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Drinking water network distribution
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Problem definition

Water network distribution: a nonlinear potential-driven flow network,
represented as a directed graph G = (J ,A)
nodes J :

tanks and reservoirs C
demands S

arcs A:
pumps and valves, control arcs: Ȧ = AK ∪ AV

pipes: AL
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Pump Scheduling Problem

Pump scheduling problem: planning pumps and valves operations over a
discretized time horizon ∀t ∈ T = {0, 1, ...,T − 1}, (xta ∈ {0, 1}∀a ∈ Ȧ t ∈ T ),
at a minimum operation cost, given a water demand (Dts) and an electricity
tariffCt .

Pump scheduling problem is solved routinely, it is reasonable to assume we can
have a big collection of solved instances for each network
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Mathematical formulation

(P) : min
x,q,H

∑
t∈T

ct(xt , qt) =
∑
t∈T

∑
a∈Ȧ

(c0t xta + c1t qta) (1a)

s.t: (qt , ht) ∈ E(Ht ,Dt , xt), ∀t ∈ T (1b)

qĊtj = σj(H(t+1)j − Htj), ∀j ∈ Ċ,∀t ∈ T (1c)

H tj ≤ Htj ≤ H tj , ∀j ∈ Ċ,∀t ∈ T ∪ {T} (1d)

xt ∈ Xt ⊆ {0, 1}A ∀t ∈ T . (1e)

xt : denotes the status of arcs
Ht : denotes the levels of the tanks
Dt : demand profile
qt : flows passing through arcs

qĊtj : inflow of the tanks
ht : head drop at each arc
E : network analysis problem (NAP)
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Mathematical formulation

network analysis problem E for each time step:

(qt , ht) ∈ E(Ht ,Dt , xt), ∀t ∈ T

compact representation of conservation of flow, capacity of the arcs, and
head-flow relationship in arcs

qtj = Dtj ∀j ∈ S
ϕa(qta) + V ta(1− xta) ≤ hta ≤ ϕa(qta) + V ta(1− xta) ∀a ∈ A

in general: ϕ(q) = Aq|q|+ Bq + C nonlinear and nonconvex constraint

for a given Dj and Ht , for each configuration xt we have a unique flow through
arcs and correspondingly head drops
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Caveats

The optimization problem P has three major issues:

discrete: binary decisions x ∈ {0, 1}|AC |×T

non-convex: pressure-flow relation h = ϕ(q)

large scale: network size ×T

P is a large scale non-convex Mixed-Integer Non-linear Program (MINLP)

how to tackle this problem?

solve/approximate P
evolutionary search, e.g., metaheuristics

Systematic search, e.g., branch-and-cut applied to a more tractable
formulation, typically a MILP, Lagrangian relaxation, etc
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flow-head relationship in arcs

ϕ(q) = Aq|q|+ Bq + C and its relaxation in approximation or branch and check
algorithm (Bonvin et al)
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Constructive properties

Temporal decomposition: flow and pressure in arcs at t ′ are described by a
nonlinear function g :

(qt , ht) ∈ E(xt ,Dt ,Ht)

by relaxing levels of the tanks Ht′j ∈ [H t′j ,H t′j ]∀j ∈ Ċ, (qt′ , ht′) are
independent of decision made at t ̸= t ′.

Graph decomposition: decomposition of the network graph G along
reservoirs into subgraphs Gb for branch b: Ab ∩ Ab′ = ∅, Jb ∩ Jb′ ⊆ R,
(qt , ht) in branch b is fully independent from G \ Gb.
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Alternating Direction Method

ADM:solving complex optimization problems by decomposing them into more
manageable sub-problems
the classical ADM is a solution method for optimization problems with a clear
partition of the decision variables in two sets:

P : min{f (u, v) : u ∈ U , v ∈ V}.
The main steps of ADM are presented in the following algorithm.

