Uncertainty reduction in (static) robust optimization

Ayşe N. Arslan¹ Michaël Poss²

¹ Centre Inria de l'Universite de Bordeaux

²LIRMM, Universite de Montpellier, CNRS

Journée DOR/POC October 2024, CNAM-Paris

Decision dependent uncertainty in RO

• Consider the classical (static) robust optimization problem

$$\min_{\mathbf{y}\in\mathcal{Y}\subseteq\mathbb{R}_{+}^{n_{\mathbf{y}}}}\max_{\boldsymbol{\xi}\in\Xi} \quad (\mathbf{f}+\mathbf{F}\boldsymbol{\xi})^{\top}\mathbf{y} \tag{RO}$$

where \mathcal{Y} is linearly constrained and $\Xi = \{ \boldsymbol{\xi} \in \mathbb{R}^{n_{\xi}}_{+} \mid \mathbf{D}\boldsymbol{\xi} \leq \mathbf{b} \}$ is compact.

Remark

- (RO) can be reformulated as a deterministic equivalent problem by adding a polynomial number of variables and constraints.
- (RO) does not model interactions between the decision maker and uncertain parameters.

Decision dependent uncertainty in RO

• RO with affine decision dependence is written as

$$\begin{split} \min_{\mathbf{x}\in\mathcal{X}\subseteq\mathbb{R}_{+}^{n_{\mathbf{x}}},\mathbf{y}\in\mathcal{Y}\subseteq\mathbb{R}_{+}^{n_{\mathbf{y}}}} \mathbf{c}^{\top}\mathbf{x} + \max_{\boldsymbol{\xi}\in\Xi^{\mathrm{AFF}}(\mathbf{x})} (\mathbf{f}+\mathbf{F}\boldsymbol{\xi})^{\top} \mathbf{y} \\ \end{split}$$
where $\Xi^{\mathrm{AFF}}(\mathbf{x}) = \{\boldsymbol{\xi}\in\mathbb{R}_{+}^{n_{\boldsymbol{\xi}}} \mid \mathbf{D}\boldsymbol{\xi}\leq\mathbf{b}+\mathbf{\Delta}\mathbf{x}\} \text{ and } \mathbf{\Delta}\in\mathbb{R}^{m_{\boldsymbol{\xi}}\times n_{\mathbf{x}}}$

Remark

- This problem arises from different application contexts.
- It can also be a useful modelling tool.

Theorem (Nohadani and Sharma (2018))

Robust optimization with affine decision dependence is NP-Hard.

Uncertainty reduction in RO

- One particular affine decision dependence model is *uncertainty reduction*.
- We write (with $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{n_{\xi}}_+$)

$$\Xi^{\mathrm{UR}}(\mathsf{x}) = \{ oldsymbol{\xi} \in \mathbb{R}^{n_{oldsymbol{\xi}}}_+ \mid \mathsf{D}oldsymbol{\xi} \leq \mathsf{v} + \mathsf{w} \circ (\mathbb{1} - \mathsf{x}) \}.$$

- Motivation: repair, investment, market studies, etc.
- Reduction is all-or-nothing, *i.e.*, $\mathbf{x} \in \{0, 1\}^{n_{\xi}}$.

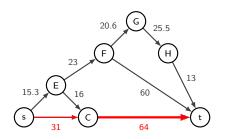
Remark

If
$$v_i = 0$$
 then $x_i = 1$ will completely reduce ξ_i , *i.e.*, $\xi_i = 0$.

3/14

< □ > < □ > < □ > < □ > < □ > < □ >

Example: shortest path problem ¹

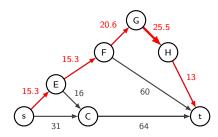


	Path	Nominal	Worst-case
Nominal	s-C-t	95	127

- $\mathcal Y$ contains the flow constraints.
- $f_e = \bar{f}_e (1 + 0.5\xi_e).$
- $\Xi(\mathbf{x}) = \{ \boldsymbol{\xi} \in \mathbb{R}^{|\boldsymbol{E}|}_+ \mid \sum_{e \in \boldsymbol{E}} \xi_e \leq 1, \xi_e \leq 1 0.8x_e \quad \forall e \in \boldsymbol{E} \}.$
- $\mathcal{X} = \{ \mathbf{x} \in \{0, 1\}^{|E|} \mid \sum_{e \in E} x_e \le 1 \}.$

