Optimal Trunk Reservation by Policy Learning

\textit{Antonio Massaro} 1 \textit{Francesco De Pellegrini} 1, 2 \textit{Lorenzo Maggi} 3

1 Nokia Bell Labs, Paris. Fondazione Bruno Kessler, Trento, Italy
2 University of Avignon, France
3 Nokia Bell Labs, Paris

12/04/2019

1INFOCOM 2019, Paris
Integer Gradient Ascent

A reinforcement learning algorithm for optimal admission control for a queue with finite buffer and different jobs’ priority levels.
The model

- D job types, M memory slots
- Independent Poisson arrivals: $\lambda_1, \ldots, \lambda_D$
- Poisson service time μ
- States: $(m, d) \in \{0, \ldots, M\} \times \{1, \ldots, D\}$
- Actions: $A(m, d) = \{0, 1\}$, $A(M, d) = \{0\}$
- Rewards: $r_1 > r_2 > \ldots > r_D$.
- Policy: $\pi_t(m, d) = \mathbb{P}(a(m, d) = 1)$

\[
\max_{\pi} \lim_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T} \mathbb{E}[r_{dt} \pi_t(m_t, d_t)].
\]

Solve it on-line, without knowledge on flow arrivals distribution and service time
How does an optimal policy look like?

Finite states and actions + bounded rewards + unichain:

∃ optimal stationary policy[1].
How does an optimal policy look like?

Finite states and actions + bounded rewards + unichain: \(\exists \) optimal stationary policy[1].
How does an optimal policy look like?

- Stationary
- Deterministic
How does an optimal policy look like?

- Stationary
- Deterministic
- Threshold
An optimal policy looks like this

- Stationary
- Deterministic
- Threshold
- Monotonic[2]
An optimal policy looks like this

- Stairway policy
An optimal policy can be calculated by

- Q-learning
- Policy iteration

Can we do better?

Specialize the search algorithm to the structure of the optimal policy.
Optimal policy calculation, partial knowledge

An optimal policy can be calculated by

- Q-learning
- Policy iteration

Can we do better?

Specialize the search algorithm to the structure of the optimal policy.
Policy search: basic idea

Idea: progressively ‘fill’ the probability of admission at each state

0

![Diagram showing buffer occupation by job class](image-url)
Policy search: basic idea

Idea: progressively ‘fill’ the probability of admission at each state

0

1

![Graphs showing buffer occupation over job classes for states 0 and 1]
Policy search: basic idea

Idea: progressively ‘fill’ the probability of admission at each state
Policy search: basic idea

Idea: progressively ‘fill’ the probability of admission at each state

How do we do it?

We are maximizing the average reward

We need “local” information on the average reward: a gradient
Policy search: basic idea

Idea: progressively ’fill’ the probability of admission at each state

How do we do it?
Policy search: basic idea

Idea: progressively ’fill’ the probability of admission at each state

How do we do it?

- We are maximizing the average reward
Policy search: basic idea

Idea: progressively ‘fill’ the probability of admission at each state

How do we do it?

- We are maximizing the average reward
- We need “local” information on the average reward: a gradient
A differentiable parametrization for policies

\[(4, 3, 3, 3, 2, 2, 1, 1) \in [0, 5]^7 \]

\[(\theta_1, ..., \theta_M) \in [0, D]^M \]
A differentiable parametrization for policies

\[(4, 3, 3, 3, 2, 2, 1, 1) \in [0, 5]^7 \]

\[(\theta_1, \ldots, \theta_M) \in [0, D]^M \]
A differentiable parametrization of the average reward

\[\rho(\pi) : \lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N} \mathbb{E}_{\pi}[r(m_i, d_i)] \]

\[\rho \circ \pi : [0, D]^M \longrightarrow \Gamma \longrightarrow \mathbb{R} \]

\[\theta_1, \ldots, \theta_M \mapsto \pi_\theta \mapsto \rho(\pi_\theta) \]

Take the gradient and do gradient ascent!
A differentiable parametrization of the average reward

\[\rho(\pi) : \lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N} \mathbb{E}_\pi[r(m_i, d_i)] \]

\[\rho \circ \pi : [0, D]^M \rightarrow \Gamma \rightarrow \mathbb{R} \]

(\theta_1, \ldots, \theta_M) \mapsto \pi_\theta \mapsto \rho(\pi_\theta)

