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Undiscounted RL: MDP Model

We consider reinforcement learning (RL), where the environment is
modeled as an undiscounted Markov Decision Process (MDP).

Undiscounted MDP A = (S, A, p, u):
@ State-space S with cardinality S
@ Action-space A with cardinality A
@ Transition kernel p: Selecting a € A in s € S leads to a transition to
s’ with probability p(s'|s, a).
e Reward function y: Selecting a € A in s € S, gives r(s,a) with mean
u(s,a).

Agent
reward 7,
action a,
state ;4

8u1~ (-8, @) Environment
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Undiscounted RL: MDP Model

We consider reinforcement learning (RL), where the environment is
modeled as an undiscounted Markov Decision Process (MDP).
Undiscounted MDP A = (S, A, p, u):

@ State-space S with cardinality S

@ Action-space A with cardinality A

@ Transition kernel p: Selecting a € A in s € S leads to a transition to

s’ with probability p(s'|s, a).
e Reward function y: Selecting a € A in s € S, gives r(s,a) with mean

u(s,a).
Agent
reward 7,
action a,
state s,4;
S~ (.5 @) Environment
. .. T
p and p are unknown, and the goal is to maximize ), r;. J
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Undiscounted RL: Objective

Goal: To maximize the collected reward Z;‘F:l Tt J

@ A (Markov deterministic) policy 7 is a mapping from S to A.

e Gain (or long-term average reward) of a policy 7 is defined as

T
g Tt St’ St
t=1

g" (s )—hmlnf E
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Undiscounted RL: Objective

Goal: To maximize the collected reward Z;‘F:l T J

@ A (Markov deterministic) policy 7 is a mapping from S to A.
e Gain (or long-term average reward) of a policy 7 is defined as

S

g" (s )—hmlnf E

o Assumption: We consider communicating MDPs in which every
state is reachable from any other state by some appropriate policy.
For communicating MDPs, g™ does not depend on s;.
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Undiscounted RL: Bellman's Equation

Any policy achieving ¢g* := max, ¢" is called gain-optimal.

Bellman's Optimality Equation (Poisson Equation)

g*-l—b*()—max( s, a) +Z s's,a)b*(s )), Vs
s'eS

where g* is called the maximal gain and b* is called the optimal bias
function.
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Undiscounted RL: Bellman's Equation

Any policy achieving ¢g* := max, ¢" is called gain-optimal.

Bellman’s Optimality Equation (Poisson Equation)

g*-l—b*()—max( s, a) +Z s's,a)b*(s )), Vs

s'eS

where g* is called the maximal gain and b* is called the optimal bias
function.

@ In the long run, maximal cumulative reward is achieved by following a
gain-optimal policy.

o If MDP is known, one can find ¢* and b* by solving Bellman's
optimality equation using numerical methods (e.g., Value Iteration).

4/47



Undiscounted RL: Regret

Goal: To maximize the collected reward Zle Tt. J

Regret: Defined as the difference between cumulative reward of the

optimal policy x and that gathered by the decision-maker (in expectation
or w.h.p.):

t=1 t=1
Alternatively, the objective of the decision-maker is to minimize the regret.
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Undiscounted RL: Regret

Goal: To maximize the collected reward Zle Tt. J

Regret: Defined as the difference between cumulative reward of the
optimal policy x and that gathered by the decision-maker (in expectation
or w.h.p.):

Regretp := Z Ty — Z T4

t=1
Alternatively, the objective of the deC|5|on-maker is to minimize the regret.
By Azuma-Hoeffding's inequality, with probability at least 1 — 4,
T
Regrety := Tg* — Zrt + O(v/Tlog(2/6))
t=1
So it makes sense to control the following notion of regret:

T
Ry :=Tg* — Zrt
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Undiscounted RL: Regret

Alternatively, the objective of the decision-maker is to minimize the regret.

T
E)%T = Tg* - Z Tt
t=1
The key difficulty to do so is to balance exploration vs. exploitation:
@ Play the best action so far, ...
@ ... or rather explore a different action?

instantaneous
reward best policy
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© UCRL2

© UCRL3

© KL-UCRL

e Numerical Experiments

© Technical Tools
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RL Algorithms

Two main approaches in RL:
@ Model-Based: Consists in maintaining an approximate MDP model
through estimating p and p, and deriving a value function from the

approximate MDP.
e Examples: UCB1, UCRL2.