¹from Nohadani and Sharma (2018)

Example: shortest path problem ¹

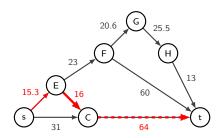


	Path	Nominal	Worst-case
Nominal	s-C-t	95	127
Robust	s-E-F-G-H-t	97.4	110.15

- $\mathcal Y$ contains the flow constraints.
- $f_e = \bar{f}_e (1 + 0.5\xi_e).$
- $\Xi(\mathbf{x}) = \{ \boldsymbol{\xi} \in \mathbb{R}^{|\boldsymbol{E}|}_+ \mid \sum_{e \in \boldsymbol{E}} \xi_e \leq 1, \xi_e \leq 1 0.8x_e \quad \forall e \in \boldsymbol{E} \}.$
- $\mathcal{X} = \{ \mathbf{x} \in \{0, 1\}^{|E|} \mid \sum_{e \in E} x_e \le 1 \}.$

¹from Nohadani and Sharma (2018)

Example: shortest path problem ¹



	Path	Nominal	Worst-case
Nominal	s-C-t	95	127
Robust	s-E-F-G-H-t	97.4	110.15
UR Robust	s-E-C-t	95.3	108.1

- ${\mathcal Y}$ contains the flow constraints.
- $f_e = \bar{f}_e (1 + 0.5\xi_e).$
- $\Xi(\mathbf{x}) = \{ \boldsymbol{\xi} \in \mathbb{R}^{|E|}_+ \mid \sum_{e \in E} \xi_e \le 1, \xi_e \le 1 0.8x_e \quad \forall e \in E \}.$
- $\mathcal{X} = \{ \mathbf{x} \in \{0, 1\}^{|E|} \mid \sum_{e \in E} x_e \le 1 \}.$

¹from Nohadani and Sharma (2018)

Decision dependence in the literature

General models:

- Nohadani and Sharma (2018)
- Zeng and Wang (2022)
- As a modeling tool:
 - Spacey et al. (2012)
 - Poss (2013), Poss (2014)
 - Hanasusanto et al. (2015)

Remark

Static robust optimization problems with decision-dependent uncertainty sets have close connections to bilevel programming and generalized semi-infinite programming.

Uncertainty reduction in robust combinatorial optimization

• In this talk, we will be interested in problems of the form:

$$\min_{\mathbf{x} \in \mathcal{X} \subseteq \{0,1\}^n, \ \mathbf{y} \in \mathcal{Y} \subseteq \{0,1\}^n} \mathbf{c}^\top \mathbf{x} + \max_{\boldsymbol{\xi} \in \mathbb{R}^n_+} \quad (\mathbf{f} + \mathbf{F}\boldsymbol{\xi})^\top \mathbf{y} \quad (\text{UR-Min-Max})$$
s.t.
$$\mathbf{d}^\top \boldsymbol{\xi} \le b$$

$$\boldsymbol{\xi} \le \mathbf{v} + \mathbf{w} \circ (\mathbf{1} - \mathbf{x})$$

with **F** a diagonal matrix.

Remark

We assume that uncertainty is only present in the objective function and the uncertainty set has a single "complicating" constraint for ease of exposition.

Arslan	and I	oss
--------	-------	-----

Uncertainty reduction in robust combinatorial optimization

• In this talk, we will be interested in problems of the form:

$$\min_{\mathbf{x} \in \mathcal{X} \subseteq \{0,1\}^n, \ \mathbf{y} \in \mathcal{Y} \subseteq \{0,1\}^n} \mathbf{c}^\top \mathbf{x} + \max_{\boldsymbol{\xi} \in \mathbb{R}^n_+} \quad (\mathbf{f} + \mathbf{F}\boldsymbol{\xi})^\top \mathbf{y} \quad (\text{UR-Min-Max})$$
s.t.
$$\mathbf{d}^\top \boldsymbol{\xi} \le b$$

$$\boldsymbol{\xi} \le \mathbf{v} + \mathbf{w} \circ (\mathbf{1} - \mathbf{x})$$

with **F** a diagonal matrix.