Algorithm Standard Alternating Direction Method

1: Input: choose the initial values (u0, v0)
2: Output: a partial minimum solution (u∗, v∗)
3: for k = 0, 1, ... do
4: Compute: uk+1 ∈ argminu{f (u, vk) : u ∈ U}
5: Compute: vk+1 ∈ argminv{f (uk+1, v) : v ∈ V }
6: if ∥uk+1 − uk∥ < ε and ∥vk+1 − vk∥ < ε then
7: break
8: end if
9: end for
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nonseparable Alternating Direction Method

ADM can be extended for nonseparable and quasi-separable cases by slightly
changes in the formulations. This can be realized through:

Alternating Direction Method of Multipliers (ADMM)

Penalty Alternating Direction Method (PADM)

ADMM: well established work, requires linear coupling constraints to converge to
feasible solution (Boyd et al)
PADM: develop initially for large scale network optimization (Geißler et al.).
convergent partial minimum of (PPADM) concept may violate some coupling
constraints; On the other hand, the convergence proof in the PADM framework
requires weaker assumptions:
as long as the solution of one of the subproblems is always unique, the inner loop
converges to a partial minimum.
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Penalty Alternating Direction Method

suppose that coupling constraints can be represented as gi (u, v) = 0 ∀i and
hi ′(u, v) ≥ 0 ∀i ′. The PADM is defined as:

PPADM : min{f (u, v) +
m∑
i=1

ρi |gi (u, v)|+
p∑

i=1

µi [hi (u, v)]
− : u ∈ U , v ∈ V}.

and

ϕ(u, v , ρ, µ) = min{f (u, v) +
m∑
i=1

ρi |gi (u, v)|+
p∑

i=1

µi [hi (u, v)]
−}

denotes the objective function of the PADM
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PADM algorithm

Algorithm Standard Penalty Alternating Direction Method

1: Input: choose the initial values (u0, v0, ρ0, µ0)
2: Output: a partial minimum solution (u∗, v∗)
3: for j = 0, 1, ... do
4: for k = 0, 1, ... do
5: Compute: uk+1 ∈ argminu{ϕ(u, vk , ρj , µj) : u ∈ U}
6: Compute: vk+1 ∈ argminv{ϕ(uk+1, v , ρj , µj) : v ∈ V }
7: if ∥uk+1 − uk∥ < ε and ∥vk+1 − vk∥ < ε then
8: break
9: end if

10: end for
11: choose a new penalty parameter µj+1 ≥ µj and ρj+1 ≥ ρj

12: end for

if the solution of one of the subproblem is always unique, then always we have
convergence in the inner loop.
The convergence condition is by far easier to be met; however, the concept of
partial minumum is rather weak and its framework it deos not mean feasible
solution
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Variable splitting in pump shceduling problem

(P) can be decomposed temporally after dualizing the storage time-coupling
constraints as in Lagrangian relaxation, or after penalizing their violations as in
the following model. Given ℓ1 penalty and multipliers, we define

(Lρ) : min
x,q,H
{l(x , q,H, ρ) : (1b), (1d), (1e)},

with l(x , q,H, ρ) =
∑
t∈T

(
ct(xt , qt ,Ht) +

∑
j∈Ċ

ρtjdtj(q,H)
)
,

and dtj(q,H) = |H(t+1)j − (Htj + qĊtj)| ∀t ∈ T , j ∈ Ċ.

if separable as T independent subproblems, it remain difficult to solve
solving each subsystem E(Ht ,Dt , xt) when Ht is variable is hard
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Variable splitting in pump scheduling problem

Assumption (A0). The steady-state sub-problems with known initial state
variables(levels of the tanks)

(Pt(Ht)) : min
xt ,qt
{ft(xt , qt) | (qt , ht) ∈ E(Ht ,Dt , xt), xt ∈ Xt ⊆ {0, 1}A}

are easy for all t ∈ T and Ht ∈ RĊ , and for any linear function ft .
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Variable splitting algorithm

