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Abstract

This paper considers a stochastic version of the shortest path problem, namely the
Distributionally Robust Stochastic Shortest Path Problem (DRSSPP) on directed
graphs. In this model, each arc has a deterministic cost and a random delay. The
mean vector and the second-moment matrix of the uncertain data are assumed to
be known, but the exact information of the distribution is unknown. A penalty oc-
curs when the given delay constraint is not satisfied. The objective is to minimize
the sum of the path cost and the expected path delay penalty. As this problem is
NP-hard, we propose new reformulations and approximations using a sequence of
semidefinite programming problems which provide tight lower bounds. Finally,
numerical tests are conducted to illustrate the tightness of the bounds and the value
of the proposed distributionally robust approach.

Keywords: Stochastic programming, Shortest path, Distributionally robust
optimization, Semidefinite programming.

1. Introduction

The Shortest Path (SP) problem is a well-known combinatorial optimization
problem and has been extensively studied for the last decades [3, 8, 10]. The ob-
jective of SP is to find a path with minimum distance or cost between two specified
vertices of a given graph. In the deterministic SP problem, all the parameters are
assumed to be known. However, due to different kinds of real life uncertainties,
it may be difficult to specify the parameters precisely. Assuming deterministic

Preprint submitted to Computers & Operations research May 3, 2016



values for parameters could lead to infeasibilities when the prescribed determinis-
tic solution is implemented. One way to address this issue is robust optimization
where the constraints involving random parameters are satisfied for all realiza-
tions of the random events (see, e.g., Soyster [29], Ben-Tal and Nemirovski [5]).
Moreover, the random parameters are defined within a given uncertainty set. For
a comprehensive overview on robust optimization, we refer the reader to the book
by Ben-Tal et al. [4], the survey by Gabrel et al. [12] and references herein.

The robust shortest path problem has been widely studied. For instance, Yu
and Yang [33] studied the robust shortest path problem in a layered network under
two robustness criteria; they proved that the problem is NP-complete and devised
a pseudo-polynomial algorithm. Gabrel et al. [13] proposed an integer linear pro-
gram formulation for the studied robust shortest path and analyzed the theoretical
complexity of the resulting problems.

An alternative to robust optimization is to model the problem as a stochas-
tic optimization problem. The stochastic shortest path problem (SSPP) has also
been widely studied in the past decades [15, 18, 20, 22, 24]. Provan [25] and
Polychronopoulos and Tsitsiklis [26] studied expected shortest paths in networks
where information on arc cost values is accumulated as the graph is being tra-
versed, while Nikolova [23] maximized the probability that the path length does
not exceed a given threshold value. Nie and Wu [22] studied the problem of find-
ing a priori shortest paths to guarantee a given likelihood of arriving on-time in a
stochastic network and also provided a pseudo-polynomial approximation based
on extreme-dominance.

In transportation management systems, stochastic optimization has been ap-
plied widely as well. Sen et al. [27] formulated a network flow multiobjective
model where one objective function consists in minimizing the expected travel-
time between given origin and destination nodes whereas the second objective
function minimizes the variance of travel-time. Miller-Hooks and Mahmassani
[17] addressed the problem of determining least expected time paths in stochastic,
time-varying networks where the arc weights (arc travel times) are random vari-
ables with probability distribution functions that vary with time. Xing and Zhou
[32] investigated a fundamental problem of finding the most reliable path under
different spatial correlation assumptions, and a Lagrangian substitution approach
is used to get a lower bound. Fu and Rilett [11] studied a dynamic and stochas-
tic shortest path problem to come-up with the expected shortest path in a traffic
network where the link travel times are modeled as a continuous-time stochastic
process, and proposed a heuristic algorithm based on the k-shortest path algo-
rithm. In a recent paper, Mokarami and Hashemi [19] considered both robust and
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stochastic versions of the constrained shortest path problem, where an uncertain
transit time was associated to each arc in addition to the arc cost. Moreover, they
presented tractable approaches for solving the corresponding robust and stochastic
constrained shortest path problems.

Most formulations and solution algorithms that address the SSPP require the
knowledge of the underlying probability distributions of the random data. When
the probability distribution is not known in advance, distributionally robust op-
timization can be used to handle the uncertainty [14] where only a part of the
uncertainty information is required, such as the first two moments and the uncer-
tainty support [7, 9]. In addition, a wide range of disributionally robust optimiza-
tion problems can be reformulated as SDP problems, and hence solved efficiently
thanks to semidefinite programming (SDP) [9].

In this paper, we study the Distributionally Robust Stochastic Shortest Path
Problem (DRSSPP) where only a part of the information on random data is as-
sumed to be known. In this model, each arc has a deterministic cost and a random
delay. Furthermore, we assume that only the first and the second moments of
the delay are known. This problem has a simple recourse formulation, i.e., we
deal with the delays of the path by introducing a penalty which is incurred when
the delay constraint is not satisfied. The objective is to minimize the sum of the
path cost and the expected path delay penalty. As the deterministic shortest path
problem with delay is NP-hard [31], it follows that DRSSPP is also NP-hard by
choosing all the arc variances equal to 0.