Remark

- (UR-Min-Max) is NP-Hard even when the underlying combinatorial problem is polynomially solvable.
- This is in contrast to robust combinatorial optimization problems without decision dependence.

Proposition

(UR-Min-Max) can be solved as at most n + 1 deterministic (bilinear) problems in the $\mathcal{X} \times \mathcal{Y}$ space.

Proof.

• Assuming $\mathbf{v} = \mathbf{0}$ and $\mathbf{F} = \mathbf{I}$ for ease of exposition:

$$\begin{split} \min_{\mathbf{x}\in\mathcal{X},\mathbf{y}\in\mathcal{Y}} \mathbf{c}^{\top}\mathbf{x} + \mathbf{f}^{\top}\mathbf{y} + \max_{\boldsymbol{\xi}\in\mathbb{R}^n_+} \quad \boldsymbol{\xi}^{\top}\mathbf{y} \qquad (\text{UR-Min-Max}) \\ \text{s.t.} \quad \sum_{j\in[n]} d_j\xi_j \leq b \qquad (\theta) \\ \xi_j \leq w_j(1-x_j) \quad \forall j\in[n] \quad (\pi) \end{split}$$

Arslan and Poss

Proof.

• Through LP duality:

$$\min_{\substack{\mathbf{x}\in\mathcal{X},\mathbf{y}\in\mathcal{Y}\\\theta\in\mathbb{R}_+,\boldsymbol{\pi}\in\mathbb{R}_+^n}} \mathbf{c}^\top \mathbf{x} + \mathbf{f}^\top \mathbf{y} + b\theta + \sum_{j\in[n]} w_j(1-x_j)\pi_j$$
s.t. $d_j\theta + \pi_j \ge y_j$ $\forall j \in [n]$.

• In any optimal solution, given $\mathbf{x}, \mathbf{y}, \theta$, we have that:

$$\pi_j^* = [y_j - d_j \theta]^+ \qquad \forall j \in [n]$$

where $[a]^+ := \max\{a, 0\}$.

э

< □ > < □ > < □ > < □ > < □ > < □ >

Proof.

$$\min_{\mathbf{x}\in\mathcal{X},\mathbf{y}\in\mathcal{Y},\theta\in\mathbb{R}_+} \mathbf{c}^{\top}\mathbf{x} + \mathbf{f}^{\top}\mathbf{y} + b\theta + \sum_{j\in[n]} w_j(1-x_j) \left[y_j - d_j\theta \right]^+$$

The maximum function is convex but nonlinear in y.
Since 𝒴 ⊆ {0,1}ⁿ, we have for j ∈ [n]:

$$y_j = 1 \implies [y_j - d_j\theta]^+ = [1 - d_j\theta]^+$$

 $y_j = 0 \implies [y_j - d_j\theta]^+ = [-d_j\theta]^+$

• We then obtain the linear expression in y:

$$[y_j-d_j heta]^+=[1-d_j heta]^+y_j+[-d_j heta]^+(1-y_j) \qquad orall j\in [n]$$

Proof.

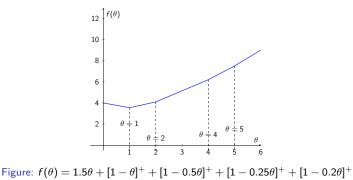
• Substituting, we obtain:

$$\min_{\substack{\mathbf{x}\in\mathcal{X},\mathbf{y}\in\mathcal{Y}\\\theta\in\mathbb{R}_+}} \mathbf{c}^{\mathsf{T}}\mathbf{x} + \mathbf{f}^{\mathsf{T}}\mathbf{y} + b\theta$$
$$+ \sum_{j\in[n]} w_j(1-x_j) \left([1-d_j\theta]^+ y_j + [-d_j\theta]^+ (1-y_j) \right).$$

Remark

For fixed \mathbf{x}, \mathbf{y} , the problem can be stated as minimizing a positive-weighted combination of piecewise affine convex functions of $\theta \in \mathbb{R}_+$.