Take the gradient and do gradient ascent!
A formula for the gradient of the average reward[3]

\[\nabla_{\theta} \rho = \sum_{s \in S} p^\pi(s) \sum_{a \in A(s)} \nabla_{\theta} \pi(a|s)Q^\pi(s, a) \]

- \(s \in S \): state space
- \(a \in A(s) \): actions space at state \(s \)
- \(p^\pi(s) \): stationary probability of state \(s \) under policy \(\pi \)
- \(Q^\pi(s, a) = \sum_{t=0}^{\infty} E[r^\pi_t - \rho(\pi)|s_0 = s, a_0 = a] \)

In our case it is very simple!

\[\frac{\partial \rho}{\partial \theta_m} = p^\pi(m, [\theta_m])(Q^\pi(m, [\theta_m], 1) - Q^\pi(m, [\theta_m], 0)). \]
A formula for the gradient of the average reward\cite{3}

\[
\nabla_{\theta} \rho = \sum_{s \in S} p^\pi(s) \sum_{a \in A(s)} \nabla_{\theta} \pi(a|s) Q^\pi(s, a)
\]

- \(s \in S\): state space
- \(a \in A(s)\): actions space at state \(s\)
- \(p^\pi(s)\): stationary probability of state \(s\) under policy \(\pi\)
- \(Q^\pi(s, a) = \sum_{t=0}^{\infty} \mathbb{E}[r_t^\pi - \rho(\pi)|s_0 = s, a_0 = a]\)

In our case it is very simple!

\[
\frac{\partial \rho}{\partial \theta_m} = p^\pi(m, \lfloor \theta_m \rfloor)(Q^\pi(m, \lfloor \theta_m \rfloor, 1) - Q^\pi(m, \lfloor \theta_m \rfloor, 0)).
\]
The gradient of the average reward

\[\pi = (3.5, 2.5, 2.5, 2.5, 1.5, 1.5, .5, .5) \]

\[\frac{\partial \rho}{\partial \theta_0} = p^\pi(0, 3)(Q^\pi(0, 3, 1) - Q^\pi(0, 3, 0)). \]
Gradient ascent

1: evaluate the gradient
Gradient ascent

1: evaluate the gradient

2: move the thresholds
Gradient ascent

1: evaluate the gradient

2: move the thresholds

Warning!
Gradient ascent

Problems:

1. An optimal policy is deterministic
 - Gradient ascent searches among all threshold policies
2. The gradient is discontinuous at deterministic policies
 - \(\partial_m^- \rho = p^\pi(m, \theta_m)(Q^\pi(m, \theta_m, 1) - Q^\pi(m, \theta_m, 0)) \).
 - \(\partial_m^+ \rho = p^\pi(m, \theta_m + 1)(Q^\pi(m, \theta_m + 1, 1) - Q^\pi(m, \theta_m + 1, 0)) \).

Solutions:

1. Take integer steps to explore just integer policies.
2. Calculate both gradients and use them in the update step.
Gradient ascent

Problems:

1. An optimal policy is deterministic
 - Gradient ascent searches among all threshold policies
2. The gradient is discontinuous at deterministic policies
 - \(\partial_{-m} \rho = p^\pi(m, \theta_m) (Q^\pi(m, \theta_m, 1) - Q^\pi(m, \theta_m, 0)) \).
 - \(\partial_{+m} \rho = p^\pi(m, \theta_m + 1) (Q^\pi(m, \theta_m + 1, 1) - Q^\pi(m, \theta_m + 1, 0)) \).

Solutions:

1. Take integer steps to explore just integer policies.
2. Calculate both gradients and use them in the update step.
Gradient ascent

Problems:

1. An optimal policy is deterministic
 - Gradient ascent searches among all threshold policies

2. The gradient is discontinuous at deterministic policies
 - $\partial_m^- \rho = p^\pi(m, \theta_m)(Q^\pi(m, \theta_m, 1) - Q^\pi(m, \theta_m, 0))$.
 - $\partial_m^+ \rho = p^\pi(m, \theta_m + 1)(Q^\pi(m, \theta_m + 1, 1) - Q^\pi(m, \theta_m + 1, 0))$.

Solutions:

1. Take integer steps to explore just integer policies.
2. Calculate both gradients and use them in the update step.
Integer Gradient Ascent: the idea

Gradient sign
Integer Gradient Ascent: the idea

Gradient sign

Average reward reaction
Integer Gradient Ascent: the idea

Gradient sign

Average reward reaction
Integer Gradient Ascent: the idea

Gradient sign

Average reward reaction
IGA is correct

Theorem

IGA converges to an optimal policy in a finite number of steps

Proof.