Algorithm Partial storage/control splitting for (P)

1: Input: i = 0, tank profiles H0 ∈ RT , penalty ρ0, tolerance ε, ε′ > 0
2: Output: a feasible solution (x , q,H) of (P)
3: for k = 0, 1, ... do:
4: while ∥H i+1 − H i∥∞ ≥ ε′ do:
5: (x i+1, qi+1) ∈ arg min(x,q){l(x , q,H i , ρk) : (1b), (1e)}
6: H i+1 ∈ arg minH{l(x i+1, qi+1,H, ρk) : (1d)}
7: if dtj(qi+1,H i+1) < ε ∀t ∈ T , j ∈ then
8: return (x i+1, qi+1,H i+1)
9: end if

10: i ← i + 1
11: end while
12: update ρ
13: end for

we do not dualize/penalize here the nonlinear coupling constraint (1b).
Instead, we propose to relax the coupling equilibrium constraints (1b) in the
second subproblem (Line 6) and keep the storage capacities (1d) as the only
constraints to satisfy. It results in a simple linear program with T variables and
only box constraints
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Variable Splitting algorithm

first subproblem: for a fixed Ht = H i
t , we find the optimal solution for each

single step penalized problem (Pt(Ht))
(even enumeration!)

second subproblem: solving an LP

The major deficiency of such algorithm is that there is no guarantee to end up a
feasible solution

hypothesis: given relatively close optimal tank profile H for initialization is likely
to end up finding the optimal configuration

Observation: Initialization of the decomposition with arbitrary state variables
almost never end up to feasible solution
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Decomposition guided by a learning algorithm

Optimal operation of the water network distribution carries out at daily basis.

In practice at each day for a given demand and tariff profile (D,C ) the
optimization problem is solved

A supervised learning problem.
a hypothesis function H: (D,C ) ∈ RTS × RT −→ H(D,C ) ∈ RTR an optimal
solution of the problem (P) with input (D,C ). minimizing the regression loss:

Lloss(H(D,C ),H(D,C)) =
1

N

N∑
i=1

||H(Di ,Ci )− Hi ||22.

Idea: providing a near optimal tank profile for the decomposition algorithm to
search locally around approximated state profile

A. Tavakoli, S. Demassey, V. Sessa (Mines Paris-PSL GT OR )Combining Decomposition and learning 20.10.2023 19 / 30



Decomposition guided by a learning algorithm

the approximation of the optimal state variable here resembles learning
sequential data

using approximation of Bayesian neural network (Monte Carlo dropout) to
have several approximation for each given input data: multi start −→ more
chance to find optimal solution

Instead of approximating the discrete control variables, approximating the
continuous variables

allowing smoother moves in the neighborhood exploration
multi-start mechanism
fixing the levels in the first subproblem and regaining tractability

Scaling mechanism: to tackle scheduling problems with high resolution for
which collecting pre-solved instances is very time consuming; by doing this we
mitigate the limitation of supervised learning
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Experimental results

van Zyl network (van Zyl et al) is characterized with 15 pipes, 2 symmetrical
pumps, a boost pump parallel to a check valve. It has two taks and two demand
nodes.
Data Generation: We have generated instances drawn from realistic
consumption data. each instance i originally has T = 48 (0.5h) resolution
data collection: build the dataset of a given hydraulic network G by only
considering coarse-time pump scheduling instances (with typically T = 12) with
branch and check algorithm with some bound tightening (Tavakoli et al.) at the
preprocessing −→ leading to 2113 dataset capturing seasonality of the demand and
various electricity tariff.
benchmark is available at:

https://github.com/sofdem/gopslpnlpbb/tree/benchs%26nets
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Experimental results

Limitation and our solution:
scaling: for finer resolution (T = 24, T = 48) we cannot gather a collection of
data since solving each of them takes unbearable computational effort.