This paper is organized as follows. In Section 2, we give the mathematical
formulation of DRSSPP. Two equivalent deterministic formulations are presented
in Section 3. In Section 4, we present a copositive reformulation of DRSSPP
when the support is nonnegative. In Section 5, two relaxed versions of DRSSPP
are given to approximate the original problem. In Section 6, a numerical study is
provided to evaluate the approximation and to illustrate the value of the proposed
distributionally robust approach. The conclusions are given in the last section.

2. DRSSPP Formulation

Let G = (V, A) be a digraph with n = |V | nodes and m = |A| arcs. Each arc
a ∈ A has an associated cost c(a) > 0 as well as a random delay represented by
the random variable δ̃(a). We assume w.l.o.g that c1, . . . , cm denote the costs while
δ̃1, ..., δ̃m are the random delays. Let c = {c1, ..., cm} and δ̃ = {δ̃1, ..., δ̃m}.

When the exact probability distribution of δ̃ denoted by F is known, the
Stochastic Shortest Path Problem (SSPP) consists in finding a directed path be-
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tween two given vertices s and t such that the sum of the cost and the expected
delay cost is minimal. The delay cost is based on a penalty per time unit d > 0
that has to be paid whenever the total delay exceeds a given threshold D > 0. In
transportation applications, D may represent the preferred arrival time and d the
unit cost of delay, so the last term of the objective represents the expected cost of
delay.

Then, SSPP can be mathematically formulated as follows [6]:

(SSPP) min
x∈{0,1}m

cT x+d · EF [δ̃T x − D]+ (1a)

s.t. Mx = b (1b)

where [·]+ = max{0, ·}, E[X] denotes the expectation of a random variable X,
M ∈ Rn×m is the node-arc incidence matrix and b ∈ Rn, with all elements being 0
except the s-th and t-th elements, which are 1 and -1, respectively [1].

The objective function is composed of two terms, namely the total cost of the
shortest path and the expectation cost related to the delay constraint. The second
term can be interpreted as the expectation of individual penalization of excess
delays of the arcs. This formulation is also known in stochastic programming as
a simple recourse formulation.

2.1. Distributionally Robust Formulation
SSPP requires that the exact information of the distribution F is known. How-

ever, this is not often the case for many practical problems. Therefore, distribu-
tionally robust optimization can be used to handle the uncertainty. In this paper,
we model the SSPP as distributionally robust SSPP as follows:

(DRSSPP) min
x∈{0,1}m

cT x+d ·max
F ∈D

EF [δ̃T x − D]+ (2a)

s.t. Mx = b (2b)

whereD is the collection of probability distributions of interest.
In the following, DRSSPP is considered under the following key assumption:
Assumption (A1): The distributional uncertainty set accounts for information

about the support S, mean µ, and an upper bound Σ on the covariance matrix of
the random vector δ̃

D(S, µ,Σ) =

F ∈ M
∣∣∣∣∣∣∣∣
P(δ̃ ∈ S) = 1
EF [δ̃] = µ
EF [(δ̃ − µ)(δ̃ − µ)T ] � Σ

 .

whereM is the set of all probability distributions on the measurable space (Rm,B),
with B the Borel σ-algebra on Rm.
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3. Deterministic Formulations

In this section, we present two equivalent deterministic formulations of DRSSPP.
The first formulation is a direct derivation similar in approach to previous work
[9]. The second one is a new formulation with a smaller matrix constraint size
than the first one, which is much more effective computationally, as shown in
Section 6.

Delage and Ye [9] have previously studied the distributionally robust approach;
they gave an equivalent deterministic formulation which we apply hereafter to
DRSSPP.

Theorem 1. Under assumption (A1), together with S = Rm, problem (2) is equiv-
alent to the following deterministic problem.

(DRSSPP1): min
x∈{0,1}m,t∈R,q∈Rm,Q∈Rm×m

cT x+ d · ((Σ + µµT ) •Q + µT q + t) (3a)[
t + D (q−x)T

2q−x
2 Q

]
� 0 (3b)[

t qT

2q
2 Q

]
� 0, (3c)

Mx = b (3d)

where • is the inner product defined by A • B =
∑

i, j Ai jBi j.

Proof. The main idea of the proof follows from [9], whereby the distribution-
ally robust objective function is transformed into its equivalent deterministic re-
formulation. We note that maxF ∈DEF [δ̃T x − D]+ is equivalent to the following
optimization problem:

max
F ∈M

∫
S

[δT x − D]+dF (δ) (4a)

s.t.
∫
S

dF (δ) = 1 (4b)∫
S

δdF (δ) = µ (4c)∫
S

(δ − µ)(δ − µ)T dF (δ) � Σ (4d)
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Accordingly, the Lagrangian function of problem (4) is as follows:

Lag =

∫
S

[δT x − D]+dF (δ) + r(̇1 −
∫
S

dF (δ))

−qT (
∫
S

δdF (δ) − µ) + Q • (Σ −
∫
S

(δ − µ)(δ − µ)T dF (δ))

where r ∈ R,q ∈ Rm and 0 � Q ∈ Rm×m are the dual variables for constraints
(4b), (4c) and (4d) respectively. Simplifying, we obtain

Lag = r + µT q + Q • (Σ + µµT )

+

∫
S

{[δT x − D]+ − r − qTδ −Q • δδT }dF (δ)

In order to maximize Lag with F ∈ M, we have

max
F ∈M

Lag = r + µT q + Q • (Σ + µµT ) + min
Q�0,q∈Rm,r,t∈R

t

s.t. t ≥ [δT x − D]+ − r − qTδ −Q • δδT ,∀ δ ∈ S

Precisely, the optimal F is the dirac distribution with probability 1 on the point
δ ∈ S which maximizes [δT x − D]+ − r − qTδ −Q • δδT .

