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Decision dependent uncertainty in RO

Consider the classical (static) robust optimization problem

min
y∈Y⊆Rny

+

max
ξ∈Ξ

(f + Fξ)⊤ y (RO)

where Y is linearly constrained and Ξ = {ξ ∈ Rnξ
+ | Dξ ≤ b} is

compact.

Remark

(RO) can be reformulated as a deterministic equivalent problem by
adding a polynomial number of variables and constraints.

(RO) does not model interactions between the decision maker and
uncertain parameters.
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Decision dependent uncertainty in RO

RO with affine decision dependence is written as

min
x∈X⊆Rnx

+ ,y∈Y⊆Rny
+

c⊤x+ max
ξ∈ΞAFF(x)

(f + Fξ)⊤ y

where ΞAFF(x) = {ξ ∈ Rnξ
+ | Dξ ≤ b+∆x} and ∆ ∈ Rmξ×nx .

Remark

This problem arises from different application contexts.

It can also be a useful modelling tool.

Theorem (Nohadani and Sharma (2018))

Robust optimization with affine decision dependence is NP-Hard.
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Uncertainty reduction in RO

One particular affine decision dependence model is uncertainty
reduction.

We write (with v,w ∈ Rnξ
+ )

ΞUR(x) = {ξ ∈ Rnξ
+ | Dξ ≤ b, ξ ≤ v +w ◦ (1− x)}.

Motivation: repair, investment, market studies, etc.

Reduction is all-or-nothing, i.e., x ∈ {0, 1}nξ .

Remark

If vi = 0 then xi = 1 will completely reduce ξi , i.e., ξi = 0.
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Example: shortest path problem 1
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Robust s-E-F-G-H-t 97.4 110.15
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Y contains the flow constraints.

fe = f̄e(1 + 0.5ξe).

Ξ(x) = {ξ ∈ R|E |
+ |

∑
e∈E ξe ≤ 1, ξe ≤ 1− 0.8xe ∀e ∈ E}.

X = {x ∈ {0, 1}|E | |
∑

e∈E xe ≤ 1}.

1from Nohadani and Sharma (2018)
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Decision dependence in the literature

General models:

Nohadani and Sharma (2018)
Zeng and Wang (2022)

As a modeling tool:

Spacey et al. (2012)
Poss (2013), Poss (2014)
Hanasusanto et al. (2015)

Remark

Static robust optimization problems with decision-dependent uncertainty
sets have close connections to bilevel programming and generalized
semi-infinite programming.
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Uncertainty reduction in robust combinatorial optimization

In this talk, we will be interested in problems of the form:

min
x∈X⊆{0,1}n, y∈Y⊆{0,1}n

c⊤x+ max
ξ∈Rn

+

( f + Fξ )⊤y (UR-Min-Max)

s.t. d⊤ξ ≤ b

ξ ≤ v +w ◦ (1− x)

with F a diagonal matrix.

Remark

We assume that uncertainty is only present in the objective function and
the uncertainty set has a single “complicating” constraint for ease of
exposition.
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Uncertainty reduction in robust combinatorial optimization

In this talk, we will be interested in problems of the form:

min
x∈X⊆{0,1}n, y∈Y⊆{0,1}n

c⊤x+ max
ξ∈Rn

+

( f + Fξ )⊤y (UR-Min-Max)

s.t. d⊤ξ ≤ b

ξ ≤ v +w ◦ (1− x)

with F a diagonal matrix.

Remark

(UR-Min-Max) is NP-Hard even when the underlying combinatorial
problem is polynomially solvable.

This is in contrast to robust combinatorial optimization problems
without decision dependence.
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An algorithmic approach

Proposition

(UR-Min-Max) can be solved as at most n + 1 deterministic (bilinear)
problems in the X × Y space.

Proof.

Assuming v = 0 and F = I for ease of exposition:

min
x∈X ,y∈Y

c⊤x+ f⊤y + max
ξ∈Rn

+

ξ⊤y (UR-Min-Max)

s.t.
∑
j∈[n]

djξj ≤ b (θ)

ξj ≤ wj(1− xj) ∀j ∈ [n] (π)
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An algorithmic approach

Proof.

Through LP duality:

min
x∈X ,y∈Y

θ∈R+,π∈Rn
+

c⊤x+ f⊤y + bθ +
∑
j∈[n]

wj(1− xj)πj

s.t. djθ + πj ≥ yj ∀j ∈ [n] .