Arsla	in a	nd	Po	~
ala	iii a	nu	10	



Remark

An optimal solution is obtained as one of the breakpoints of the individual functions: $\theta = \frac{1}{d_i}$ for $[1 - d_j\theta]^+$ when $d_j > 0$ and $\theta = 0$ for $[-d_j\theta]^+$.

Proof.

- In the worst case $d_j > 0$ for $j \in [n]$.
- Therefore $\theta^* \in \{0, \frac{1}{d_1}, \dots, \frac{1}{d_n}\}.$
- (UR-Min-Max) can be solved as n + 1 problems:

$$b\bar{\theta} + \min_{\mathbf{x}\in\mathcal{X},\mathbf{y}\in\mathcal{Y}} \mathbf{c}^{\top}\mathbf{x} + \mathbf{f}^{\top}\mathbf{y} + \sum_{j\in[n]} w_j(1-x_j)\left([1-d_j\bar{\theta}]^+y_j + [-d_j\bar{\theta}]^+(1-y_j)\right).$$

each time fixing $\bar{\theta} = \frac{1}{d_j}$ for $j = 1, \dots, n$ with $d_j > 0$ (plus $\bar{\theta} = 0$).

< □ > < □ > < □ > < □ > < □ > < □ >

- This approach works for:
 - $\bullet\,$ any $\textbf{v}\geq 0$ and any diagonal matrix F
 - any polyhedral uncertainty set (with multiple "complicating constraints")
 - multiple constraints affected by uncertainty (and not just the objective function)

Attention!

In the last two cases the number of deterministic problems that needs to be solved increases exponentially in the number of constraints.

So how do we solve this?

$$b\bar{\theta} + \min_{\mathbf{x}\in\mathcal{X},\mathbf{y}\in\mathcal{Y}} \mathbf{c}^{\top}\mathbf{x} + \mathbf{f}^{\top}\mathbf{y} \\ + \sum_{j\in[n]} w_j(1-x_j)\left([1-d_j\bar{\theta}]^+y_j + [-d_j\bar{\theta}]^+(1-y_j)\right).$$

Remark

- Despite only involving **x** and **y** this problem has bilinear terms.
- The bilinear terms can be linearized using the McCormick envelope.
- We will show two cases in which this problem can be solved in polynomial time.

Arslan a	and F	oss
----------	-------	-----

8/14

A B A A B A

Corollary

If $\mathcal{X} = \{0,1\}^n$, an optimal solution of (UR-Min-Max) can be obtained by solving at most n + 1 deterministic problems of the same form as:

$$\min_{\mathbf{y}\in\mathcal{Y}} \tilde{\mathbf{f}}^{\top} \mathbf{y}.$$
 (Combinatorial)

Remark

If (Combinatorial) is polynomially solvable for all $\tilde{\mathbf{f}} \in \mathbb{R}^n$ then (UR-Min-Max) is polynomially solvable.

Arslan and Poss	Ars	an	and	Poss
-----------------	-----	----	-----	------

Proof.

• For given $\bar{\theta}$, we need to solve:

$$b\bar{\theta} + \min_{\mathbf{x}\in\mathcal{X},\mathbf{y}\in\mathcal{Y}} \mathbf{c}^{\top}\mathbf{x} + \mathbf{f}^{\top}\mathbf{y} \\ + \sum_{j\in[n]} w_j(1-x_j)\left([1-d_j\bar{\theta}]^+y_j + [-d_j\bar{\theta}]^+(1-y_j)\right).$$

• By rearranging the terms, we obtain:

$$\begin{split} \mathcal{K}(\bar{\theta}) + \min_{\mathbf{x} \in \mathcal{X}, \mathbf{y} \in \mathcal{Y}} \mathbf{f}^{\top} \mathbf{y} + \sum_{j \in [n]} w_j ([1 - d_j \bar{\theta}]^+ - [-d_j \bar{\theta}]^+) y_j \\ + \mathbf{c}^{\top} \mathbf{x} - \sum_{j \in [n]} w_j \mathbf{x}_j \left([1 - d_j \bar{\theta}]^+ y_j + [-d_j \bar{\theta}]^+ (1 - y_j) \right). \end{split}$$

Proof.