Then, the dual of problem (4) can be written as follows:

min
Q�0,q∈Rm,r,t∈R

max
F ∈M

Lag = min
Q�0,q∈Rm,r,t∈R

r + µT q + Q • (Σ + µµT ) + t

s.t. t ≥ [δT x − D]+ − r − qTδ −Q • δδT ,∀ δ ∈ S

Furthermore, it is equivalent to

min
Q�0,q∈Rm,r∈R,t∈R

r + µT q + Q • (Σ + µµT ) + t

s.t. t ≥ δT x − D − r − qTδ −Q • δδT ,∀ δ ∈ S

t ≥ −r − qTδ −Q • δδT ,∀ δ ∈ S

By change of variables from t + r to t, we have the following equivalent reformu-
lation:

min
Q�0,q∈Rm,t∈R

t + µT q + Q • (Σ + µµT )

s.t. (1; δ)T

[
t + D (q−x)T

2q−x
2 Q

]
(1; δ) ≥ 0

(1; δ)T

[
t qT

2q
2 Q

]
(1; δ) ≥ 0
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As S = Rm, thus the dual is equivalent to

min
Q�0,q∈Rm,t∈R

t + µT q + Q • (Σ + µµT )

s.t.
[

t + D (q−x)T

2q−x
2 Q

]
� 0[

t qT

2q
2 Q

]
� 0

It is easy to show that the conditions on the support, first and second moments
ensure that the dirac distribution lies in the relative interior set of problem (4).
Furthermore, based on the results of Proposition 3.4 in Shapiro [28], the strong
duality holds.

�

Apart from the binary constraint, problem (3) is an SDP problem which is
theoretically solvable in polynomial time. However, in practice, solving the SDP
problem is very time-consuming. In order to overcome this drawback, we propose
a new efficient formulation without imposing any additional assumption.

Theorem 2. Under assumption (A1) and S = Rm, problem (2) is equivalent to

(DRSSPP2): min
x∈{0,1}m,p0,q0,t∈R

cT x+ d · ((xT Σx + (µT x)2) · p0 + µT x · q0 + t)(5a)[
t + D q0−1

2
q0−1

2 p0

]
� 0 (5b)[

t q0
2q0

2 p0

]
� 0, (5c)

Mx = b (5d)

Remark 1. In problem (5), the dimension of the linear matrix inequality is 2 × 2,
compared to (m + 1) × (m + 1) for the linear matrix inequality of problem (3).

Proof. The proof consists of two parts: first, we establish the primal-dual rela-
tionship between problem (2) and problem (5). Second, we show that the strong
duality holds.
Part 1. We introduce a new random variable δ̃0 = δ̃T x. The mean and the upper
bound of the variance of δ̃0 are µ0 = µT x and σ0 = xT Σx respectively. We denote
the support of δ̃0 by S0 ⊆ R. Accordingly, the stochastic part of problem (2), i.e,
maxF ∈DEF [δ̃T x − D]+, can be described as the following moment problem:
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(P): max
F ∈M

∫
S0

[δ0 − D]+dF (δ0) (6a)

s.t.
∫
S0

dF (δ0) = 1 (6b)∫
S0

δ0dF (δ0) = µ0 (6c)∫
S0

(δ0)2dF (δ0) − µ2
0 ≤ σ0 (6d)

Further, the Lagrangian function of problem (6) can be written as follows:

Lag =

∫
S0

[δ0 − D]+dF (δ0) + r(̇1 −
∫
S0

dF (δ0))

+q0(µ0 −

∫
S0

δ0dF (δ0)) + p0 · (σ0 + µ2
0 −

∫
S0

δ2
0dF (δ0))

where r, q0, p0 ∈ R with p0 ≥ 0 are the dual variables for constraints (6b), (6c)
and (6d) respectively. After simplifying, we have

Lag = r + q0µ0 + p0(σ0 + µ2
0)

+

∫
S0

{[δ0 − D]+ − r − q0δ0 − p0δ
2
0}dF (δ0)

To maximize Lag over F ∈ M, we have

max
F ∈M

Lag = r + q0µ0 + p0(σ0 + µ2
0) + min

p0≥0,q0,t,r∈R
t

s.t. t ≥ [δ0 − D]+ − r − q0δ0 − p0δ
2
0,∀ δ0 ∈ S0.

Precisely, the optimal F is the dirac distribution with probability 1 on the point
δ0 ∈ S0 which maximizes [δ0 − D]+ − r − q0δ0 − p0δ

2
0.