@ Model-Free: Directly learns a value function (without estimating u

and p).
o Example: Variants of Q-learning.
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RL Algorithms

Two main approaches in RL:
@ Model-Based: Consists in maintaining an approximate MDP model
through estimating p and p, and deriving a value function from the

approximate MDP.
e Examples: UCB1, UCRL2.

@ Model-Free: Directly learns a value function (without estimating u

and p).
o Example: Variants of Q-learning.

In this talk we focus on model-based algorithms.
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Under a given algorithm, we define:
@ Ny(s,a): number of visits, up to time ¢, to (s,a).
@ Ny(s,a,s’): number of visits, up to time ¢, to (s,a) followed by a visit
to s

@ Empirical estimates of transition probabilities and rewards:

_ Zi/_:lo rel{sy = s,ay = a}

fir(s, ) Ni(s,a)*
R Ni(s,a,s")
/ o Yy
pi(sls, a) = Ni(s,a)*

with Ny(s,a)t := max{Ny(s,a),1}.
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UCRL2

UCRL2 (Jaksch et al., 2010): a model-based algorithm inspired by UCB
for stochastic bandits:

@ Maintains confidence bounds for 1 and p, and chooses an optimistic
model that leads to the highest gain g.
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UCRL2

UCRL2 (Jaksch et al., 2010): a model-based algorithm inspired by UCB
for stochastic bandits:

@ Maintains confidence bounds for 1 and p, and chooses an optimistic
model that leads to the highest gain g.

Given 0 € (0,1), UCRL2 defines a set M, s of plausible MDPs (models) at
time t as a collection of candidate MDPs M’ = (S, A, i/, p') satisfying:
For all s, a,
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UCRL2

UCRL2 (Jaksch et al., 2010): a model-based algorithm inspired by UCB
for stochastic bandits:

@ Maintains confidence bounds for 1 and p, and chooses an optimistic
model that leads to the highest gain g.

Given 0 € (0,1), UCRL2 defines a set M, s of plausible MDPs (models) at
time t as a collection of candidate MDPs M’ = (S, A, i/, p') satisfying:
For all s, a,

- 145 2At
[Fits.0) =2/ Cls.a)]|, < \/ w0 (5

7 25 At

= With high probability, M € M.
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UCRL2 (Jaksch et al., 2010)

Algorithm 1 UCRL2
Initialize: For all (s,a), set No(s,a) =0 and vo(s,a) =0. Setto =0, ¢t =1, k=1,
and observe the initial state s1;
for episodes £ > 1 do

Set tp = t;

Set Ny, (s,a) = N, (s,a) + vi(s,a) for all (s,a);

Compute ﬁtk (s,a) and py, (+|s, a) for all (s a)'

Compute 7r,5]c =EVI (Ntkaptkatkv

W) SA '
while vy (s¢, 77 (s¢)) < max{1, Ni, (s¢, 77 (s¢))} do
Play a; = 7r;; (st), and observe sy+1 and r¢(st, a);
Set vi(st, at) = vk(st, a¢) + 1;
Sett=t-+1;
end while
end for
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UCRL2: EVI

EVI stands for Extended Value Iteration

Algorithm 2 EVI(u,p, N,e,0)
Initialize: (9 = 0,4 = —c0, n=0;
while max (u™ (s) — v (s)) — ming (u™ (s) — u™"V(s)) > ¢ do
For all (s,a), set 1i'(s,a) = u(s, a) + By (s,q) (0);
For all (s,a), set p'(-|s,a) € argmax,ep(s,a) Y pes q(z)u'™ (z) where

Pls,a) = {q € A% s g = p(1s, )|l < Broa(6) }

For all s, update u(™*V(s) = max,e 4 (,u'(s, a)+ 3 .cs p'(x|s,a)u(”)(x));

