ \forall s \in S$$

with $f_a = \int \phi_a$ strictly convex, then solution is unique

Proof: NAP are the stationary points $\nabla L = 0$ of the lagrangian function:

$$L(q_A, h_S) = \sum_{a \in A} (f_a(q_a) - v_a q_a) - h_S^{\top} D_S.$$

DUAL REFORMULATION OF NAP

$$L(q_A, h_S) = \sum_{a \in A} \left(f_a(q_a) - v_a q_a \right) - h_S^{\top} D_S$$

Strong duality holds: $P \equiv D : \max_{h_S} \min_{q_A} L(q_A, h_S) = \max_{h_S} L((\phi_a^{-1}(v_a))_{a \in A}, h_S).$

$$(q_A, h_S)$$
 in

$$NAP: q_s = D_s \forall s \in S, v_a = \phi_a(q_a) \forall a \in A$$

if and only if

h_{S} solves

$$D_{NAP} : \min_{h_S} \sum_{a \in A} f_a^*(v_a) + D_S^{\mathsf{T}} h_S$$

with
$$f_a^*(v) = \max_q (vq - f_a(q)) = -f_a(\phi_a^{-1}(v)) + v\phi_a^{-1}(v)$$
 convex conjugate of f_a .

STRONG DUALITY REFORMULATION OF NAP

 q_A minimizes F in P_{NAP} and h_S maximizes F^* in D_{NAP} then $F(q_A) \leq F^*(h_S)$

$$\begin{split} NAP &= SD_{NAP} \\ SD_{NAP} &= \{ (q_A, h_S) \in \mathbb{R}^A \times \mathbb{R}^S, \ q_s = D_s \forall s \in S, \\ \sum_{a \in A} \left(f_a(q_a) + f_a^*(v_a) \right) + H_R^\top q_R + D_S^\top h_S \leq 0 \} \end{split} \tag{SD} \end{split}$$
 with $f_a \in \int \phi_a, \ f_a(0) = 0$ and $f_a^* \in \int \phi_a^{-1}, \ f_a^*(0) = -f_a(\phi_a^{-1}(0)).$

STRONG DUALITY REFORMULATION OF NAP

$NAP = SD_{NAP}$

$$SD_{NAP} = \{ (q_A, h_S) \in \mathbb{R}^A \times \mathbb{R}^S, \ q_s = D_s \forall s \in S,$$

$$\sum_{a \in A} (f_a(q_a) + f_a^*(v_a)) + H_R^\top q_R + D_S^\top h_S \le 0 \}$$
(SD)

with $f_a \in \int \phi_a$, $f_a(0) = 0$ and $f_a^* \in \int \phi_a^{-1}$, $f_a^*(0) = -f_a(\phi_a^{-1}(0))$.

· (SD) integrates and aggregates the flow-potential equations:

$$(SD) \iff \sum_{a} f_a(q_a) + f_a^*(v_a) - q_a v_a = 0$$

$$\iff f_a(q_a) = f_a(\phi_a^{-1}(v_a)) + f_a'(\phi_a^{-1}(v_a))(q_a - \phi_a^{-1}(v_a)) \ \forall \ a$$

$$\iff \phi_a^{-1}(v_a) = q_a \ \forall \ a.$$

- SD_{NAP} is an exact aggregate reformulation of NAP
- $\cdot P_{NAP}$ and D_{NAP} are conjugate convex nonlinear programs
- · called content and co-content models in [COLLINS 1978]
- · or distribution and differential problems in [ROCKAFELLAR 1988]
- generalization: nonlinear flow networks and monotropic programs [ROCKAFELLAR 1988]

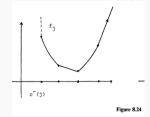
MONOTROPIC PROGRAMMING [ROCKAFELLAR, 1988]

additive convex objective over linear constraints

$$P: \min_{x \in \mathbb{R}^{J}} \sum_{j \in J} f_{j}(x_{j})$$

$$s.t. \sum_{j \in J} E_{ij}x_{j} = d_{i} \qquad \forall i \in I$$

 f_j closed proper convex on \mathbb{R} = lower semi-continuous (poss. nonsmooth)



- monotropic = "one-dimension convexity" (extended to finite-dimension in [Bertsekas 2008])
- a class of convex programs behaving like linear programs:
 - · combinatorial properties: finite set of descent directions (elementary vectors)
 - · duality properties: strong duality, explicit symmetric dual