1. At each step at least one threshold is modified
2. At each step the value of at least one state strictly increases
3. MDP is finite, policies are finite \Rightarrow values cannot increase forever
4. IGA must stop
5. At termination, π satisfies Bellman equation, hence it is optimal

Ok, but we still have to estimate the gradient!
IGA is correct

Theorem

IGA converges to an optimal policy in a finite number of steps

Proof.

1. At each step at least one threshold is modified
2. At each step the value of at least one state strictly increases
3. MDP is finite, policies are finite \Rightarrow values cannot increase forever
4. IGA must stop
5. At termination, π satisfies Bellman equation, hence it is optimal

Ok, but we still have to estimate the gradient!
Gradient estimation

On line gradient estimation

\[\partial_m \rho = p^\pi(m, \theta_m)(Q^\pi(m, \theta_m, 1) - Q^\pi(m, \theta_m, 0)) \]

We just need the sign

\[Q^\pi(m, \theta_m, 1) - Q^\pi(m, \theta_m, 0) > 0 \]?

How to estimate it?
Gradient estimation

On line gradient estimation

\[\partial_m \rho = p^\pi(m, \theta_m)(Q^\pi(m, \theta_m, 1) - Q^\pi(m, \theta_m, 0)) \]

We just need the sign

\[Q^\pi(m, \theta_m, 1) - Q^\pi(m, \theta_m, 0) > 0 ? \]

How to estimate it?
State-action value estimation

\[Q^\pi(m, \theta_m, 1) = \sum_{t=0}^{\infty} \mathbb{E} [r_t^\pi - \rho(\pi)|s_0 = (m, \theta_m), a_0 = 1] \]

Estimate it by sampling! Sample an infinite sum?

\[\sum_{t=0}^{\infty} \mathbb{E} [r_t^\pi - \rho(\pi)|s_0, a_0] = \sum_{t=0}^{T} \mathbb{E} [r_t^\pi - \rho(\pi)|s_0, a_0] + o(T) \]

\[Q^\pi(m, \theta_m, 1) \sim \sum_{t=0}^{T} \mathbb{E} [r_t^\pi - \rho(\pi)|s_0 = (m, \theta_m), a_0 = 1] \]

But we don’t know \(\rho(\pi) \)!
State-action value estimation

\[Q^\pi(m, \theta_m, 1) = \sum_{t=0}^{\infty} \mathbb{E}[r_t^\pi - \rho(\pi) | s_0 = (m, \theta_m), a_0 = 1] \]

Estimate it by sampling! Sample an infinite sum?

\[\sum_{t=0}^{\infty} \mathbb{E}[r_t^\pi - \rho(\pi) | s_0, a_0] = \sum_{t=0}^{T} \mathbb{E}[r_t^\pi - \rho(\pi) | s_0, a_0] + o(T) \]

\[Q^\pi(m, \theta_m, 1) \sim \sum_{t=0}^{T} \mathbb{E}[r_t^\pi - \rho(\pi) | s_0 = (m, \theta_m), a_0 = 1] \]

But we don’t know \(\rho(\pi) \)!
State-action value estimation

\[Q^\pi(m, \theta_m, 1) = \sum_{t=0}^{\infty} \mathbb{E} [r^\pi_t - \rho(\pi) | s_0 = (m, \theta_m), a_0 = 1] \]

Estimate it by sampling! Sample an infinite sum?

\[\sum_{t=0}^{\infty} \mathbb{E} [r^\pi_t - \rho(\pi) | s_0, a_0] = \sum_{t=0}^{T} \mathbb{E} [r^\pi_t - \rho(\pi) | s_0, a_0] + o(T) \]

\[Q^\pi(m, \theta_m, 1) \sim \sum_{t=0}^{T} \mathbb{E} [r^\pi_t - \rho(\pi) | s_0 = (m, \theta_m), a_0 = 1] \]

But we don’t know \(\rho(\pi) \)!
State-action value estimation

\[
Q^\pi(m, \theta_m, 1) = \sum_{t=0}^{\infty} \mathbb{E} [r_t^\pi - \rho(\pi) | s_0 = (m, \theta_m), a_0 = 1]
\]

Estimate it by sampling! Sample an infinite sum?