For all s, update m,41(s) € argmaxae.a (u'(s, a) + > ,es P (xls, a)u(")(:c));
Setn=n+1;

end while

Output: mp41
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UCRL2: Regret

Definition (Diameter (Jaksch et al., 2010))

Let Ty(s'|s) denote the first hitting time of state s' when following
stationary policy m from initial state s. The diameter D of an MDP M is
defined as

D := maxmin E[T,(s']s)].

s#s! ™
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For any communicating MDP, under UCRL2, with probability at least

1-96,
R < 34DS+\/ AT log(T'/0)
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UCRL2: Regret

Definition (Diameter (Jaksch et al., 2010))

Let Ty(s'|s) denote the first hitting time of state s' when following
stationary policy m from initial state s. The diameter D of an MDP M is
defined as

D := maxmin E[T,(s']s)].

s#s! ™

For any communicating MDP, under UCRL2, with probability at least

1-96,
R < 34DS+\/ AT log(T'/0)
Minimax lower bound (Jaksch et al., 2010): Q(vDSAT)
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UCRL2

Despite its strong regret guarantee, UCRL2 does not perform well in

practice (even in small environments) — In particular, it suffers from a long
burn-in phase.

Drawbacks of UCRL2:
(i) Loose and polytopic set of models
(ii) Conservative optimistic policy

(iii) Inefficient stopping criterion for internal episodes
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UCRL2

Despite its strong regret guarantee, UCRL2 does not perform well in

practice (even in small environments) — In particular, it suffers from a long
burn-in phase.

Drawbacks of UCRL2:
(i) Loose and polytopic set of models
(ii) Conservative optimistic policy

(iii) Inefficient stopping criterion for internal episodes

We discuss two variants of UCRL2 aiming to remove (i) and (ii). ]
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© UCRL3
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UCRL3

UCRLS3 is a variant of UCRL2, with the following key differences:

@ Uses tight element-wise confidence intervals for p

o Defined for individual transition probabilities p(s’|s, a), in contrast to
UCRL2 that does for p(-|s, a).

o Intersection of time-uniform Bernstein and Bernoulli concentration for
each p(s'|s, a)

@ Computes a less conservative optimistic policy.
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UCRL3

UCRLS3 is a variant of UCRL2, with the following key differences:

@ Uses tight element-wise confidence intervals for p
o Defined for individual transition probabilities p(s’|s, a), in contrast to

UCRL2 that does for p(-|s, a).
o Intersection of time-uniform Bernstein and Bernoulli concentration for

each p(s'|s, a)

@ Computes a less conservative optimistic policy.

To simplify the presentation, we assume that y is known. J
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UCRL3: Set of Models

At time t, UCRL3 considers the set M; 5 of plausible MDPs
Mt,é = {M/ = (S,.A,p',,u) :p'(-|s,a) € Ct,5(87a)7 VS,CL, S/}

where for each (s,a) € S x A,

Ct,é(sva) = {q € AS ;V3/7q(5/) < 0151,5(5/75’0“) N 0752,6(8,787a)}

Bernstein sub-Gaussian

° Ctlé(s’,s,a) is defined using Bernstein concentration inequality,
modified using a peeling technique.

° Ct2,5<5/’ s,a) is obtained by applying the method of mixture
(a.k.a. the Laplace method) for sub-Gaussian random variables.
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UCRL3: Set of Models

At time t, UCRL3 considers the set M; 5 of plausible MDPs
Mt,5 = {M/ = (87A7pl7,u) :p/('lsa (l) € Ct,5(87 a)a VS, a, S/}

where for each (s,a) € S x A,

Cis(s,a) = {q € As: Vs q(s) € C’tlyé(s', s,a)N C’g(g(s’, S, a)}

~~

Bernstein sub-Gaussian
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UCRL3: Set of Models

At time t, UCRL3 considers the set M; 5 of plausible MDPs
Mt,5 = {M/ = (87A7pl7,u) :p/('lsa (l) € Ct,5(37 a)a VS, a, S/}

where for each (s,a) € S x A,

Cis(s,a) = {q € As: Vs q(s) € C’tlyé(s', s,a)N C’g(g(s’, S, a)}

Bernstein sub-Gaussian

R 2)\(1 - )\)EN (s a)( . ) KN (s a)( : )
1 , _ : f _ < t(s, 2S5 A t(s, 2S5A
Cis(s,s,a) {)\ |pe(s]s,a) — Al < Ni(s, a) + 3N:(s,a)

where £,,(6) = nlog (M) with 7 = 1.12 (an arbitrary choice).