MONOTROPIC PROGRAMMING: (FENCHEL) DUALITY

 $f^*: v \in \mathbb{R} \mapsto \sup_x (xv - f(x))$ convex conjugate of f (Legendre-Fenchel transformation)

$$(P): \min_{x \in \mathbb{R}^{J}} \sum_{j \in J} f_{j}(x_{j})$$

$$s.t. \sum_{j \in J} E_{ij}x_{j} = d_{i} \qquad \forall i \in I$$

$$(D): \min_{u \in \mathbb{R}^{I}} \sum_{i \in I} d_{i}u_{i} + \sum_{j \in J} f_{j}^{*}(v_{j})$$

$$s.t. v_{j} := \sum_{i \in I} -E_{ij}u_{i}$$

$$f(x)$$

$$(0, -f^{*}(y))$$

MONOTROPIC PROGRAMMING: (FENCHEL) DUALITY

 $f^*: v \in \mathbb{R} \mapsto \sup_x (xv - f(x))$ convex conjugate of f (Legendre-Fenchel transformation)

$$(P): \min_{x \in \mathbb{R}^{I}} \sum_{j \in J} f_{j}(x_{j})$$

$$s.t. \sum_{j \in J} E_{ij}x_{j} = d_{i} \qquad \forall i \in I$$

$$(D): \min_{u \in \mathbb{R}^{I}} \sum_{i \in I} d_{i}u_{i} + \sum_{j \in J} f_{j}^{*}(v_{j})$$

$$s.t. v_{j} := \sum_{i \in I} -E_{ij}u_{i} \qquad \forall j \in J$$

- · conjugate f_i^* is convex lower semi-continuous: D is monotropic
- biconjugate $f_i = f_i^{**}$ (as f_i convex l.s.c.): dual(dual)=primal
- Fenchel inequality: $f_j(x_j) + f_j^*(v_j) \ge x_j v_j$ and equality holds iff $v_j \in \partial f_j(x_j)$
- strong duality and KKT conditions for (x; u, v) a feasible primal-dual pair:

$$0 = \sum_{j} \left(f_j(x_j) + f_j^*(v_j) \right) + \sum_{i} d_i u_i = \sum_{j} \left(f_j(x_j) + f_j^*(v_j) - x_j v_j \right) \iff v_j \in \partial f_j(x_j) \forall j$$

MONOTROPIC PROGRAMMING: EQUIVALENT CONDITIONS (FINITE OPTIMUM)

primal:
$$x$$
 solves
$$(P): \min_{x} \sum_{j} f_{j}(x_{j}) \qquad (D): \min_{u} \sum_{i} d_{i}u_{i} + \sum_{j} f_{j}^{*}(v_{j})$$

$$s.t. \sum_{j} E_{ij}x_{j} = d_{i} \quad \forall i \qquad s.t. v_{j} := \sum_{i} -E_{ij}u_{i} \quad \forall j$$
equilibrium (KKT): (x, u) solves
$$(Eq): \sum_{j} E_{ij}x_{j} = d_{i} \quad \forall i \qquad (SD): \sum_{j} E_{ij}x_{j} = d_{i} \quad \forall i$$

$$v_{j} := \sum_{i} -E_{ij}u_{i} \in \partial f_{j}(x_{j}) \quad \forall j \qquad \sum_{j} \left(f_{j}(x_{j}) + f_{j}^{*}(v_{j})\right) + \sum_{i} d_{i}u_{i} \leq 0.$$

MONOTROPIC PROGRAMMING: APPLICATIONS

1. f_i piecewise linear/quad-convex

$$(P): \min_{x} \sum_{j} f_{j}(x_{j})$$

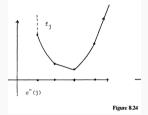
$$s.t. \sum_{j} E_{ij}x_{j} = d_{i} \qquad \forall i$$

2. potential-flow network

$$(Eq): \sum_{j} E_{ji} x_{j} = d_{i} \qquad \forall i$$

$$v_j = \sum_i -E_{ji}u_i \in \partial f_j(x_j) \quad \forall j$$

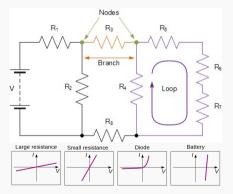
no need to linearize to dualize



- E incidence matrix of graph G(I,J)
- x arc flows, u node potentials
- · ∂f arc resistance/conductivity

POTENTIAL-FLOW NETWORKS

- equilibrium problem = NAP in hydraulic
- model for many other physical networks (newtonian): electricity, gas, heat, telecommunications, transportation, vascular, elastic/spring



- · ex: electric circuit
- A: conductors (resistors, batteries,...) with linear resistance r = v/x (Ohm's law)
- \cdot x current, v voltage
- flow conservation = Kirchhoff's current law