In any optimal solution, given x, y, θ, we have that:

π∗
j = [yj − djθ]

+ ∀j ∈ [n]

where [a]+ := max{a, 0}.
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An algorithmic approach

Proof.

min
x∈X ,y∈Y,θ∈R+

c⊤x+ f⊤y + bθ +
∑
j∈[n]

wj(1− xj) [yj − djθ]
+

The maximum function is convex but nonlinear in y.

Since Y ⊆ {0, 1}n, we have for j ∈ [n]:

yj = 1 =⇒ [yj − djθ]
+ = [1− djθ]

+

yj = 0 =⇒ [yj − djθ]
+ = [−djθ]

+

We then obtain the linear expression in y:

[yj − djθ]
+ = [1− djθ]

+yj + [−djθ]
+(1− yj) ∀j ∈ [n]
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An algorithmic approach

Proof.

Substituting, we obtain:

min
x∈X ,y∈Y
θ∈R+

c⊤x+ f⊤y + bθ

+
∑
j∈[n]

wj(1− xj)
(
[1− djθ]

+yj + [−djθ]
+(1− yj)

)
.

Remark

For fixed x, y, the problem can be stated as minimizing a positive-weighted
combination of piecewise affine convex functions of θ ∈ R+.
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An algorithmic approach
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Figure: f (θ) = 1.5θ + [1− θ]+ + [1− 0.5θ]+ + [1− 0.25θ]+ + [1− 0.2θ]+

Remark

An optimal solution is obtained as one of the breakpoints of the individual
functions: θ = 1

dj
for [1− djθ]

+ when dj > 0 and θ = 0 for [−djθ]
+.
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An algorithmic approach

Proof.

In the worst case dj > 0 for j ∈ [n].

Therefore θ∗ ∈ {0, 1
d1
, . . . , 1

dn
}.

(UR-Min-Max) can be solved as n + 1 problems:

bθ̄ + min
x∈X ,y∈Y

c⊤x+ f⊤y

+
∑
j∈[n]

wj(1− xj)
(
[1− dj θ̄]

+yj + [−dj θ̄]
+(1− yj)

)
.

each time fixing θ̄ =
1

dj
for j = 1, . . . , n with dj > 0 (plus θ̄ = 0).
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An algorithmic approach

This approach works for:

any v ≥ 0 and any diagonal matrix F
any polyhedral uncertainty set (with multiple “complicating
constraints”)
multiple constraints affected by uncertainty (and not just the objective
function)

Attention!

In the last two cases the number of deterministic problems that needs to
be solved increases exponentially in the number of constraints.
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So how do we solve this?

bθ̄ + min
x∈X ,y∈Y

c⊤x+ f⊤y

+
∑
j∈[n]

wj(1− xj)
(
[1− dj θ̄]

+yj + [−dj θ̄]
+(1− yj)

)
.

Remark

Despite only involving x and y this problem has bilinear terms.

The bilinear terms can be linearized using the McCormick envelope.

We will show two cases in which this problem can be solved in
polynomial time.
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Solution as a combinatorial problem

Corollary

If X = {0, 1}n, an optimal solution of (UR-Min-Max) can be obtained by
solving at most n + 1 deterministic problems of the same form as:

min
y∈Y

f̃⊤y. (Combinatorial)

Remark

If (Combinatorial) is polynomially solvable for all f̃ ∈ Rn then
(UR-Min-Max) is polynomially solvable.
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Solution as a combinatorial problem

Proof.

For given θ̄, we need to solve:

bθ̄ + min
x∈X ,y∈Y

c⊤x+ f⊤y

+
∑
j∈[n]

wj(1− xj)
(
[1− dj θ̄]

+yj + [−dj θ̄]
+(1− yj)

)
.

By rearranging the terms, we obtain:

K (θ̄) + min
x∈X ,y∈Y

f⊤y +
∑
j∈[n]

wj([1− dj θ̄]
+ − [−dj θ̄]

+)yj

+ c⊤x−
∑
j∈[n]

wjxj
(
[1− dj θ̄]

+yj + [−dj θ̄]
+(1− yj)

)
.
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Solution as a combinatorial problem

Proof.

We write as:

K (θ̄) + min
y∈Y

f⊤y +
∑
j∈[n]

wj([1− dj θ̄]
+ − [−dj θ̄]

+)yj

+ min
x∈X

c⊤x−
∑
j∈[n]

wjxj
(
[1− dj θ̄]

+yj + [−dj θ̄]
+(1− yj)

) .

