
David Auger, Pierre Coucheney, Yann Strozecki

Solving Simple Stochastic Games with few Random
Nodes faster using Bland’s Rule

November 2019,
Journée COSMOS



What’s an SSG ?



Playing with SSGs in real life



Simple stochastic game (SSG)

A Simple Stochastic Game (Shapley, Condon) is defined by a directed graph with :

three sets of vertices VMAX , VMIN , VAVE of outdegree 2

two (or more) ’sink’ vertices with values 0 and 1

max A A

0 1

A min A

Two players : MAX and MIN, and randomness.



Rules of an SSG

A play consists in moving a pebble on the graph :

player MAX wants to maximize the value of the sink reached.

player MIN wants to minimize the value. If no sink is reached, the value is 0.

max A A

0 1

A min A

On a MAX node player MAX decides where to go next.



Rules of an SSG

A play consists in moving a pebble on the graph :

player MAX wants to maximize the value of the sink reached.

player MIN wants to minimize the value. If no sink is reached, the value is 0.

max A A

0 1

A min A

On a AVE node the next vertex is randomly determined.



Rules of an SSG

A play consists in moving a pebble on the graph :

player MAX wants to maximize the value of the sink reached.

player MIN wants to minimize the value. If no sink is reached, the value is 0.

max A A

0 1

A min A

On a MIN node player MIN decides where to go next.



Rules of an SSG

A play consists in moving a pebble on the graph :

player MAX wants to maximize the value of the sink reached.

player MIN wants to minimize the value. If no sink is reached, the value is 0.

max A A

0 1

A min A

Etc.



Rules of an SSG

A play consists in moving a pebble on the graph :

player MAX wants to maximize the value of the sink reached.

player MIN wants to minimize the value. If no sink is reached, the value is 0.

max A A

0 1

A min A

Etc.



Rules of an SSG

A play consists in moving a pebble on the graph :

player MAX wants to maximize the value of the sink reached.

player MIN wants to minimize the value. If no sink is reached, the value is 0.

max A A

0 1

A min A

Etc.



Rules of an SSG

A play consists in moving a pebble on the graph :

player MAX wants to maximize the value of the sink reached.

player MIN wants to minimize the value. If no sink is reached, the value is 0.

max A A

0 1

A min A

Etc.



Generalized SSGs

Generalize binary SSG :

arbitrary outdegree on the MAX and MIN nodes

arbitrary values on sinks

arbitrary probability distribution on the outneighbours of each AVE node

m M

r1 r2 r3

Val= 1 Val= 0 Val= .5

.1

.9

1.1

.9



What’s the value of an SSG ?



Markov Chain

a finite, stationnary markov chain as a collection of random nodes with a token
moving

suppose : proba 1 of reaching a sink node, each with a given value

R R R

0 1

R R R

value of node v = average value of the sink that is reached



Values of nodes

Here : binary case (outdegree 2, uniform probability)

.54 .43 .86

0 1

.64 .57 .71

Easily computed by linear system :

∀ non sink node v, val[v] =∑
w

p(v,w) ·val[w]



Markov Decision Process

Add some decision nodes and 1 player

on a decision node, the player chooses the next node among neighbours

max R R

0 1

R max R

goal : maximize the value of a node / all nodes



Markovian property in MDP

max R R

0 1

R max R

There is an optimal solution which is stationnary and pure (deterministic)

strategy := choice of an outneighbour for every max node



Values of a strategy

max
.43

.43 .86

0 1

.57
max
.71

.71

There is an optimal solution which is stationnary and pure (deterministic)

strategy := choice of an outneighbour for every max node



Solving a MDP

Bellman equations for optimal values val∗ (under mild conditions)

∀v random node
val∗[v] =∑

w
p(v,w) ·val∗[w]

∀ max node
val∗[v] = max

(v,w)∈A
val∗[w]

max / linear (average) system

solved by LP



Optimal values in an SSG

We consider only positional strategies :

σ : VMAX −→ V , τ : VMIN −→ V

The value of a vertex x is the best expected value of a sink that MAX can guarantee starting
from x :

val∗(x) = max
σ strategy
for MAX

min
τ strategy
for MIN

Eσ,τ (value of the sink reached | game starts in x)︸ ︷︷ ︸
valσ,τ(x)

Problem : given a game and a vertex, compute the value of the vertex.

Decision problem : val∗(x) > 0.5 ?



Optimal values in an SSG

We consider only positional strategies :

σ : VMAX −→ V , τ : VMIN −→ V

The value of a vertex x is the best expected value of a sink that MAX can guarantee starting
from x :

val∗(x) = max
σ strategy
for MAX

min
τ strategy
for MIN

Eσ,τ (value of the sink reached | game starts in x)︸ ︷︷ ︸
valσ,τ(x)

Problem : given a game and a vertex, compute the value of the vertex.

Decision problem : val∗(x) > 0.5 ?