Then, the Lagrangian dual of problem (P) is as follows:

min
p0≥0,q0,t,r∈R

max
F ∈M

Lag = min r + q0µ0 + p0(σ0 + µ2
0) + t

s.t. t ≥ [δ0 − D]+ − r − q0δ0 − p0δ
2
0,∀ δ0 ∈ S0
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Furthermore, it is equivalent to

min
p0≥0,p0,q0,t∈R

q0µ0 + p0(σ0 + µ2
0) + t

s.t. t ≥ δ0 − D − q0δ0 − p0δ
2
0,∀ δ0 ∈ S0

t ≥ −q0δ0 − p0δ
2
0,∀ δ0 ∈ S0

which can be re-written as

min
p0≥0,p0,q0,t∈R

q0µ0 + p0(σ0 + µ2
0) + t

s.t. (1; δ0)T

[
t + D q0−1

2
q0−1

2 p0

]
(1; δ0) ≥ 0

(1; δ0)T

[
t q0

T

2q0
2 p0

]
(1; δ0) ≥ 0

As the support of δ̃ is Rm and x , 0, the support of δ̃0 = δ̃T x is R, i.e., S0 = R.
Thus, the dual is equivalent to

min
p0≥0,p0,q0,t∈R

q0µ0 + p0(σ0 + µ2
0) + t

s.t.
[

t + D q0−1
2

q0−1
2 p0

]
� 0,[

t q0
2q0

2 p0

]
� 0

Part 2. Analogous to the proof of Theorem 1, the strong duality holds due
to the results of Shapiro [28]. Therefore, combining with the other terms and
constraints of problem (2), we show that problem (2) is equivalent to problem
(5). �

3.1. Simplified DRSSPP Reformulation
In the case where the mean µ and the covariance matrix Σ are positively pro-

portional to the cost of the arc and to µµT respectively, DRSSPP can be signifi-
cantly simplified. There assumptions are realistic for some real world problems,
e.g., in transportation networks the traffic delay is proportional to the length of the
roads.
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Theorem 3. If there exists K ≥ 0 such that Σ = KµµT . Then problem (2) is
equivalent to

min
x∈{0,1}m,t,p,q∈R

cT x+ d · ((K + 1) · p + q + t) (7a) t + D q−µT x
2

q−µT x
2 p

 � 0 (7b)[
t q

2q
2 p

]
� 0 (7c)

Mx = b (7d)

Proof. We prove that problem (7) is equivalent to problem (5). Let Opt1 and Opt2

to be the optimal objective values of problems (5) and (7) respectively. First we
prove that Opt1 ≥ Opt2. Suppose that (x∗, p∗0, q

∗
0, t
∗) is an optimal solution of

problem (5). As (x∗, p∗0, q
∗
0, t
∗) is a feasible solution of problem (5), then we have t∗ + D q∗0−1

2
q∗0−1

2 p∗0

 � 0,

 t q∗0
2

q∗0
2 p∗0

 � 0

Let p1 = p∗0(µT x∗)2 and q1 = q∗0µ
T x∗. When µT x∗ , 0, the above conditions can

be transformed as follows: t∗ + D q1−µ
T x∗

2µT x∗
q1−µ

T x∗

2µT x∗
p1

(µT x∗)2

 � 0
[

t q1
2µT x∗

q1
2µT x∗

p1
(µT x∗)2

]
� 0

which is equivalent to  t∗ + D q1−µ
T x∗

2
q1−µ

T x∗

2 p1

 � 0
[

t∗ q1
2q1

2 p1

]
� 0

Therefore (x∗, p1, q1, t∗) is a feasible solution of problem (7). When µT x∗ = 0, p1 =

0, q1 = 0, so (x∗, p1, q1, t∗) = (x∗, 0, 0, t∗) is also a feasible solution. Furthermore,
its objective value is the same as Opt1. Therefore, we have Opt1 ≥ Opt2.

Similarly, we can prove that Opt1 ≤ Opt2. By Theorem 2, problem (5) is
equivalent to problem (2). Hence the conclusion follows. �

Remark 2. In problem (7), we can observe that the dimension of its linear matrix
inequality is 2 × 2, but also its objective function is linear.
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4. Special case : nonnegative support

In the above sections, we presented two equivalent deterministic formulations
of DRSSPP where the support of δ̃ is the whole space, namelyRm. In this section,
we consider the case where the support is nonnegative, i.e., S = Rm

+ . Before
presenting the deterministic reformulation, we introduce the following lemma:

Lemma 1. Given Q ∈ Rm×m,q ∈ Rm, t ∈ R. If matrix Q is positive semidefinite,

then P1 :=
[

t qT

q Q

]
∈ COP

m+1 is equivalent to

∃p ∈ Rm
+ , P2 :=

[
t (q − p)T

q − p Q

]
� 0,

where COPm is the cone of copositive matrices:

COP
m = {M ∈ Sm : xT Mx ≥ 0 for all x ∈ Rm

+ }.

Proof. First, suppose that there exists a p ∈ Rm
+ such that P2 � 0. Then for any

(ξ0; ξ) ∈ Rm+1
+ , we have

(ξ0; ξ)T P2(ξ0; ξ) = tξ2
0 + 2ξ0(q − p)Tξ + ξT Qξ ≥ 0.