• We write as:

$$\mathcal{K}(\bar{\theta}) + \min_{\mathbf{y} \in \mathcal{Y}} \left\{ \mathbf{f}^{\top} \mathbf{y} + \sum_{j \in [n]} w_j ([1 - d_j \bar{\theta}]^+ - [-d_j \bar{\theta}]^+) y_j \right.$$

$$+ \min_{\mathbf{x} \in \mathcal{X}} \mathbf{c}^{\top} \mathbf{x} - \sum_{j \in [n]} w_j x_j \left([1 - d_j \bar{\theta}]^+ y_j + [-d_j \bar{\theta}]^+ (1 - y_j) \right) \right\}.$$

• If $\bar{\boldsymbol{y}} \in \mathcal{Y}$ is fixed, the inner problem becomes:

$$\min_{\mathbf{x}\in\mathcal{X}} \mathbf{c}^{\top}\mathbf{x} - \sum_{j\in[n]} w_j x_j \left([1-d_j\bar{\theta}]^+ \bar{y}_j + [-d_j\bar{\theta}]^+ (1-\bar{y}_j) \right)$$

< 17 >

Proof.

• Rearranging, we obtain:

$$\min_{\mathsf{x}\in\mathcal{X}} \quad \sum_{j\in[n]} \left(c_j - w_j\left([1-d_j\bar{\theta}]^+\bar{y}_j + [-d_j\bar{\theta}]^+(1-\bar{y}_j)\right)\right) \mathsf{x}_j.$$

• We remark that if $\mathcal{X} = \{0,1\}^n$ then:

$$\begin{split} \min_{\mathbf{x} \in \{0,1\}^n} & \sum_{j \in [n]} \left(c_j - w_j \left([1 - d_j \bar{\theta}]^+ \bar{y}_j + [-d_j \bar{\theta}]^+ (1 - \bar{y}_j) \right) \right) x_j \\ &= \sum_{j \in [n]} \min_{x_j \in \{0,1\}} \left(c_j - w_j \left([1 - d_j \bar{\theta}]^+ \bar{y}_j + [-d_j \bar{\theta}]^+ (1 - \bar{y}_j) \right) \right) x_j \end{split}$$

i.e., the problem decomposes over **x**.

Arslan and Poss

Proof.

• We focus on the problem over each $x_j \in \{0,1\}$.

$$z_j = \min_{x_j \in \{0,1\}} \left(c_j - w_j \left([1 - d_j ar{ heta}]^+ ar{y}_j + [-d_j ar{ heta}]^+ (1 - ar{y}_j)
ight)
ight) x_j$$

• Since $\mathcal{Y} \subseteq \{0,1\}^n$ and $x_j \in \{0,1\}$, we have:

$$ar{y}_j = 0 \implies z_j = [c_j - w_j [-d_j ar{ heta}]^+]^-$$

 $ar{y}_j = 1 \implies z_j = [c_j - w_j [1 - d_j ar{ heta}]^+]^-$

where $[a]^- = \min\{0, a\}$.

• We then obtain the linear expression in $\bar{\boldsymbol{y}}$:

$$z_j = [c_j - w_j [1 - d_j \bar{ heta}]^+]^- \bar{y}_j + [c_j - w_j [-d_j \bar{ heta}]^+]^- (1 - \bar{y}_j)$$

Proof.

- Putting it all together...
- Given $\bar{\theta}$, solve:

$$\begin{split} \mathcal{K}'(\bar{\theta}) + \min_{\mathbf{y} \in \mathcal{Y}} \quad \sum_{j \in [n]} \left(f_j + w_j [1 - d_j \bar{\theta}]^+ - w_j [-d_j \bar{\theta}]^+ \right. \\ \left. + [c_j - w_j [1 - d_j \bar{\theta}]^+]^- - [c_j - w_j [-d_j \bar{\theta}]^+]^- \right) y_j \end{split}$$

• In other words, solve a problem of the form:

$$\min_{\mathbf{y}\in\mathcal{Y}\subseteq\{0,1\}^n}\mathbf{\tilde{f}}^{\top}\mathbf{y}$$

where $\boldsymbol{\tilde{f}}$ is completely determined by data.

|--|

•
$$\mathcal{X} = \{ \mathbf{x} \in \{0, 1\}^n \mid \mathbf{A}^x \mathbf{x} \le \mathbf{b}^x \}, \mathbf{A}^x \ge 0$$