Solving an SSG

Bellman equations for optimal values val∗ (under mild conditions)

∀v random node
val∗[v] =∑

w
p(v,w) ·val∗[w]

∀v MAX node
val∗[v] = max

(v,w)∈A
val∗[w]

∀v MIN node
val∗[v] = min

(v,w)∈A
val∗[w]

max / min / linear (average) system

Complexity in NP∩ co−NP ; is it in P ?

Harder than Parity Game, Mean payoff Game, Discounted payoff Game but equivalent
to their stochastic versions.



Solving an SSG

Bellman equations for optimal values val∗ (under mild conditions)

∀v random node
val∗[v] =∑

w
p(v,w) ·val∗[w]

∀v MAX node
val∗[v] = max

(v,w)∈A
val∗[w]

∀v MIN node
val∗[v] = min

(v,w)∈A
val∗[w]

max / min / linear (average) system

Complexity in NP∩ co−NP ; is it in P ?

Harder than Parity Game, Mean payoff Game, Discounted payoff Game but equivalent
to their stochastic versions.



The big picture

1. Simple Stochastic Games are a
class of two-players, turn-based,

zero-sum games played on graphs.

They are hard to solve.

2. Ludwig’s randomized algo-
rithm has expected complexity of

p(n) · 2O(
p

n)

3. Gimbert and Horn deter-
ministic algorithm has pa-
rametrized complexity of

p(n) · 2O(k logk)

k = number of random nodes.

4. We give a randomized algo-
rithm using both techniques, with

expected parametrized complexity of
p(n) · 2O(k)

Beside the logk factor, interesting
structures and properties arise
that need further examination.



Algorithms to solve SSGs



The switch operation

max
.43

.43 .86

0 1

.57
max
.71

.71

The strategy at the upper max node is switchable : the Bellman equation is not
satisfied.

If we switch, we obtain a better strategy

Switch = pivot operation that stricly improves the current strategy



Strategy iteration algorithms

Switch Operation for SSGs :

The values of MAX -strategy σ are the values of σ against a best response to σ from the
MIN player.

Lemma

Switching a switchable node increases the value of a strategy.

Strategy iteration Algorithm :

input : SSG

· start with an initial MAX strategy σ
while σ is not optimal (check Bellman eq.) do

· choose S a subset of the switchables nodes
· switch the nodes of S in σ

· update the values of σ (against a best response)

return σ



Strategy iteration algorithms

Switch Operation for SSGs :

The values of MAX -strategy σ are the values of σ against a best response to σ from the
MIN player.

Lemma

Switching a switchable node increases the value of a strategy.

Strategy iteration Algorithm :

input : SSG

· start with an initial MAX strategy σ
while σ is not optimal (check Bellman eq.) do

· choose S a subset of the switchables nodes
· switch the nodes of S in σ

· update the values of σ (against a best response)

return σ



Complexity of strategy improvement

Similar to the simplex algorithm. One degree of freedom : choice of the vertices which are
switched at each step.

Switch all switchable nodes : at most 2n/n steps [Kumar, Valkanova,Tripathi].

Switch a random subset : 20,78n steps in average.

Lower bounds for these methods 2
p

n steps [Friedmann].



Ludwig’s Algorithm – Bland’s rule



Ludwig’s Algorithm : recursive version

fix σ(x1) = left

solve recursively

Θ ordering of max nodes

x1 x2 x3 · · ·



Ludwig’s Algorithm : recursive version

fix σ(x1) = left

solve recursively

Θ ordering of max nodes

x1 x2 x3 · · ·

fix σ(x1) = right

switch if not optimal

solve recursively



Ludwig’s Algorithm : recursive version

fix σ(x1) = left

solve recursively

Θ ordering of max nodes

x1 x2 x3 · · ·

fix σ(x1) = right

switch if not optimal

solve recursively

σ increasing
iterative version



fix σ(x0) = a

solve recursively

Θ ordering of max nodes

x0 x1 x2 · · ·

fix σ(x0) = b

switch if not optimal

solve recursively

σ increasing
iterative version

random position of x0 in
the set of nodes (for a

“technical” order)

x,x,x, · · ·x,x︸ ︷︷ ︸
will never be swit-

ched again in the

second subtree

, x0 , · · ·x,x,x

Recursive formula with n max nodes on the average number of iterationsΦ

Φ(n) ≤Φ(n−1)+1+ 1

n

n−1∑
i=0

Φ(i).

2c.
p

n iterations on average instead of 2n.