Furthermore, tξ2
0 + 2ξ0qTξ+ ξT Qξ ≥ 2ξ0pTξ ≥ 0, where the latter inequality holds

because of the nonnegativity of p and ξ. Thus, we conclude that P1 ∈ COP
m+1.

Conversely, when P1 ∈ COP
m+1, then we consider

f ∗ := min
ξ≥0

t + 2qTξ + ξT Qξ ≥ 0, (11)

whose dual problem is maxλ≥0 infξ L(λ, ξ) := t + 2qTξ + ξT Qξ − λTξ. Further
because Q is positive semidefinite and ξ = 1 (all elements of ξ are equal to 1)
is a Slater point for the primal problem, then the strong duality holds and thus
maxλ≥0 infξ L(λ, ξ) ≥ 0, which is equivalent to

∃λ ≥ 0, inf
ξ
L(λ, ξ) = inf

ξ
t + 2qTξ + ξT Qξ − λTξ ≥ 0.

Therefore,
[

t (q − λ/2)T

q − λ/2 Q

]
� 0. Furthermore, we conclude that P2 � 0

by setting p = λ
2 ≥ 0. Thus, the lemma holds. �
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Remark 3. It is well known that testing whether a given matrix
[

t qT

q Q

]
is

copositive is co-NP-complete [21]. However, according to Lemma 1, it becomes
polynomial time solvable when Q is positive semidefinite.

Theorem 4. Under assumption (A1), together with S = Rm
+ , problem (2) is equiv-

alent to the following deterministic problem

min
Q�0,p,q∈Rm,t∈R,x∈{0,1}m

cT x+ d · ((Σ + µµT ) •Q + µT q + t) (12a)[
t + D (q−x−p)T

2q−x−p
2 Q

]
� 0, (12b)[

t q−λT

2
q−λ

2 Q

]
� 0, λ ∈ Rm

+ (12c)

Mx = b (12d)

Proof. The proof consists of two parts. First, we derive the deterministic formu-
lation by applying the results of Lemma 1 in [9]. The second part of the proof
relies on the results of Lemma 1. First, according to the results of Lemma 1 in [9],
problem (2) is equivalent to the following deterministic problem

min cT x+ d · ((Σ + µµT ) •Q + µT q + t) (13a)
min
δ̃≥0

t + qT δ̃ + δ̃T Qδ̃ ≥ 0 (13b)

min
δ̃≥0

t + qT δ̃ + δ̃T Qδ̃ − δ̃T x + D ≥ 0 (13c)

Mx = b (13d)
Q � 0, q ∈ Rm, t ∈ R, x ∈ {0, 1}m (13e)

It is straightforward to show that constraint (13b) has the same formulation as
constraint (11) in Lemma 1. Thus by applying the same technique as in the proof
of Lemma 1, constraint (13b) is equivalent to the following constraint:[

t q−λT

2
q−λ

2 Q

]
� 0, p, λ ∈ Rm

+ .

By applying the same proof for constraint (13c), the conclusion follows. �

As mentioned in Section 3, SDP problems are time-consuming. In parallel to
the case where the support is the whole space, i.e., S = Rm, we present another
deterministic formulation for problem (2) when S = Rm

+ .
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Theorem 5. Under assumption (A1) and S = Rm
+ , problem (2) is equivalent to

min
x∈{0,1}m,p0, q0 t∈R

cT x+ d · ((xT Σx + (µT x)2) · p0 + µT x · q0 + t) (14a)[
t + D q0−1−λ0

2
q0−1−λ0

2 p0

]
� 0, λ0, λ ∈ R+ (14b)[

t q0−λ

2
q0−λ

2 p0

]
� 0, (14c)

Mx = b (14d)

Proof. First, we introduce a new random variable δ̃0 = δ̃T x. Accordingly, the
mean and the upper bound of the variance of δ̃0 are µ0 = µT x and σ0 = xT Σx
respectively. As x , 0 and δ̃ ≥ 0, thus the support of δ̃0 is R+. It is easy to show
that the distributional uncertainty set of δ̃0 is as follows

D(R+, µ0, σ0) =

F ∈ M
∣∣∣∣∣∣∣∣
P(δ̃0 ∈ R+) = 1
EF [δ̃0] = µ0

EF [(δ̃0 − µ0)(δ̃0 − µ0)T ] � σ0

 .

whereM is the set of all probability distributions on the measurable space (R,B),
with B is the Borel σ-algebra on R. Then, with the results of Theorem 4, the
conclusion follows. �

5. Relaxed Approximation

As DRSSPP is NP-hard, special interest is given to its relaxations. We present
the relaxed approximations of the two deterministic formulations of problem (2)
when the support of δ̃ is the whole space, i.e., Rm. For the first deterministic
formulation DRSSPP1, there is a natural linear relaxation on binary variables x
which is as follows:

(DRSSPP1-SDP): min
x≥0,t∈R,Q∈Rm×m,q∈Rm

cT x+ d · ((Σ + µµT ) •Q + µT q + t)(15a)[
t + D (q−x)T

2q−x
2 Q

]
� 0 (15b)[

t qT

2q
2 Q

]
� 0 (15c)

Mx = b (15d)
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In this case, problem (15) is an SDP problem. It is easy to check that the optimal
objective value of DRSSPP1-SDP is a lower bound of DRSSPP.