log(n?)s
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UCRL3: Set of Models

At time t, UCRL3 considers the set M; 5 of plausible MDPs
Mt,5 = {MI = (87“471)/7”) :pl('|37 a) € Ct,5(87 a)v VS, a, 8/}

where for each (s,a) € S x A,

Ct,5(s> a) = {q €As: vsla Q(Sl) € Ctl,é(sla S, CL) N Ct%&(sla S, a)}

Bernstein sub-Gaussian
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UCRL3: Set of Models

At time t, UCRL3 considers the set M; 5 of plausible MDPs
Mt,5 = {MI = (87“471)/7”) :pl('lsa a) € Ct,5(87 a)v VS, a, 8/}

where for each (s,a) € S x A,

Ct,5(s> CL) = {q €As: vsla Q(Sl) € Ctl,é(sla S, CL) N Ct%&(sla S, a)}

Bernstein sub-Gaussian

(Vf(;é S, a :{ \/75Nt(sa) ZSA |8a /\<\/7ﬁNtSa)(2SA)}

where 3,(0) := w, and where
g(N) if A<1/2 1/2 =X
A) = ,and g(A\) = —F—F——.
9 {)\(1 ~ ) else nd 90N = A= 1)
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UCRL3: Set of Models

At time t, UCRL3 considers the set M; 5 of plausible MDPs
Mt,§ = {M/ = (S,.A,p/,,u) :p/('lsa CL) € Ctﬁ(sa CL), VS, a, 5,}

where for each (s,a) € S x A,

Cis(s,a) = {q € As: Vs, q(s) e C'tl’(;(s’,s,a) N CZ(;(S,, s,a)}

Bernstein sub-Gaussian
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UCRL3: Set of Models

At time t, UCRL3 considers the set M; 5 of plausible MDPs
Mt,§ = {M/ = (S,.A,p/,,u) :p/('lsa CL) € Ctﬁ(sa CL), VS, a, 5,}

where for each (s,a) € S x A,

Cis(s,a) = {q € As: Vs, q(s) e C'tl’(;(s’,s,a) N CZ(;(S,, s,a)}

Bernstein sub-Gaussian

Lemma (Time-uniform confidence bounds)

For any MDP with transition function p, for all § € (0,1), it holds

IF’(EIt e N,3(s,a) € S x A, p(-|s,a) ¢ Ct,g(s,a)> <0

= P(It eN,M ¢ M) <.
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UCRL3: Reuvisiting EVI

@ To compute an optimistic policy, UCRL2 uses EVI as a subroutine,
which involves computing

P, 18, a — argmax{p'u,,p’ € Cis(s,a)}

at iteration n of EVI.

@ EVI outputs a conservative policy, in particular when transition
function p has a sparse support.

@ UCRL3 remedies this issue by combining EVI with an adaptive
support selection.
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Adaptive Support Selection

Given S C S, a pair (s,a), and a function f : S — R, define:

f4.a(8) = max Z f(s tgst Vs'e€S, q(s') € Cus(s',5,a) and Z q(s’) < 1}
s'eS s'eS

= argmax Z f(s tqst. Vs'€S, q(s') € Cus(s’, 5,a) and Z q(s") < 1}
s'eS s'eS

Algorithm 3 Adaptive Support Selection (for (s, a))

Input: Target function f, parameter x € (0,1).
Let S = supp(;?)}(~|s,a)) Uargmaxses f(s)
while f, ,(S\S) > min(x, f, ,(5)) do

Let § € argmax ;5 f(s)

Set S =S U {5}
end while
Output: S, Ps.a
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UCRL3: Reuvisiting EVI

@ Recall that UCRL2 uses EVI as a subroutine, which involves
computing

pb ts,a— argmax{P'u,,p’ € Cis5(s,a)}

at iteration n of EVI.
@ Now, at iteration n of EVI, UCRL3 uses Adaptive Support Selection
with f = w,, — ming u,(s).