\[
\sum_{t=0}^{\infty} \mathbb{E} [r_t^\pi - \rho(\pi) | s_0, a_0] = \sum_{t=0}^{T} \mathbb{E} [r_t^\pi - \rho(\pi) | s_0, a_0] + o(T)
\]

\[
Q^\pi(m, \theta_m, 1) \sim \sum_{t=0}^{T} \mathbb{E} [r_t^\pi - \rho(\pi) | s_0 = (m, \theta_m), a_0 = 1]
\]

But we don’t know \(\rho(\pi)!\)
State-action value estimation

Look at the difference:

\[
Q^\pi(m, \theta_m, 1) - Q^\pi(m, \theta_m, 0) \sim \sum_{t=0}^{T} \mathbb{E} [r_t^\pi - \rho(\pi)| (m, \theta_m), 1] - \sum_{t=0}^{T} \mathbb{E} [r_t^\pi - \rho(\pi)| (m, \theta_m), 0]
\]

Do we have to repeatedly modify the current policy?
State-action value estimation

Look at the difference:

\[Q^\pi(m, \theta_m, 1) - Q^\pi(m, \theta_m, 0) \sim \sum_{t=0}^{T} \mathbb{E} [r_t^\pi - \rho(\pi)|m, \theta_m, 1] - \sum_{t=0}^{T} \mathbb{E} [r_t^\pi - \rho(\pi)|m, \theta_m, 0] \]

\[\sum_{t=0}^{T} \mathbb{E} [r_t^\pi |m, \theta_m, 1] - \sum_{t=0}^{T} \mathbb{E} [r_t^\pi |m, \theta_m, 0] \]

\[Q^\pi(m, \theta_m, 1) - Q^\pi(m, \theta_m, 0) = \sum_{t=0}^{T} \mathbb{E} [r_t^\pi |(m, \theta_m), 1] - \sum_{t=0}^{T} \mathbb{E} [r_t^\pi |(m, \theta_m), 0] \]

Do we have to repeatedly modify the current policy?
State-action value estimation

Look at the difference:

\[Q^\pi(m, \theta_m, 1) - Q^\pi(m, \theta_m, 0) \sim \sum_{t=0}^{T} \mathbb{E}[r^\pi_t - \rho(\pi)(m, \theta_m), 1] - \sum_{t=0}^{T} \mathbb{E}[r^\pi_t - \rho(\pi)(m, \theta_m), 0] \]

\[\sum_{t=0}^{T} \mathbb{E}[r^\pi_t (m, \theta_m), 1] - \sum_{t=0}^{T} \mathbb{E}[r^\pi_t (m, \theta_m), 0] \]

\[Q^\pi(m, \theta_m, 1) - Q^\pi(m, \theta_m, 0) = \sum_{t=0}^{T} \mathbb{E}[r^\pi_t | (m, \theta_m), 1] - \sum_{t=0}^{T} \mathbb{E}[r^\pi_t | (m, \theta_m), 0] \]

Do we have to repeatedly modify the current policy?
State-action value estimation

Look at the difference:

\[Q^\pi(m, \theta_m, 1) - Q^\pi(m, \theta_m, 0) \sim \sum_{t=0}^{T} \mathbb{E} [r^\pi_t - \rho(\pi)(m, \theta_m), 1] - \sum_{t=0}^{T} \mathbb{E} [r^\pi_t - \rho(\pi)(m, \theta_m), 0] \]

\[\sum_{t=0}^{T} \mathbb{E} [r^\pi_t | (m, \theta_m), 1] - \sum_{t=0}^{T} \mathbb{E} [r^\pi_t | (m, \theta_m), 0] \]

\[Q^\pi(m, \theta_m, 1) - Q^\pi(m, \theta_m, 0) = \sum_{t=0}^{T} \mathbb{E} [r^\pi_t | (m, \theta_m), 1] - \sum_{t=0}^{T} \mathbb{E} [r^\pi_t | (m, \theta_m), 0] \]

Do we have to repeatedly modify the current policy?
Gradient estimation

State-action value estimation.

Lemma

- $Q^\pi(m, d_1, 0) = Q^\pi(m, d_2, 0)$
- $Q^\pi(m, d_1, 1) = Q^\pi(m, d_2, 1) + r_{d_1} - r_{d_2}$

Proof.

\[
Q^\pi(m, d, a) = \sum_{t=0}^{\infty} \mathbb{E} [r_t^\pi - \rho(\pi)| (m, d), a] = a \cdot r_d + \sum_{t=1}^{\infty} \mathbb{E} [r_t^\pi - \rho(\pi)| m, a]
\]

We can sample the (sign of the) gradient in a smart way!
We do not have to repeatedly modify the current policy.
Gradient estimation

State-action value estimation.