If we take variables p0, q0 and t as parameters, the second deterministic formu-
lation of DRSSPP becomes a quadratic problem with binary constraints. Thus, we
solve the problem by applying SDP relaxation methods. By introducing redundant
constraints, we get the following SDP approximation of DRSSPP2 as follows:

(DRSSPP2-SDP): min
t,p0,q0∈R,x,X

cT x+ d · (p0(Σ + µµT ) • X + µT x · q0 + t)(16a)[
t + D q0−1

2
q0−1

2 p0

]
� 0 (16b)[

t q0
2q0

2 p0

]
� 0 (16c)

Mix = bi, i = 1, . . . , n (16d)
MT

i XMi = b2
i , Xii = xi, i = 1, . . . , n (16e)[

1 xT

x X

]
� 0 (16f)

where Mi is the i-th row vector of the matrix M. As the binary quadratic terms are
replaced by an SDP relaxation, then the optimal objective value of DRSSPP2-SDP
is a lower bound of DRSSPP as well.

When the variables p0, q0 and t are fixed in DRSSPP2-SDP, we obtain an
SDP problem which can be solved in polynomial time. When x and X are fixed,
DRSSPP2-SDP gives rise to another SDP problem. Thus, we can apply the alter-
nating direction method which provides in this case a conservative approximation
of DRSSPP2-SDP.

5.1. Alternating Direction Method
Let p0 = p̄0, q0 = q̄0 and t = t̄ such that constraints (16b) and (16c) are

feasible, then DRSSPP2-SDP can be written as

(P( p̄0, q̄0, t̄)) : min
x,X

cT x+ d · ( p̄0(Σ + µµT ) • X + µT x · q̄0 + t̄) (17a)

Mix = bi, i = 1, . . . , n (17b)
MT

i XMi = b2
i , Xii = xi, i = 1, . . . , n (17c)[

1 xT

x X

]
� 0 (17d)
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If we consider x = x̄ and X = X̄ such that constraints (16d), (16e) and (16f)
are feasible, then the second SDP problem formulation of DRSSPP2-SDP is

(P(x̄, X̄)) : min
t,p0,q0∈R

cT x̄+ d · (p0(Σ + µµT ) • X̄ + µT x̄ · q0 + t) (18a)[
t + D q0−1

2
q0−1

2 p0

]
� 0 (18b)[

t q0
2q0

2 p0

]
� 0 (18c)

Hence an approximate solution of DRSSPP2-SDP can be found by the following
Alternating Direction Procedure.
Algorithm 1: Alternating Direction Method
• Step 0. Let ε ≥ 0 be a given numerical precision parameter and choose

initial parameters p0 = p0, q0 = q0 and t = t0 such that constraints (16b)
and (16c) are satisfied. Set the iteration counter k = 0 and f 0 = − inf.

• Step 1. Solve the subproblem P(pk, qk, tk) and let (xk+1, Xk+1) be the ob-
tained optimal solutions while the optimal objective value is denoted by
f k+1 .

• Step 2. If f k − f k+1 ≤ ε, return (xk+1, Xk+1, pk, qk, tk, f k+1) and stop.
• Step 3. Solve the subproblem P(xk+1, Xk+1) to obtain an optimal solution

(pk+1, qk+1, tk+1).
• Step 4. Set k := k + 1 and go to Step 1.

Theorem 6. If the problem DRSSPP2-SDP is bounded and has a feasible solution
for the initial values of p0,q0 and t, then the sequence of the objective values
{ f k} generated by Algorithm 1 is nonincreasing. Moreover, the sequence { f k}

converges to a finite limit and f k is an upper bound of DRSSPP2-SDP.

Proof. We first show that the sequence of values f k produced by Algorithm 1 is
nonincreasing. For any step k, the optimal solution (pk, qk, tk) given by Step 3 is
a feasible solution of problem P(xk+1, Xk+1). Thus the optimal objective value of
problem P(xk+1, Xk+1) is less than or equal to f k+1. Moreover, the optimal solu-
tion (xk+1, Xk+1) given by Step 1 is a feasible solution of problem P(pk+1, qk+1, tk+1).
Then f k+2 is less than or equal to the optimal objective value of problem P(xk+1, Xk+1).
Above all, we have f k+2 ≤ f k+1. Thus the sequence of { f t} is nonincreasing.
Furthermore, since the solution sequence (xk, Xk) is bounded and the objective
function of DRSSPP2-SDP is continuous, the monotonicity of the objective value
sequence implies that { f k} has a finite limit. �
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Remark 4. The aforementioned approximation approaches in this section can
be easily applied to the two deterministic formulations of problem (2) when the
support of δ̃ is nonnegative, i.e., S = Rm

+ .

6. Numerical study

The objective of this section is twofold: firstly, we demonstrate numerically
the performances of our methods by comparing two lower bounds for the DRSSPP.
Secondly, we show how the distributionally robust approach can protect against
distribution ambiguity when the probability distribution on the random variables
is not known.

All the considered models are solved by Sedumi 1.3 [30] and CPLEX [16]
with their default parameters on an Intel Core 2 Duo @ 2.26 GHz with 4.0 GB
RAM.