• $\mathcal{Y} = \{ \mathbf{y} \in \{0, 1\}^n \mid \mathbf{A}^y \mathbf{y} \le \mathbf{b}^y \}$

Corollary

If
$$\mathbf{c}, \mathbf{d} \ge 0$$
 and $\mathbf{A}' := \begin{pmatrix} \mathbf{A}^x & 0 \\ 0 & \mathbf{A}^y \\ \mathbf{I} & -\mathbf{I} \end{pmatrix}$ is totally unimodular and $\mathbf{b}^x, \mathbf{b}^y \in \mathbb{Z}$,
an optimal solution of (UR-Min-Max) can be obtained by solving at most

n+1 linear programs with constraint matrix **A**'.

Arslan and Poss	s
-----------------	---

3

10/14

< □ > < □ > < □ > < □ > < □ > < □ >

Proof.

• For given $\overline{\theta}$, we need to solve:

$$b\bar{\theta} + \min_{\mathbf{x}\in\mathcal{X},\mathbf{y}\in\mathcal{Y}} \mathbf{c}^{\top}\mathbf{x} + \mathbf{f}^{\top}\mathbf{y} \\ + \sum_{j\in[n]} w_j(1-x_j)\left([1-d_j\bar{\theta}]^+y_j + [-d_j\bar{\theta}]^+(1-y_j)\right).$$

• Assuming $\mathbf{d} \ge \mathbf{0}$, and since $\bar{\theta} \ge \mathbf{0}$, we obtain:

$$b\bar{\theta} + \min_{\mathbf{x}\in\mathcal{X},\mathbf{y}\in\mathcal{Y}} \mathbf{c}^{\top}\mathbf{x} + \tilde{\mathbf{f}}(\bar{\theta})^{\top}\mathbf{y} - \sum_{j\in[n]} w_j[1-d_j\bar{\theta}]^+ x_j y_j,$$

where $\tilde{f_j}(\bar{ heta}) = f_j + w_j [1 - d_j \bar{ heta}]^+$ for $j \in [n]$.

Arslan and Poss

Proof.

$$b\bar{\theta} + \min_{\mathbf{x}\in\mathcal{X},\mathbf{y}\in\mathcal{Y}} \mathbf{c}^{\top}\mathbf{x} + \tilde{\mathbf{f}}(\bar{\theta})^{\top}\mathbf{y} - \sum_{j\in[n]} w_j [1 - d_j\bar{\theta}]^+ x_j y_j,$$

- Assuming $\mathbf{c}, \mathbf{A}^{x} \geq 0$, we have that, $\mathbf{x} \leq \mathbf{y}$ in any optimal solution.
- We may therefore write:

$$b\bar{\theta} + \min_{\substack{\mathbf{x} \in \mathcal{X}, \mathbf{y} \in \mathcal{Y} \\ \mathbf{x} \leq \mathbf{y}}} \mathbf{c}^{\top} \mathbf{x} + \tilde{\mathbf{f}}(\bar{\theta})^{\top} \mathbf{y} - \sum_{j \in [n]} w_j [1 - d_j \bar{\theta}]^+ x_j y_j.$$

• Since $\mathbf{x}, \mathbf{y} \in \{0, 1\}^n$ and $\mathbf{x} \leq \mathbf{y}$, we have:

$$x_j y_j = x_j \quad \forall j \in [n].$$

Proof.

• Introducing $ilde c_j(ar heta)=c_j-w_j[1-d_jar heta]^+$ for each $j\in [n]$, we have:

$$\begin{split} \min \quad & \tilde{\mathbf{c}}(\bar{\theta})^\top \mathbf{x} + \tilde{\mathbf{f}}(\bar{\theta})^\top \mathbf{y} \\ \text{s.t.} \quad & \mathbf{A}^x \mathbf{x} \leq \mathbf{b}^x \\ & \mathbf{A}^y \mathbf{y} \leq \mathbf{b}^y \\ & \mathbf{x} - \mathbf{y} \leq \mathbf{0} \\ & (\mathbf{x}, \mathbf{y}) \in \{0, 1\}^{2n}. \end{split}$$

Remark

If the stated TU assumptions are satisfied then the above integer program can be solved as a linear program.