Ludwig’s Algorithm : randomized Bland’s rule on SSGs

Ludwig’s Algorithm (Ludwig, 1995). Iterative simplified version.

input : binary SSG

· start with an initial MAX strategy σ
·Pick randomly and uniformly a total orderΘ on max-nodes
while σ is not optimal (check Bellman eq.) do

· switch σ at the first switchable node in orderΘ
· update the values of σ (against a best response)

return σ

Theorem (Ludwig)

The expected number of strategies considered by this algorithm is at most e2
p

n.

n is the number of MAX -nodes (at least 2n strategies)



Gimbert & Horn framework – few random
nodes



Parametrization on the number of random nodes
Framework in which we want to apply Ludwig’s technique

Main idea

To solve an SSG you only need to know the ordering of the values for random nodes

supposed value
k random nodes

sinks

MAX and MIN nodes

Gimbert and Horn (2007)

if the ordering of the values of random
nodes is known, then the resulting game
is deterministic

T k : set of total orders on 1,2, · · ·k
algorithm : enumerate/iterate Tk and
check for optimality conditions.

k! ≈ 2O(k log(k)) iterations



Using the two techniques together



(Finally) Our main result

With a clever iteration on strate-
gies using a dichtomic partition,

Ludwig reduces the average num-

ber of iterations from 2n to 2c
p

n.

Gimbert and Horn enumerates
k! ≈ 2ck log(k) orders of set Tk

Find a “pivot” operation
on Tk , with an ad-hoc di-

chotomic enumeration

Then we can enumerate Tk in time

2c.
p

k2 = 2c.k



Ludwig’s Like Algorithm on orders : recursive version

fix i1 < j1

solve recursively

Θ ordering of pairs of random nodes

(i1, j1) (i2, j2) (i3, j3) · · ·



Ludwig’s Like Algorithm on orders : recursive version

fix i1 < j1

solve recursively

Θ ordering of pairs of random nodes

(i1, j1) (i2, j2) (i3, j3) · · ·

fix j1 < i1

switch if not optimal

solve recursively



Ludwig’s Like Algorithm on orders : recursive version

fix i1 < j1

solve recursively

Θ ordering of pairs of random nodes

(i1, j1) (i2, j2) (i3, j3) · · ·

fix j1 < i1

switch if not optimal

solve recursively

order t in-
creasing

iterative version



The auxilliary graph

To a graph G and an order t on the k random nodes associate G[t] :

the set of sinks, max-nodes and ran-nodes remain the same as in G ;

For every 1 ≤ i ≤ k, add a min-node denoted i to G[t], which we call control node and
add an arc (i,ri) ;

For every (i, j) ∈ t, i 6= j, add the arc (i, j) to G[t] ;

For every arc (x,ri) ∈ A, remove this arc and add an arc (x, i).



Auxiliary graph – order t=(1,2,3)

m M

r1 r2 r3

Val= 1 Val= 0 Val= .5

.1

.9

1.1

.9

G initial SGG

m M

r1 r2 r3

Val= 1 Val= 0 Val= .5

m1 m2 m3

.1

.9

1.1

.9

control nodes

G[t] with t = (1,2,3) total order



The auxilliary graph

To a graph G and an order t on the k random nodes associate G[t] :

the set of sinks, max-nodes and ran-nodes remain the same as in G ;

For every 1 ≤ i ≤ k, add a min-node denoted i to G[t], which we call control node and
add an arc (i,ri) ;

For every (i, j) ∈ t, i 6= j, add the arc (i, j) to G[t] ;

For every arc (x,ri) ∈ A, remove this arc and add an arc (x, i).

Lemma

(i) optimal values of control nodes i ∈ [1,k] in G[t] are nondecreasing along t ;

(ii) the game G[t] can be solved in polynomial time.

(iii) for the “optimal” order t, optimal strategies in G[t] coincide with optimal strategies G ;



Main algorithm : iterative version

1 Prior to the execution of the algorithm, choose randomly and uniformly an orderΘ

on the set of all k(k−1)
2 unordered pairs of control nodes.

2 Pivot selection rule and pivot operation on orders that yields an order improvement
algorithm.

Theorem

The Algorithm computes optimal order in at most e
p

2·k expected steps.



A run of our algorithm

m M

r1 r2 r3

Val= 1 Val= 0 Val= .5

.1

.9

1.1

.9

G initial SGG

m M

r1 r2 r3

Val= 1 Val= 0 Val= .5

m1 m2 m3

.1

.9

1.1

.9

control nodes

G[t] with t = (1,2,3) total order



orderΘ on pairs : {1,2}, {1,3}, {2,3}

m M

r1 r2 r3

Val= 1 Val= 0 Val= .5

m1 m2 m3

.1

.9

1.1

.90.1 0 0.5

0 0 0.5

0 0.5

order : 1,2,3
Value intervals : [1,2] [3]

m M

r1 r2 r3

Val= 1 Val= 0 Val= .5

m1 m2 m3

.1

.9

1.1

.90.55 0.45 0.5

0.5 0.45 0.5

0.5 0.5

order : 2,1,3
Value intervals : [2], [1,3]



orderΘ on pairs : {1,2}, {1,3}, {2,3}

m M

r1 r2 r3

Val= 1 Val= 0 Val= .5

m1 m2 m3

.1

.9

1.1

.90.55 0.45 0.5

0.55 0.45 0.5

0.5 0.5

order : 2,3,1
Value intervals : [2] [3] [1]

Optimal order !