@ To optimize performance, we choose

S(un) |supp(Pe(-ls, a))|
maxs o Ni(s,a)?/3

k= Kipn(s,a) =

24 /47



UCRL3: Regret

Theorem

The regret under UCRL3 in any communicating MDP satisfies, uniformly
overall T > 1,

R < 24D\ KSAT log(VT + 1/6) + O(DSY34/571/3)

with probability at least 1 — 2.
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UCRL3: Regret

Theorem

The regret under UCRL3 in any communicating MDP satisfies, uniformly
overall T > 1,

R < 24D\ KSAT log(VT + 1/6) + O(DSY34/571/3)

with probability at least 1 — 2.

@ Improves the regret of UCRL2 by a factor of 1/ S/K.
@ Holds uniformly over all T' > 1.
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© KL-UCRL
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Variants of UCRL2

There are variants of UCRL2, that mostly differ in the definition of
models.

Two approaches to define the set of M, 5 of models depending on how
uncertainties in p and u are represented:
@ Polytopic uncertainty sets

o For example, models defined using Weissman's and Hoeffding's
inequalities (as in UCRL2).

@ Non-polytopic uncertainty sets
e Smoother sets
o For example, models defined using KL-divergence and Bernstein's

inequality (as in (Burnetas & Katehakis, 1997), KL-UCRL (Filippi et
al., 2010)).
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Polytopic Uncertainty Sets

Polytopic uncertainty models typically provide poor representations

(cf. Robust control of MDPs (Nilim & EI Ghaoui, 2005) and (Filippi et al.,
2010)):
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Polytopic uncertainty models typically provide poor representations

(cf. Robust control of MDPs (Nilim & EI Ghaoui, 2005) and (Filippi et al.,
2010)):

(i) They could lead to inconsistent models by excluding an already

observed element of kernel (i.e., p’(x|s,a) = 0 even though
pi(x]s,a) # 0 for some x).
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Polytopic Uncertainty Sets

Polytopic uncertainty models typically provide poor representations

(cf. Robust control of MDPs (Nilim & EI Ghaoui, 2005) and (Filippi et al.,
2010)):

(i) They could lead to inconsistent models by excluding an already
observed element of kernel (i.e., p’(x|s,a) = 0 even though
pi(x|s,a) # 0 for some x).

(i) The maximizer of a linear optimization over L; ball could change
significantly for a small change in the value function.
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L{-Norm vs. KL

Linear optimization over Li-ball (left) vs. KL-ball (right): The vector
represents a value function (e.g., in EVI).

(Filippi et al., 2010)
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KL-UCRL

These shortcomings are avoided by resorting to KL-based confidence
bounds (as in KL-UCRL):

0S5 log(log(T)/6)
Ny(s,a)

- (s Olog(log(T)/9)
|:ut(57a) M( 3 )| < \/ Nt(s,a)

IN

KL(pi(-[s,a), ' (-]s,a))
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KL-UCRL

These shortcomings are avoided by resorting to KL-based confidence
bounds (as in KL-UCRL):

0S5 log(log(T)/6)
Ny(s,a)

- (s Olog(log(T)/9)
|:ut(57a) M( 3 )| < \/ Nt(s,a)

A

KL(Pt(+|s,a),p'(:|s,a)) <

@ Numerically, KL-UCRL outperforms UCRL2 (uniformly in all
environment).

o Yet the best known regret bound for KL-UCRL: O(DSv/AT)

Our contribution is to investigate the benefit of using KL theoretically.
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Variance-Aware Regret Bounds for KL-UCRL

Variance of bias function w.r.t. transition law p(-|s, a):

p(ls.a) (b)) =) p(z]s, a) (b* (|s,a)[b*]>2

zeS
with E, (s q) (0] = >, p(|s, a)b*(z).
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Variance-Aware Regret Bounds for KL-UCRL

Variance of bias function w.r.t. transition law p(-|s, a):

p(ls.a) (b)) =) p(z]s, a) ( (|s,a)[b*]>2

zeS
with E, (s q) (0] = >, p(|s, a)b*(z).