6.1. Numerical results for DRSSPP Bounds
We focus on the two relaxed approximations aforementioned in Section 5.

We consider three directed graphs for our numerical tests with (|V |, |A|) equal to
(21, 39), (30, 68) and (40, 112) respectively. The input data for the models are
randomly generated as follows. The cost c is uniformly generated from [0, 10].
The mean µ is uniformly generated from the interval [5, 10] and the covariance
matrix Σ is generated by the MATLAB function “gallery(’randcorr’,n)*2”. The
penalty d is set to 5 and D is set to the mean of the delay of the shortest path. We
set the initial parameters for Algorithm 1 as follows: ε = 0.1, p0 = 1

4D , q0 = 0 and
t = 0.

For the sake of simplicity, the problems DRSSPP1-SDP and DRSSPP2-SDP
are called hereafter original and modified approximations respectively. In order to
compare the quality of our two relaxations, we use the branch-and-bound method
[6] to come up with the integer optimal solutions. The bound used in the branch-
and-bound method corresponds to the original SDP relaxations. We denote the
optimal values of the two SDP relaxations and the optimal value obtained with
the branch-and-bound method by VS DP1, VS DP2 and VOPT , respectively.

Numerical results are given in Table 1, where column one gives the name of
the instances and columns two and three present the size of the instances. Columns
four and five show the optimal value of the branch-and-bound method and the
corresponding CPU time respectively. Columns six to eight report the optimal
value of the original approximation, the corresponding CPU time and the gap
with the optimal value of the branch-and-bound method respectively. The last
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three columns report the optimal value of the modified approximation, the corre-
sponding CPU time and the gap with the optimal value of the branch-and-bound
method respectively. The gap is defined by Gap = VOPT−VS DP

VOPT 100%.

DATA B& B Original Modified
Name n m VOPT CPU (s) VS DP1 CPU (s) Gap(%) VS DP2 CPU (s) Gap(%)
Inst1 21 39 38.17 37.1 36.15 6.3 5.29 38.17 3.0 0.00
Inst2 21 39 32.03 36.7 31.40 4.7 1.97 32.03 1.7 0.00
Inst3 21 39 38.38 35.7 36.06 4.7 6.04 38.28 2.7 0.26
Inst4 21 39 35.37 36.9 33.67 4.8 4.81 35.37 2.2 0.00
Inst5 21 39 31.24 31.6 30.73 4.6 1.63 31.24 3.3 0.00

Inst6 30 68 137.63 1055.2 137.63 198.6 0.00 137.63 5.0 0.00
Inst7 30 68 133.06 1159.7 133.06 238.8 0.00 133.06 2.8 0.00
Inst8 30 68 140.81 1004.4 140.81 187.5 0.00 140.81 2.9 0.00
Inst9 30 68 132.25 1148.3 132.25 167.0 0.00 132.25 2.9 0.00

Inst10 30 68 131.79 1066.9 131.79 167.8 0.00 131.79 2.9 0.00

Inst11 40 112 167.33 41383.4 166.65 4230.9 0.41 167.26 23.0 0.04
Inst12 40 112 170.73 42696.1 168.18 3821.8 1.49 169.70 25.3 0.60
Inst13 40 112 170.75 42284.9 170.75 4620.6 0.00 170.75 7.6 0.00
Inst14 40 112 170.41 42326.7 170.41 4617.5 0.00 170.41 7.7 0.00
Inst15 40 112 170.50 42631.2 167.84 4025.8 1.56 169.27 33.1 0.72

Table 1: DRSSPP Computational results

Table 1 shows that the modified approximation outperforms significantly the
original one in terms of the quality of the bounds and the CPU time. The latter
is at most 34 seconds for the (40, 112) instances for the modified approximation
while the minimum CPU time for the original one is more than 3800 seconds
for the largest instances. This performance shows the efficiency of the modified
approach for solving large size instances.

We also consider a set of large size instances which are obtained by modifying
graphs taken from the OR-library ([2]). As the size of these graphs is very large
for the capability of SDP solvers, we consider only subgraphs of appropriate size
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for our experiments. The input data for the models are randomly generated as
follows. The cost c is the same as in the original graph. The remaining input
data are generated similarly to the previous randomly generated graphs, i.e, the
mean µ is uniformly generated from [5, 10]. The parameters of Algorithm 1 are
initialized to the values stated previously. The branch-and-bound method is highly
demanding in terms of computing time when the size of the graphs is very large.
Therefore, we compare only our two SDP relaxations for the large size instances.

Numerical results are given in Table 2 where column one gives the name of the
instances and columns two and three present the size of the instances. Columns
four and five show the optimal value of the original approximation and the cor-
responding CPU time. The last three columns report the optimal value of the
modified approximation, the corresponding CPU time and the gap with the op-
timal value of the original approximation respectively. The gap is defined by
Gap = VS DP2−VS DP1

VS DP1 100%.