1 resample these input data by averaging the consecutive time steps to obtain
its T = 12 version

2 approximate the solution of this resampled instance with our learning
algorithm, to have H(D,C )

3 linear interpolate the tank profile predicted by the deep learning model

A. Tavakoli, S. Demassey, V. Sessa (Mines Paris-PSL GT OR )Combining Decomposition and learning 20.10.2023 22 / 30



Experimental results

Baseline: We compare the results of the hybrid approach (HA) with different
penalty initialization ρ = 50, 2 (HA50, HA2) with branch-and-check algorithm
with and without preprocessing (BC, BCpre) over 50 test instances for van Zyl
T = 12, 24, 48 (VZ12, VZ24, VZ48)

Penalty update:

(ρti )
a+1 =

{
5ξe(

−a
10 )ρati + 1 if dti (q

b+1,Hb+1) > εa

2ξe(
−a
10 )ρati + 1 otherwise

Experimental set up:All algorithms are implemented in Python and experiments

are executed on an Intel(R) Xeon(R) 6148 2.40GHz and 128 GB memory. The
deep learning model is built using Tensorflow API version 2.12.0 on Jupyter
notebook in Google Colab with GPU A100.
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Experimental results

a Deep learning model to map each demand and tariff tuple into the optimal
levels of the tank

to capture epistemic uncertainty of the deep learning model, we introduce
monte-carlo sampling

instead of having one optimal tank profile we can generate different initial
tanks’ profiles for our decomposition problem

more diversification during local search done by decomposition
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Experimental results

#solved Med Mean std Min Max

VZ12 HA50 49 114 254 359 6 1570
HA2 44 114 305 438 6 1577
BC 48 39 121 160 1 681
BCpre 50 125 124 4 116 137

VZ24 HA50 50 183 285 281 18 1257
HA2 50 169 279 304. 16 1711
BC 5 425 1097 1215 272 3117
BCpre 50 755 809 268 601 2430

VZ48 HA50 50 309 776 1294 37 7069
HA2 49 322 1014 1435 31 5548
BC 1 - - - - -
BCpre 32 1892 2517 1371 1397 6404

Table: Performance: computation time in seconds.
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Experimental results

#solved Med Mean std Min Max

VZ12 HA50 49 6.6 6.6 4.1 0.0 21.2
HA2 44 4.3 4.6 2.7 0.0 11.3
BC 48 4.9 5.4 2.9 1.6 12.5
BCpre 50 3.5 4.3 2.7 0.4 12.4

VZ24 HA50 50 9.6 9.5 4.0 3.3 23.4
HA2 50 7.6 8.4 3.1 3.4 16.3
BC 5 11.7 11.1 2.2 7.2 12.6
BCpre 50 6.5 7.5 6.0 2.4 39.6

VZ48 HA50 50 8.9 9.8 3.9 3.8 21.0
HA2 49 10.2 10.3 3.9 4.4 19.7
BC 1 - - - - -
BCpre 32 6.4 6.4 1.5 3.4 8.9

Table: Performance: estimated optimality gap in %.
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Experimental results

scaling performance of hybrid approach(HA) vs baseline:

number of instances for which we found feasible solution according to time
Proposed hybrid approach HA outperforms significantly the baseline branch and
check algorithm
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Conclusions

a two-step hybrid approach, consisting a supervised learning algorithm and a
local optimization

Addressing integrality, nonlinearity, and nonconvexity of the problem

a work can be categorized as the end-to-end learning; however, we have not
compromised hard constraints of the problem

the local optimization algorithm is a tailored direction method enforcing a
partial control/storage variable split

it does a dynamic neighborhood search of the approximated solutions derived
from learning

to increase the chance ending up to a feasible solution, we have selected a
learning algorithm providing us several approximations instead of one

using scaling, the hybrid method is able to retrieve from a low resolution
(e.g., scheduling for T = 12) obtain good feasible solution for its counterpart
T = 48
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