The regret under KL-UCRL in any ergodic MDP satisfies

Ry < (31 \/stya Vp(.js.ay (0%) + 35SVA + 2D) T log(log(T)/9)
-+ 5(polylog(T))

and with probability at least 1 — §.
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Variance-Aware Regret Bounds for KL-UCRL

Variance of bias function w.r.t. transition law p(-|s, a):

p(ls.a) (0) = _p(z]s,a ( T) — (|s,a)[b*]>2

zeS
with E, (s q) (0] = >, p(|s, a)b*(z).

The regret under KL-UCRL in any ergodic MDP satisfies

Ry < (31 \/stﬂ Vp(.js.ay (0%) + 35SVA + 2D) T log(log(T)/9)
-+ 5(polylog(T))

and with probability at least 1 — §.

@ Improves over the previous bound of 6(DS\/AT) for KL-UCRL
(since V(. js.0)(b%) < D?).

@ Proof: Uses novel concentration inequalities .



Variance vs. Diameter

In contrast to diameter D (global measures), variance V.5 ,)(b*) is a
local measure, which is aware of variations of b* over state-space.

b'(s)

states s
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Variance vs. Diameter

In contrast to diameter D (global measures), variance V(.5 ,)(b*) is a
local measure, which is aware of variations of b* over state-space.

b'(s)

states s
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e Numerical Experiments
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Numerical Experiments

We examine UCRL2, KL-UCRL, UCRL3, UCRL-L, and UCRL-B on the
RiverSwim environment (shown below).

@ UCRL-L: Uses L; confidence bounds (as UCRL2) combined with the
Laplace method.

@ UCRL-B: Uses element-wise empirical Bernstein confidence bounds
combined with peeling.

0.6 0.55 0.55
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Numerical Experiments

Regret of various algorithms in 6-state RiverSwim:

Regret

— —

—_—————a
/1- —— UCRL3

— UCRL2
—— UCRL2-L
—— UCRL2-B
—— KL-UCRL
102 . . . .
0.0 0.2 0.4 0.6 0.8 1.0
Time steps x10°
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Numerical Experiments

Comparison between UCRL2-L and UCRL3 in 25-state RiverSwim:

x10°
—— UCRL3
1.0 { — UCRL2-L
0.8
® 0.6 1
[
o}
o
0.4
0.2
0.0 : : : :
0.0 0.2 0.4 0.6 0.8 1.0
Time steps

x106
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Numerical Experiments

Examining the main terms in the regret bounds of KL-UCRL in N-state
ergodic RiverSwim MDP:

o5 X

0. 9“5’1
(r = 0.05)
S D maxs,q Vp(ws,a)(b*) Dm \/Zs’a Vp(A‘S,a)(b*)
6 6.3 0.6322 21.9 1.8
12 14.9 0.6327 72.9 2.8
20 26.3 0.6327 166.4 3.7
40 54.9 0.6327 490.9 5.3
100 140.6 0.6327 1988.3 8.5
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© Technical Tools
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Old Proof(s)

The regret is decomposed into per-episode regret terms.

Consider episode k with optimistic model M;, (with kernel py and bias
function by), and assume M € M,.

The leading term in regret bound for episode k is due to:

Y (Br(zls, a) = p(als, a)bi(@) < |[Br(-1s,a) = p(-1s, @) Bl

xT

v~

<D

o(y%Ea)

Summing over episodes k and state-action pairs (s, a), this leads to

O(DSVAT).

40 /47



Old Proof(s)

The regret is decomposed into per-episode regret terms.

Consider episode k with optimistic model M;, (with kernel py and bias
function by), and assume M € M,.
The leading term in regret bound for episode k is due to:

Y (Br(zls, a) = p(als, a)bi(@) < |[Br(-1s,a) = p(-1s, @) Bl

x v~

<D

o(y%Ea)

Summing over episodes k and state-action pairs (s, a), this leads to

O(DSVAT).