DATA Original Modified
Name n m VS DP1 CPU (s) VS DP2 CPU (s) Gap(%)
Inst1 30 177 5.90 15510 5.90 7.7 0.00
Inst2 45 190 10.96 22496 10.96 10.3 0.00
Inst3 65 199 194.16 25118 194.16 14.9 0.00
Inst4 65 206 214.23 29487 214.23 15.8 0.00
Inst5 100 223 770.98 49513 770.98 47.5 0.00
Inst6 100 481 – – 144.43 127.3 –
Inst7 100 753 – – 17.09 365.0 –
Inst8 100 999 – – 10.85 1319.4

Table 2: DRSSPP Computational results; “–” indicates that no solution was found because of lack
of memory

Table 2 shows that our modified approximation outperforms significantly the
original one in terms of the size of solved instances as well as the CPU time.

6.2. Numerical results for the Distributionally Robust Method
In this section, we compare the solution of our proposed distributionally robust

approach with the solution of a stochastic programming approach. We recall the
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Stochastic Shortest Path Problem (SSPP) as follows:

(SSPP) min
x∈{0,1}m

cT x+d · EF [δ̃T x − D]+ (19a)

s.t. Mx = b (19b)

where F has a known mean and covariance matrix structure. We consider either
a normal distribution or a log-normal distribution.

For SSPP, we propose to apply the Sample Average Approximation (SAA)
method to solve it. For more details on the SAA method, we refer the reader to
[31]. Accordingly, the SAA problem is

OPTN = min
x∈{0,1}m

cT x+d ·
∑N

k=1[δkT x − D]+

N
(20a)

s.t. Mx = b (20b)

which is equivalent to the following mixed integer linear programming problem

OPTN = min
x∈{0,1}m

cT x+d ·
∑N

k=1 sk

N
(21a)

s.t. sk ≥ δ
kT

x − D, sk ≥ 0, k = 1, . . . ,N (21b)
Mx = b (21c)

where the scenarios δ1, . . . , δN are independent and sampled from the distribution
F . In our numerical tests, we set the number of scenarios N to 1000 for the SAA
method.

To compare the robustness of the proposed solutions, we generated a random
set of 1000 instances based on the graph of size (n,m) = (21, 39). The cost c is the
same as the cost vector in section 6.1. For the sake of simplicity, δ̃i, i = 1, . . . ,m,
are assumed to be independent with known mean µi and variance σ2

i . The mean
µi is uniformly drawn on the interval [0, 10], and the variance σ2

i is drawn on the
interval [0, 4]. The penalty parameter d is set to 100 while we set the threshold D
to the mean of the delay of the shortest path. In Table 3, the average performance
of stochastic programming, where the probability distribution is assumed to be
normal or log-normal, and distributionally robust optimization is compared over
the 1000 test instances. We assume that the mean and the covariance matrix of the
stochastic programming problems are the same as the robust ones.

Table 3 also reports between parentheses the additional cost in percentage of
the distributionally robust and stochastic approaches with respect to the stochastic
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optimal costs for the current distribution, which is either normal or log-normal.
When the distribution used and the current distribution are the same, the percent-
age for the stochastic optimal costs is zero.

Notice that the normal distribution is only defined based on the mean and
the covariance information. In the case of the log-normal distribution, we set

δ̃i = 0.9µi + ζi with ζi ∼ lnN
(
ln

(
µ̄2

i√
µ̄2

i +σ2
i

)
, ln

(
1 +

σ2
i
µ̄2

i

))
, where µ̄i = 0.1µi. The

obtained distribution satisfies the mean and covariance information with heavier
tail in the direction of large values.

Stochastic solutions Robust solutions
Normal Log-Normal Robust

Current Normal dist. 29.32(0%) 35.02(19%) 32.80(12%)
distribution Log-normal dist. 43.17(11%) 38.73(0%) 40.70(5%)

Table 3: Comparison between stochastic and distributionally robust solutions.

We observe that the distributionally robust approach is a conservative approx-
imation of the stochastic optimization problem. The distributionally robust costs
are higher than the stochastic ones for the normal and log-normal distributions
by 5% and 12%, respectively. However, the stochastic program does not protect
against distribution changes. For instance, if the current distribution is log-normal
and we assume that it is normal, the solution obtained through the normal dis-
tribution costs 11% more than the real optimal solution while the one obtained
through the robust approach costs only 5% more. To sum up, the robust approach
is a good candidate solution when the exact information about the distribution is
unknown.

7. Conclusions

In this paper, we consider a distributionally robust shortest path problem on di-
rected graphs. Two equivalent deterministic formulations are given: one is based
on the existing results and the other one is proposed for the first time in this paper.
As DRSSPP is NP-hard, we approximate it by two relaxations through two deter-
ministic formulations. The first relaxation is an SDP problem and can be solved
in polynomial time while the second one is solved by applying the alternating di-
rection method. Moreover, we also present two deterministic reformulations of
DRSSPP when the support is non-negative. For these cases, we show that testing
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the copositivity of a matrix under certain conditions can be performed in polyno-
mial time whereas the problem for general matrices is NP-hard. Our numerical
experiments indicate that our proposed relaxed approximation outperforms the
standard formulation. Finally, an extensive set of experiments were conducted
to illustrate the value of the distributionlly robust approach. In addition, our ap-
proach can be applied to a large number of other stochastic optimization problems
with binary variables, e.g., the stochastic knapsack problem with simple recourse.
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