Arslan and Poss

Uncertainty reduction

Journée DOR/POC

MILP reformulations

• Let's come back to mathematical programming:

$$\begin{array}{ll} \min_{\mathbf{x}\in\mathcal{X},\mathbf{y}\in\mathcal{Y}} \mathbf{c}^{\top}\mathbf{x} + \max_{\boldsymbol{\xi}\in\mathbb{R}^n_+} & (\mathbf{f} + \mathbf{F}\boldsymbol{\xi})^{\top}\mathbf{y} & (\mathsf{UR-Min-Max}) \\ & \text{s.t.} & \mathbf{d}^{\top}\boldsymbol{\xi} \leq b & (\boldsymbol{\sigma}) \\ & \boldsymbol{\xi} \leq \mathbf{v} + \mathbf{w} \circ (\mathbf{1} - \mathbf{x}) & (\boldsymbol{\pi}) \end{array}$$

- A monolithic bilinear formulation is obtained through LP duality.
- Will require linearizing the bilinear terms in πx .

Idea

Transfer the decision-dependence to the objective function of the adversarial problem.

Ars	lan	and	Poss

MILP reformulations

Idea

Consider the uncertainty set:

$$\bar{\Xi}(\mathbf{x}) = \{ \boldsymbol{\xi}^1, \boldsymbol{\xi}^2 \in \mathbb{R}^n_+ \mid \mathbf{d}^\top(\boldsymbol{\xi}^1 + \boldsymbol{\xi}^2) \le b, \boldsymbol{\xi}^1 \le \mathbf{v}, \boldsymbol{\xi}^2 \le \mathbf{w} \circ (\mathbb{1} - \mathbf{x}) \}.$$

Observation

For any $\textbf{x} \in \mathcal{X}, \textbf{y} \in \mathcal{Y}$

$$\max_{\boldsymbol{\xi}\in \Xi^{\mathrm{UR}}(\mathbf{x})} (\mathbf{F}\boldsymbol{\xi})^{\top} \mathbf{y} = \max_{\boldsymbol{\xi}^1, \boldsymbol{\xi}^2\in \bar{\Xi}(\mathbf{x})} (\mathbf{F}(\boldsymbol{\xi}^1+\boldsymbol{\xi}^2))^{\top} \mathbf{y}$$

Remark

In
$$\bar{\Xi}(\mathbf{x})$$
 we have that $\xi_j^2 = 0$ when $x_j = 1$.

э

A D N A B N A B N A B N

Proposition (generalized from Nohadani and Sharma (2018))

$$\max_{\boldsymbol{\xi}\in \Xi^{\mathrm{UR}}(\mathbf{x})} (\mathbf{F}\boldsymbol{\xi})^{\top} \mathbf{y} = \max_{\substack{\boldsymbol{\xi}^1, \boldsymbol{\xi}^2\in \bar{\Xi}(\mathbf{0})}} (\mathbf{F}(\boldsymbol{\xi}^1 + \boldsymbol{\xi}^2))^{\top} \mathbf{y} - \frac{(\bar{\mathbf{\Pi}}\mathbf{x})^{\top}}{(\bar{\mathbf{\Pi}}\mathbf{x})^{\top}} \boldsymbol{\xi}^2$$

where $\bar{\Pi}$ is a diagonal matrix with π_j^{\max} for $j \in [n_{\xi}]$ on the diagonal.

Proposition (generalized from Nohadani and Sharma (2018))

If $\mathbf{d} \geq 0$ then π_j^{\max} for $j \in [n_{\xi}]$ can be set to $\max \{0, \max_{\mathbf{y} \in \mathcal{Y}} (\mathbf{F}^{\top} \mathbf{y})^{\top} e_j \}$.

Remark

If **F** is diagonal and $\mathcal{Y} \subseteq \{0,1\}^n$ then $\overline{\mathbf{\Pi}} = \max\{0,\mathbf{F}\}$.