EX: EQUILIBRIUM WITH LINEAR RESISTANCE

$$\phi(x) = rx$$

- · laws of Ohm (electric), Fourier (thermal), Poiseulle (viscous fluids)
- equilibrium solution minimizes energy dissipation:

$$(P): \min_{x,Ex=d} \sum_{j} f_j(x_j) = \frac{r_j}{2} x_j^2 \text{ with } f_j = \int \phi_j.$$

applications to hydraulic network optimization

HYDRAULIC NETWORK OPTIMIZATION

design

- gravity-fed network
- · static demand
- installation costs
- alternative arcs

operation

- pressurized network
- · dynamic demand
- energy costs
- controllable arcs

bilevel structure

- 1. select a subset of arcs $A' \subseteq A$
- 2. NAP: find an equilibrium on A' satisfying the demand

selection step: incomplete (metaheuristics) or implicit search (math prog)

DESIGN: PIPE SIZING (STATIC)

- a graph $G = (J, A \times K)$ with replicated arcs (possible pipe dimensions)
- arc status $x_{ak} \in \{0,1\}$: pipe of type k selected on arc a

$$\begin{split} & \min_{x,q,h} \sum_{a} \sum_{k} c_{ak} x_{ak} \\ & s.t. x_{ak} = 0 \implies q_{ak} = v_{ak} = 0 \\ & \sum_{k} x_{ak} = 1, h_i - h_j = \sum_{k} v_{ak} \\ & (q_{AK}, h_S) \in NAP(D_S, H_R, \phi_{AK(x)}). \end{split} \qquad \forall \, a \in A, k \in K \\ \forall \, a = (i,j) \in A \end{split}$$

Nonconvex MINLP formulation

DESIGN: PIPE SIZING (STATIC)

- a graph $G = (J, A \times K)$ with replicated arcs (possible pipe dimensions)
- arc status $x_{ak} \in \{0,1\}$: pipe of type k selected on arc a

$$\min_{x,q,h} \sum_{a} \sum_{k} c_{ak} x_{ak}$$

$$s.t. x_{ak} = 0 \implies q_{ak} = v_{ak} = 0$$

$$\sum_{k} x_{ak} = 1, h_i - h_j = \sum_{k} v_{ak}$$

$$\sum_{ak} E_{as} q_{ak} = D_s$$

$$\sum_{ak} \left(f_{ak} (q_{ak}) + f_{ak}^* (v_{ak}) \right) + H_R^{\top} q_R + D_S^{\top} h_S \le 0$$
(SD)

Exact convex MINLP reformulation [TASSEF 2020], still non-polynomial

OPERATION: PUMP SCHEDULING (DYNAMIC + STORAGE)

- · a dynamic graph $G = (J \times T, A \times T)$ and dynamic tariff c on discrete horizon T
- arc status $x_{at} \in \{0,1\}$: arc a active at time t
- · variable tank level H_{rt} depends on $q_{r(t-1)}$

$$\min \sum_{a} \sum_{t} c_{at}^{0} x_{at} + c_{at}^{1} q_{at}$$

$$s.t.(q_{At}, h_{St}) \in NAP(D_{St}, H_{Rt}, \phi_{A(x_{t})}) \qquad \forall t \in T$$

$$x_{at} = 0 \implies q_{at} = 0 \qquad \forall a \in A, t \in T$$

$$H_{R(t+1)} = H_{Rt} + s_{R}^{\top} q_{Rt} \qquad \forall t \in T$$

$$\underline{H}_{Rt} \leq H_{Rt} \leq \overline{H}_{Rt} \qquad \forall t \in T.$$

OPERATION: STRONG DUALITY REFORMULATION

strong duality constraints are not convex

$$\sum_{a \in A} \left(f_a(q_{at}) + f_a^*(v'_{at}) \right) + \mathbf{H}_{Rt}^{\mathsf{T}} q_{Rt} + D_{St}^{\mathsf{T}} h_{St} \le 0 \quad \forall t$$

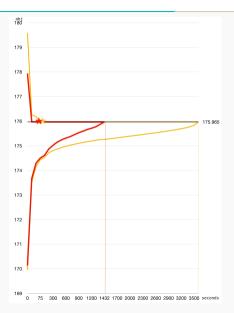
with
$$x_{at} = 1 \implies v'_{at} = v_{at}$$
 and $x_{at} = 0 \implies v'_{at} = (f_a^*)^{-1}(0)$

Option 1: relax and convexify

- $f_a(q_{at}) + f_a^*(v_{at}')$ is convex \implies linearize at trial points
- · bad news: a loose relaxation of the bilinear terms may absorb the duality gap
- good news: tank capacities provide exogenous bounds on H_{Rt} , $H_{R(t+1)}$ and q_{Rt} to tighten McCormick's relaxation