Lemma

- $Q^\pi(m, d_1, 0) = Q^\pi(m, d_2, 0)$
- $Q^\pi(m, d_1, 1) = Q^\pi(m, d_2, 1) + r_{d_1} - r_{d_2}$

Proof.

$$Q^\pi(m, d, a) = \sum_{t=0}^{\infty} \mathbb{E}[r^\pi_t - \rho(\pi)|(m, d), a] = a \cdot r_d + \sum_{t=1}^{\infty} \mathbb{E}[r^\pi_t - \rho(\pi)|m, a]$$

We can sample the (sign of the) gradient in a smart way!

We do not have to repeatedly modify the current policy
Polynomial complexity in M

Theorem

- M memory slots
- N flow categories
- $\overline{Q} := \min\{|Q^\pi(m, i, 1) - Q^\pi(m, i, 0)| \neq 0\}$.

IGA converges with probability $1 - \delta$ **to an optimal policy in a number of steps**

$$O\left(\frac{M^N \ln(\varepsilon_1^{-1}) \ln(\delta^{-1})}{\varepsilon_2^2}\right).$$

where $\varepsilon_1 + \varepsilon_2 < \frac{1}{2} \overline{Q}$.
Experiments: convergence (1/3)
Experiments: convergence (2/3)

a) $\mu = 0.05$

b) $\mu = 0.25$

Iterations to 98% optimality: increasing episode length T. $D = 4$, $r = \{20, 15, 4, 3\}$, $\lambda = \{0.1, 0.2, 0.4, 0.3\}$
Experiments: convergence (3/3)

a) \(T = 1000 \)

b) \(T = 2000 \)

Iterations to 98% optimality: increasing service rate. \(D = 4, r = \{20, 15, 4, 3\}, \lambda = \{0.1, 0.2, 0.4, 0.3\} \)
Conclusions

- **Optimal Trunk Reservation**: optimal admission control has a K-threshold structure

- **Learning Online**: no need to known arrival rates and the departure rates

- **Convergence**: using discrete step proves much faster than legacy approaches (Q-learning, Reinforce)

Gradient estimation. Naive algorithm.

- Generate an episode of length N
- Choose a sampling window T
- Sample state-action values by a sliding window

$$\left((m_1, d_1, r_1, a_1), \ldots, (m_T, d_T, r_T, a_T), (m_{T+1}, d_{T+1}, r_{T+1}, a_{T+1}), \ldots, (m_N, d_N, r_N, a_N)\right)$$

$$\sum_{j=1}^{T} a_i d_i$$

$$Q(m_1, d_1, a_1) = Q(m_1, d_1, a_1) + \sum_{j=1}^{T} a_i r_i$$
Gradient estimation. Naive algorithm.

- Generate an episode of length N
- Choose a sampling window T
- Sample state-action values by a sliding window

\[
((m_1, d_1, r_1, a_1), \ldots, (m_T, d_T, r_T, a_T), (m_{T+1}, d_{T+1}, r_{T+1}, a_{T+1}), \ldots, (m_N, d_N, r_N, a_N))
\]

\[
Q(m_1, d_1, a_1) = Q(m_1, d_1, a_1) + \sum_{j=1}^{T} a_i r_i
\]
Gradient estimation. Naive algorithm.

- Generate an episode of length N
- Choose a sampling window T
- Sample state-action values by a sliding window

$$((m_1, d_1, r_1, a_1), \ldots, (m_T, d_T, r_T, a_T), (m_{T+1}, d_{T+1}, r_{T+1}, a_{T+1}), \ldots, (m_N, d_N, r_N, a_N))$$

$$\sum_{j=2}^{T+1} a_i d_i$$

$$Q(m_2, d_2, a_2) = Q(m_2, d_2, a_2) + \sum_{j=2}^{T+2} a_i r_i$$
Gradient estimation. Naive algorithm.