If ȳ ∈ Y is fixed, the inner problem becomes:

min
x∈X

c⊤x−
∑
j∈[n]

wjxj
(
[1− dj θ̄]

+ȳj + [−dj θ̄]
+(1− ȳj)

)
.
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Solution as a combinatorial problem

Proof.

Rearranging, we obtain:

min
x∈X

∑
j∈[n]

(
cj − wj

(
[1− dj θ̄]

+ȳj + [−dj θ̄]
+(1− ȳj)

))
xj .

We remark that if X = {0, 1}n then:

min
x∈{0,1}n

∑
j∈[n]

(
cj − wj

(
[1− dj θ̄]

+ȳj + [−dj θ̄]
+(1− ȳj)

))
xj

=
∑
j∈[n]

min
xj∈{0,1}

(
cj − wj

(
[1− dj θ̄]

+ȳj + [−dj θ̄]
+(1− ȳj)

))
xj

i.e., the problem decomposes over x.
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Solution as a combinatorial problem

Proof.

We focus on the problem over each xj ∈ {0, 1}.

zj = min
xj∈{0,1}

(
cj − wj

(
[1− dj θ̄]

+ȳj + [−dj θ̄]
+(1− ȳj)

))
xj

Since Y ⊆ {0, 1}n and xj ∈ {0, 1}, we have:

ȳj = 0 =⇒ zj = [cj − wj [−dj θ̄]
+]−

ȳj = 1 =⇒ zj = [cj − wj [1− dj θ̄]
+]−

where [a]− = min{0, a}.
We then obtain the linear expression in ȳ:

zj = [cj − wj [1− dj θ̄]
+]−ȳj + [cj − wj [−dj θ̄]

+]−(1− ȳj)
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Solution as a combinatorial problem

Proof.

Putting it all together...

Given θ̄, solve:

K ′(θ̄) + min
y∈Y

∑
j∈[n]

(
fj + wj [1− dj θ̄]

+ − wj [−dj θ̄]
+

+[cj − wj [1− dj θ̄]
+]− − [cj − wj [−dj θ̄]

+]−
)
yj

In other words, solve a problem of the form:

min
y∈Y⊆{0,1}n

f̃⊤y

where f̃ is completely determined by data.
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Solution as a linear programming problem

X = {x ∈ {0, 1}n | Axx ≤ bx},Ax ≥ 0

Y = {y ∈ {0, 1}n | Ayy ≤ by}

Corollary

If c,d ≥ 0 and A′ :=

 Ax 0
0 Ay

I −I

 is totally unimodular and bx ,by ∈ Z,

an optimal solution of (UR-Min-Max) can be obtained by solving at most
n + 1 linear programs with constraint matrix A′.
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Solution as a linear programming problem

Proof.

For given θ̄, we need to solve:

bθ̄ + min
x∈X ,y∈Y

c⊤x+ f⊤y

+
∑
j∈[n]

wj(1− xj)
(
[1− dj θ̄]

+yj + [−dj θ̄]
+(1− yj)

)
.

Assuming d ≥ 0, and since θ̄ ≥ 0, we obtain:

bθ̄ + min
x∈X ,y∈Y

c⊤x+ f̃(θ̄)⊤y −
∑
j∈[n]

wj [1− dj θ̄]
+xjyj ,

where f̃j(θ̄) = fj + wj [1− dj θ̄]
+ for j ∈ [n].
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Solution as a linear programming problem

Proof.

bθ̄ + min
x∈X ,y∈Y

c⊤x+ f̃(θ̄)⊤y −
∑
j∈[n]

wj [1− dj θ̄]
+xjyj ,

Assuming c,Ax ≥ 0, we have that, x ≤ y in any optimal solution.

We may therefore write:

bθ̄ + min
x∈X ,y∈Y

x≤y

c⊤x+ f̃(θ̄)⊤y −
∑
j∈[n]

wj [1− dj θ̄]
+xjyj .

Since x, y ∈ {0, 1}n and x ≤ y, we have:

xjyj = xj ∀j ∈ [n].
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Solution as a linear programming problem

Proof.

Introducing c̃j(θ̄) = cj − wj [1− dj θ̄]
+ for each j ∈ [n], we have:

min c̃(θ̄)⊤x+ f̃(θ̄)⊤y

s.t. Axx ≤ bx

Ayy ≤ by

x− y ≤ 0

(x, y) ∈ {0, 1}2n.