OPERATION - OPTION 1: CUT GENERATION

- Branch-and-Check [Bonvin, Demassey, Lodi 2020]
- evolution of the primal/dual bounds
- with or without duality cuts



OPERATION - OPTION 2: VARIABLE SPLITTING

$$\begin{aligned} & \min_{x,q,h,H} \sum_{a} \sum_{t} (c_{at}^{0} x_{at} + c_{at}^{1} q_{at}) \\ & s.t.(q_{At},h_{St}) \in NAP(D_{St},H_{Rt},\phi_{A(x_{t})}) & \forall t \in T \\ & H_{R(t+1)} = H_{Rt} + s_{R}^{\top} q_{Rt} & \forall t \in T \\ & \underline{H}_{Rt} \leq H_{Rt} \leq \overline{H}_{Rt} & \forall t \in T. \end{aligned}$$

- complexity comes less from the nonconvex constraints $v_a = \phi_a(q_a)$, than from the temporal inter-dependency $q_t = F(x_t, H_t)$, and $H_{t+1} = G(q_t)$
- \cdot still hard when dualizing the time-coupling constraints as H remains variable
- fixing H allows to decompose the problem temporally and spatially, but we loose convergence

OPERATION - OPTION 2A: PENALIZE STORAGE (AMIR'S WORK)

$$\begin{split} \min_{x,q,h,H} \; & \sum_{a} \sum_{t} (c_{at}^{0} x_{at} + c_{at}^{1} q_{at}) + \sum_{r} \sum_{t} \mu_{rt} |H_{r(t+1)} - (H_{rt} + s_{r} q_{rt})| \\ s.t. \; & (q_{A_{b}t}, h_{S_{b}t}) \in NAP_{b}(D_{S_{b}t}, H_{R_{b}t}, \phi_{A_{b}(x_{t})}) & \forall t \in T, b \in B \\ & \underline{H}_{Rt} \leq H_{Rt} \leq \overline{H}_{Rt} & \forall t \in T. \end{split}$$

· (P1) becomes decomposable both in time and space, thus enumerable

(P1): fix H, enumerate x, get q (P2): fix q, relax NAP, get H 3: update μ

- not full split: then relax NAP in (P2)
- · initial H obtained from a deep learning model

OPERATION - OPTION 2B: DUALIZE STORAGE + STRONG DUALITY

$$\begin{split} \min_{x,q,h,H} & \sum_{a} \sum_{t} (c_{at}^{0} x_{at} + c_{at}^{1} q_{at}) + \sum_{r} \sum_{t} \mu_{rt} (H_{r(t+1)} - H_{rt} - s_{r} q_{rt}) + \sum_{t} \lambda_{t} SD_{t}(q,h,H) \\ s.t. & q_{St} = D_{St} & \forall t \in T \\ & \underline{H}_{Rt} \leq H_{Rt} \leq \overline{H}_{Rt} & \forall t \in T. \end{split}$$

$$(P1): \text{ fix } H, \text{ enumerate } x, \text{ get } q \quad (P2): \text{ fix } q, \text{ get } H \quad 3: \text{ update } \mu \end{split}$$

- full split
- primal and dual objective function F and F^* now appear in the objective:

$$SD_t(q, h, H) = F(q) + F^*(h, H) = (\sum_{a \in A} f_a(q_{at}) + H_{Rt}^{\top} q_{Rt}) + (\sum_{a \in A} f_a^*(v'_{at}) + D_{St}^{\top} h_{St})$$

OPERATION - OPTION 2B: DUALIZE (STORAGE + SD) AND ADM (CONT.)

$$(P2): \sum_{t} \sum_{r} \min_{H \in [\underline{H}, \overline{H}]} l(H) + F^{*}(H).$$

(P2) is computed by minimizing univariate convex functions over intervals

$$(P1): \sum_{t} \sum_{h} \min_{x} l(x) + F(\tilde{q}(x)) + F^*(\tilde{h}(x))$$

(P1) is separable in time and space and results in solving two perturbed equilibrium problems for each configuration x

costs and penalties are reported to the lower NAP level.

CONCLUSION

- nonconvex resistance constraints are not that hard in hydraulic network optimization
- · but dynamic storage management in pump scheduling is hard
- problems have a bilevel structure with NAP at the inner level
- ways to exploit NAP (monotropic) duality
- ways to exploit NAP (monotropic) variational properties?

REFERENCES

- our presentations and papers on the pump scheduling problem are available on https://sofdem.github.io/
- code and benchmarks available on: https://github.com/sofdem/gopslpnlpbb