- Generate an episode of length N
- Choose a sampling window T
- Sample state-action values by a sliding window

$$((m_1, d_1, r_1, a_1), \ldots, (m_T, d_T, r_T, a_T), (m_{T+1}, d_{T+1}, r_{T+1}, a_{T+1}), \ldots, (m_N, d_N, r_N, a_N))$$

$$\sum_{j=N-T}^{N} a_i r_i$$

$$Q(m_{N-T}, d_{N-T}, a_{N-T}) = Q(m_{N-T}, d_{N-T}, a_{N-T}) + \sum_{j=N-T}^{N} a_i r_i$$

And average
Gradient estimation. Smart algorithm.

- Generate an episode of length N
- Choose a sampling window T
- Sample state-action values by a sliding window
- Pretend: $(m, d, 1) \rightarrow (m, \theta_m, 1), (m, d, 0) \rightarrow (m, \theta_m, 0)$

\[
\begin{align*}
\left((m_1, d_1, r_1, a_1), \ldots, (m_i, d_i, r_i, a_i), \ldots, (m_i+T, d_i+T, r_i+T, a_i+T) \ldots, (m_N, d_N, r_N, a_N)\right) \\
a_i r_{\theta_m} + \sum_{j=i+1}^{i+T} a_i r_i
\end{align*}
\]

\[
\begin{align*}
Q(m_i, \theta_{m_i}, 1) &= Q(m_i, \theta_{m_i}, 1) + a_i r_{\theta_{m_i}} + \sum_{j=i+1}^{i+T} a_i r_i, \text{ if } a_i = 1 \\
Q(m_i, \theta_{m_i}, 0) &= Q(m_i, \theta_{m_i}, 0) + 0 + \sum_{j=i+1}^{i+T} a_i r_i, \text{ if } a_i = 0
\end{align*}
\]

And average
Algorithm 1: LearnGradient(\(\pi, T, N\))

\begin{verbatim}
input: \(\pi = (\theta_0, \ldots, \theta_{M-1}) \in \{0, \ldots, D\}^M, T, N \in \mathbb{N}\)
compute: \(r^\pi_m = r_{\theta_m}, m = 0, \ldots, M - 1\)
initialize: \(Q_0 = [[]], \ldots, \[\],\) long \(M\)
\(Q_1 = [[]], \ldots, \[\],\) long \(M\)
generate episode \(\{(m_i, d_i, a_i)\}_{i=0,\ldots,N}\) according to current policy \(\pi\)
for \(i = 0, \ldots, N - T\) do
 if \(a_i == 1\) then
 \(q_1 = r^\pi_{m_i} + \sum_{t=i+1}^{T} r_t \cdot a_t\)
 \(Q_1[m_i].append(q_1)\)
 else
 \(q_0 = \sum_{t=i+1}^{T} r_t \cdot a_t\)
 \(Q_0[m_i].append(q_0)\)
 end if
end for
for \(m = 0, \ldots, M - 1\) do
 \(\hat{Q}_m = \text{average}(Q_1[m]) - \text{average}(Q_0[m])\)
end for
return \(\hat{Q}_0, \ldots, \hat{Q}_{M-1}\)
\end{verbatim}
Definition of a flow

An IP traffic flow is a set of packets identified by the following attributes:

- IP source address
- IP destination address
- Source port
- Destination port
- Layer 3 protocol type
- Class of Service
- Router or switch interface
Markov Decision Problem formulation: transition probabilities

$$P = \begin{bmatrix}
p_1 & p_2 & \ldots & p_n \\
p_1 & p_2 & \ldots & p_n \\
\vdots & \vdots & \ddots & \vdots \\
p_1 & p_2 & \ldots & p_n
\end{bmatrix}$$

\(a = 0\)

\[
\begin{array}{c|c|c|c}
 P & 0 & 0 & 0 \\
 \lambda P & (1 - \lambda)P & 0 & 0 \\
 \lambda^2 P & \binom{2}{1} \lambda(1 - \lambda)P & (1 - \lambda)^2P & 0 \\
 \lambda^3 P & \binom{3}{1} \lambda^2(1 - \lambda)P & \binom{3}{2} \lambda(1 - \lambda)^2P & (1 - \lambda)^3P \\
\end{array}
\]

\(a = 1\)

\[
\begin{array}{c|c|c|c}
 \lambda P & (1 - \lambda)P & 0 & 0 \\
 \lambda^2 P & \binom{2}{1} \lambda(1 - \lambda)P & (1 - \lambda)^2P & 0 \\
 \lambda^3 P & \binom{3}{1} \lambda^2(1 - \lambda)P & \binom{3}{2} \lambda(1 - \lambda)^2P & (1 - \lambda)^3P \\
\end{array}
\]