Remark

If the stated TU assumptions are satisfied then the above integer program
can be solved as a linear program.
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MILP reformulations

Let’s come back to mathematical programming:

min
x∈X ,y∈Y

c⊤x+ max
ξ∈Rn

+

(f + Fξ)⊤y (UR-Min-Max)

s.t. d⊤ξ ≤ b (σ)

ξ ≤ v +w ◦ (1− x) (π)

A monolithic bilinear formulation is obtained through LP duality.

Will require linearizing the bilinear terms in πx.

Idea

Transfer the decision-dependence to the objective function of the
adversarial problem.
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MILP reformulations

Idea

Consider the uncertainty set:

Ξ̄(x) = {ξ1, ξ2 ∈ Rn
+ | d⊤(ξ1 + ξ2) ≤ b, ξ1 ≤ v, ξ2 ≤ w ◦ (1− x)}.

Observation

For any x ∈ X , y ∈ Y

max
ξ∈ΞUR(x)

(Fξ)⊤y = max
ξ1,ξ2∈Ξ̄(x)

(F(ξ1 + ξ2))⊤y

Remark

In Ξ̄(x) we have that ξ2j = 0 when xj = 1.
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MILP reformulations

Proposition (generalized from Nohadani and Sharma (2018))

max
ξ∈ΞUR(x)

(Fξ)⊤y = max
ξ1,ξ2∈Ξ̄(0)

(F(ξ1 + ξ2))⊤y − (Π̄x)⊤ ξ2

where Π̄ is a diagonal matrix with πmax
j for j ∈ [nξ] on the diagonal.

Proposition (generalized from Nohadani and Sharma (2018))

If d ≥ 0 then πmax
j for j ∈ [nξ] can be set to max

{
0,maxy∈Y (F⊤y)⊤ej

}
.

Remark

If F is diagonal and Y ⊆ {0, 1}n then Π̄ = max{0,F}.
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MILP reformulations

When F ≥ 0 and diagonal we obtain the reformulation:

min
x∈X ,y∈Y

c⊤x+ max
ξ1,ξ2∈Rn

+

y⊤Fξ1 + (y − x)
⊤
Fξ2 (UR-Min-Max)

s.t. d⊤(ξ1 + ξ2) ≤ b (σ)

ξ1 ≤ v (π)

ξ2 ≤ w (µ)

A monolithic deterministic formulation is obtained through LP duality.

No bilinear terms!
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Results on the shortest path problem

min
x∈{0,1}|A|,y∈Y

max
ξ∈ΞSP(x)

c⊤x+ (f̄ +
1

2
ξ ◦ f̄)⊤y

ΞSP(x) =

ξ ∈ R|A|
+ |

∑
(i ,j)∈A

ξij ≤ Γ, ξij ≤ 1− γijxij ∀(i , j) ∈ A

 .

We compare the algorithmic approach to the MIP reformulation
based on big-M.

We use a commercial (Gurobi) and an open source solver (HiGHS).

We use LightGraphs.jl to solve deterministic SPs for the algorithmic
approach.
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Results on the shortest path problem
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Figure: Geometric averages of the ratio between solution times using Gurobi.

n ∈ {25, 50, . . . , 300}, 10 randomly generated instances2 in each
group.

f̄ euclidean, c = 1, Γ = 2, γ = 0.2.

Time limit of 2 hours.

2same generation procedure as in Nohadani and Sharma (2018)
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Results on the shortest path problem
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Figure: Geometric averages of the ratio between solution times using HiGHS.

n ∈ {25, 50, . . . , 150}, 10 randomly generated instances2 in each
group.

f̄ euclidean, c = 1, Γ = 2, γ = 0.2.

Time limit of 2 hours.

2same generation procedure as in Nohadani and Sharma (2018)
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Conclusions

take-away message

Robust optimization with decision-dependent uncertainty sets is an
interesting paradigm for many applications.

It leads to difficult problems in general.

Certain special cases remain polynomially solvable.

future work

Exploring further algorithmic approaches.

More general uncertainty-dependence structures.

Decision-dependent adjustable robust optimization problems.
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Thank you for your attention!

Arslan, Ayşe N., and Michael Poss. ”Uncertainty reduction in robust
optimization.” Operations Research Letters (2024): 107131.
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