Using Cauchy-Schwarz in the above leads to a too conservative bound!
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Proof Sketch

Decomposition:

> (Brl(xls, a) — plals, a))be(x) = Ep, (1s.0) k] = B ys,a) [Ox]
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Proof Sketch

Decomposition:

> (Brl(xls, a) — plals, a))be(x) = Ep, (1s.0) k] = B ys,a) [Ox]

T

transportation cost of Bk
= Ep, (15,0) (0] = Ep(1s,0) (0] + By (-15,0) [bk — 0] = Epp(.15,a) bk — 0]

transportation cost of b* correction term

= Transportation cost of b*: using (novel) transportation inequalities

= Correction term: using ergodic property of MDP + contraction of
induced transition matrices. The total contribution of correction
terms (over all (s,a) and k):

O(SVAT)
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Transportation Inequalities

Lemma (Transportation Lemma)

For any function f, introduce ¢ : A — log Eplexp(A(f(X) —Ep[f]))].
Then for all Q <« P,

Eq[f] — Ep[f] < inf{z > 0: ¢, s(z) > KL(Q, P)}
Eq[f] — Ep[f] > sup{z < 0: ¢, y(z) > KL(Q, P)}

where p, r(x) = supy Az — @¢(A).
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Transportation Inequalities

Lemma (Transportation Lemma)

For any function f, introduce ¢ : A — log Eplexp(A(f(X) —Ep[f]))].
Then for all Q < P,

Eqlf] —Ep[f] < inf{z > 0: ¢, ¢(z) > KL(Q, P)}
EQlf] = Ep[f] = sup{z < 0: ¢, s(z) > KL(Q, P)}

where p, r(x) = supy Az — @¢(A).

Lemma (Transportation Inequality I)

For any function f and distribution P, such that Vp(f) and S(f) are finite

Eqlf] - Erlf] < VEVA(DKL@, P) + SS(/)KKQ, P)
Ep[f] - Eqlf] < V2Vr(f)KL(Q, P)
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Transportation Inequalities

A novel refinement of previous transportation inequality:

Lemma (Transportation Inequality I1)

For any function f and distributions P, () defined on a finite alphabet X,

Eg[f] —Ep[f] < (\/VPQ —i-\/VQp )\/m+8 )KL(P, Q)

where VP’Q(f) = ZzeX:P(z)ZQ(a:) P(z)(f(x) — EP[f])2
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Transportation Inequalities

A novel refinement of previous transportation inequality:

Lemma (Transportation Inequality I1)

For any function f and distributions P, () defined on a finite alphabet X,

Eg[f] —Ep[f] < (\/VPQ —i-\/VQp )\/m+8 )KL(P, Q)

where VP’Q(f) = Zzex:p(z)ZQ(aj) P(z)(f(x) — EP[f])2

The operator Vpo(f) is closely related to the local variance of f (under P

and Q):

v,

Veo(f) <Vp(f)
VVealf) < \/2Vo() +35(H) VIXKL(@, P)

Proof: Cauchy-Schwarz + local Pinsker's inequalities
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Proof Sketch

transportation cost of b* = Ej, (.15.4)[0"] — Ep, (5,0)[0"]

~~

T
+ Ep(15,0)[07] = Ep(15,0)[07]

Ts

= Term T}: Transportation Inequality Il with P = py(+|s,a) and

Q = ﬁk‘('|57a)
= Term T5: Transportation Inequality | with Q = p(+|s,a) and
P = p('|87 a)

Combining, and summing over (s,a) and episodes k, the contribution of
T5 terms become

O(\/ST 0 Vothoa ()T
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Conclusion

Two variants of UCRL2: UCRL3 and KL-UCRL
UCRL3:

@ A novel variant of UCRL2 using (i) improved confidence sets, and (ii)
novel efficient approach for computing an optimistic policy.

@ Beats all existing variants of UCRL2 in practice yet enjoying the same
regret guarantees.

KL-UCRL:

@ A variant of UCRL2, which uses KL-divergence to define confidence
sets.

@ We provided improved regret analysis for it in ergodic MDPs, thanks
to novel variants of transportation concentration inequalities.
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@ Optimal stopping criterion for UCRL2-style algorithms

@ Problem-dependent regret lower and upper bounds for average-reward
RL
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