Arslan and Poss

3

A D N A B N A B N A B N

MILP reformulations

• When $\mathbf{F} \ge 0$ and diagonal we obtain the reformulation:

$$\min_{\mathbf{x}\in\mathcal{X},\mathbf{y}\in\mathcal{Y}} \mathbf{c}^{\mathsf{T}}\mathbf{x} + \max_{\boldsymbol{\xi}^{1},\boldsymbol{\xi}^{2}\in\mathbb{R}^{n}_{+}} \mathbf{y}^{\mathsf{T}}\mathbf{F}\boldsymbol{\xi}^{1} + (\mathbf{y}-\mathbf{x})^{\mathsf{T}}\mathbf{F}\boldsymbol{\xi}^{2} \qquad (\text{UR-Min-Max})$$
s.t. $\mathbf{d}^{\mathsf{T}}(\boldsymbol{\xi}^{1}+\boldsymbol{\xi}^{2}) \leq b \qquad (\sigma)$
 $\boldsymbol{\xi}^{1} \leq \mathbf{v} \qquad (\pi)$
 $\boldsymbol{\xi}^{2} \leq \mathbf{w} \qquad (\mu)$

A monolithic deterministic formulation is obtained through LP duality.
No bilinear terms!

			2.40
Arslan and Poss	Uncertainty reduction	Journée DOR/POC	11 / 14

Results on the shortest path problem

$$\begin{split} \min_{\mathbf{x}\in\{0,1\}^{|\mathcal{A}|},\mathbf{y}\in\mathcal{Y}} \max_{\boldsymbol{\xi}\in\Xi^{\mathrm{SP}}(\mathbf{x})} \mathbf{c}^{\top}\mathbf{x} + (\bar{\mathbf{f}} + \frac{1}{2}\boldsymbol{\xi}\circ\bar{\mathbf{f}})^{\top}\mathbf{y} \\ \Xi^{\mathrm{SP}}(\mathbf{x}) = \left\{ \boldsymbol{\xi}\in\mathbb{R}^{|\mathcal{A}|}_{+} \mid \sum_{(i,j)\in\mathcal{A}}\xi_{ij}\leq\Gamma,\xi_{ij}\leq1-\gamma_{ij}x_{ij} \quad \forall (i,j)\in\mathcal{A} \right\}. \end{split}$$

- We compare the algorithmic approach to the MIP reformulation based on big-M.
- We use a commercial (Gurobi) and an open source solver (HiGHS).
- We use LightGraphs.jl to solve deterministic SPs for the algorithmic approach.

Results on the shortest path problem

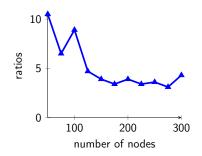


Figure: Geometric averages of the ratio between solution times using Gurobi.

- n ∈ {25, 50, ..., 300}, 10 randomly generated instances² in each group.
- $\overline{\mathbf{f}}$ euclidean, $\mathbf{c} = \mathbb{1}$, $\Gamma = 2$, $\gamma = 0.2$.
- Time limit of 2 hours.

²same generation procedure as in Nohadani and Sharma (2018) \rightarrow $\langle \equiv \rangle \rightarrow$

Arslan and Poss

Results on the shortest path problem

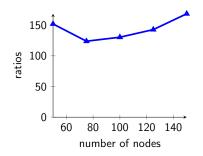


Figure: Geometric averages of the ratio between solution times using HiGHS.

- n ∈ {25, 50, ..., 150}, 10 randomly generated instances² in each group.
- $\overline{\mathbf{f}}$ euclidean, $\mathbf{c} = \mathbb{1}$, $\Gamma = 2$, $\gamma = 0.2$.
- Time limit of 2 hours.

²same generation procedure as in Nohadani and Sharma (2018) \rightarrow (\equiv) (\equiv)

Arslan and Poss

Conclusions

take-away message

- Robust optimization with decision-dependent uncertainty sets is an interesting paradigm for many applications.
- It leads to difficult problems in general.
- Certain special cases remain polynomially solvable.

future work

- Exploring further algorithmic approaches.
- More general uncertainty-dependence structures.
- Decision-dependent adjustable robust optimization problems.

Thank you for your attention!

Arslan, Ayşe N., and Michael Poss. "Uncertainty reduction in robust optimization." Operations Research Letters (2024): 107131.

Arslan and Poss

Uncertainty reduction

Journée DOR/POC

< □ > < □ > < □ > < □ > < □ > < □ >