==
CENTRALE

ppppp vrije Universiteit amsterdam

(= |
interact-[{1] %
N

Optimal Control in Call Centers

Benjamin Legros

Collaboration with Interact-iv.com

Ger Koole and Oualid Jouini

1



Outline

1. Markov Decision process Approach, a tool
to find and prove (eventually) optimal policies
In queueing models

a. The approach

b. The value iteration technique

c. Limitations of the method, open
guestions, improvement.
2. Adaptive Routing
3. Routing decisions based on the waiting
time



The rejection problem

Consider a single server queue with infinite buffer, an homogeneous
Poisson arrival process with rate A and an exponential server working
with rate u (M/M/1 queue).

A customer can be rejected at any time with cost r and a cost c is counted
per customer waiting in the queue per time unit.

The objective is to minimize the long run expected cost of the system.
State definition: Number of customers in the system: x
Problem: The problem is a continuous time MDP, the uniformisation

technique from Puterman (1994) allows to change this problem into a
discrete one.



The rejection problem

We thus assume A + p = 1 and define the value function:

Transitions:

Vor1()=cx(x—=—D"+AU,(x+ 1)+ pnU,(x—1),
for x>0,
Vie1(0) = A Up(1) + p U, (0)

Actions:
U,(x) = min(V,,(x),V,s1(x — 1) + 1)

For each n, there is a minimizing action: keep or reject

The function from {0,1, ..., x, ...} = {Keep, reject} is a policy.



The rejection problem

If it is optimal to reject in x, then it is optimal
to reject in x+1 (threshold structure).

A necessary condition is

Vix+1)—V(x)—r=0
induces
Vix+2)—-Vx+1)—r=0

So, if
V, is convex then the condition is proven.



Generalization

From Puterman (1994) the property holds as n tends to
infinity (convergence of V ,,-V,)

Usually, other monotonicity properties have the value
function have to be proven (first order monotonicity).

In two dimensions other second order monotonicity results
are often necessary conditions (generated by minimizing or
maximizing actions):

Vix+1,y+1D)+V(,y) 2Vx+1,y)+V(x,y+1)
and/or
Vix+2,y)+V(,y+1D)=2Vkx+1L,y+1D)+V(ix+1,y)



Generalization/problems

1. Unbounded rates (abandonment for
instance): truncation is a solution but the
convexity is broken at the truncated state.

2. Multiserver case: to prove convexity the
minimizing action forces to prove
supermodularity, to prove supermodularity
the minimizing action forces to prove second
order supermodularity, to prove the second
order supermodularity the service term
Imposes to prove concavity...




Generalization/problems

3. Non exponential distribution: the Coxian
distribution can be used but the number of
states increases.

4. Non convex/concave performance
measures: an example is the percentile of the
waiting time (80/20 rule).

5. Non traditional state definition: in call
centers routing decisions are often taken
based on the experienced waiting time




Unsolved problem

The slow server

Consider a model with a slow and a fast server. The
objective is to minimize the time spent in the
system.

The optimal policy is of threshold type. The slow
server is used only when the queue size exceeds a
threshold.
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2. Routing Decision on the Waiting Time

Waiting Time vs Number in queue
Example: The V model with FCFS

Solution: The Erlang Approximation for the waiting time of
the First in Line (FIL) (Koole et Al. (2012))

M/M/1

i i—1 h
1- % (:,i—J (ﬁ) fori=nh
Pii—h = % h=0

L
(% (ﬁ) , for0 < h < i.




With Abandonment ?

The method is not directly applicable with
abandonment

Exception: The deterministic abandonment

With % =1, we reach the performance measures
of the M/M/s+D queue.
Extension to control in service problems

Problem with other types of abandonment: a
customer can abandon with a lower waiting time
than the FIL.

Ghost Customer approximation




Adaptation of the transition probabilities

Recall that h
1 — E]( —.) (};—ﬂ) fori=h

Pii—h = h=(

A ,for0<h <i.
Difficulties: (1_) (F) ) -

1. The state i-h does not only depend on the arrival of the
following customer

2. The abandonment behavior is usually not exponential

General abandonment approximated by the Coxian
distribution




Convergence of our particular Coxian
distribution

Theorem 1 The random variable X., converges in distribution to any positive-valued distribution

as v tends to infinity.

"""""""

: P(X<t) P

| p(x<t)

——geterministic

o
-
L

(a) Exponential Distribution with rate 1 (b) Deterministic distribition with parameter 2

Proposition 1 With b = 1 and 3; = § for i > 0, X, does not converge in probability to the

exponential distribution with parameter [3.



Adaptation of the transition probabilities
After some computations ...

(i

[[a. fori=h,i>0

Piji—h = X k=1 ;

(I —qi—n) [l qr, forO<h <q,

\ k=i—h+1
1
Q. = p . for k =0
1 —I_ E:)t H E] H‘i"‘r
st

Another Numerical Method for the M/M/s+Gl queue and more complex systems.

Solution for Routing and Staffing problems with decisions based on the waiting
time in systems with abandonment.

No necessity for bounding the total event rate in the value functions.

A+ ~v+sp+max(5,) =1



lllustration: The V-Design

- Two FCFS queues, server have to choose which queue to
prioritize, Hyperexponential abandonment

T
O




lllustration: The V-Design
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Figure 4: Optimal policies (A, = Ay =5, p =1, s = 11, u, = 10%, a,1 =1, g0 = 5, up = 30%,
ap1 =2, p2=3,7=30,D = 12[})



3. Multichannel Call Center

The call center Blending Problem

Multichannel Call centers -> Combinations of urgent and non-
urgent tasks

Time-dependent arrival rate, non-stationary analysis

Inbound calls
>

Outbound ‘/

Time sharing between inbound and outbound tasks ?
Propose « clever » Routing strategies ? (or non clever but cheap)
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Adaptive Threshold Policies

Motivation

Infinite amount of Outbound Tasks => Possibility of 100% utilization
=> Bad performance for Inbound Calls

Solution: Reservation Threshold

Inbound calls
> (O

Outbounds /
0

Difficulties:
1. The reservation threshold is an integer
2. The arrival rate is time-dependent

3. The service level constraint on inbound calls has to be met for the
whole working day



Adaptive Threshold Policies

Agents all busy

Y pg
At least one idle
< ‘gr_gﬂ ‘()J .g

Routing

Do an

1. At least one waiting call / Sutbound
- o “ﬂ ‘g ‘?
00O @
“
@ X busy agents

| |

When an agent Remain

. ) 2. An empty queue
finishes a service... Idle




Proof in the case of equal service rates, no abandonment

Bhulai, 5. and Koole, G. (2003). A Queueing Model for Call Blending in Call Centers. IEFEE Transactions
on Automatic Control, 48:1434-1438.

Gans, N. and Zhou, Y.-P. (2003). A call-routing problem with service-level constraints. Operations Research,
51:255-271.

Performance comparison

Deslauriers, A., L'Ecuyer, P., Pichitlamken, J., Ingolfsson, A., and Avramidis, A. (2007). Markov chain

models of a telephone call center with call blending. Computers & Operations Research, 34(6):1616-1645.

Adaptive threshold

Bhulai, 5., Farenhorst-Yuan, T., Heidergott, B., and Van der Laan, D. (2012). Optimal balanced control for
call centers. Annals of Operations Research, 201(1):39-62.

Legros, B., Jouini, O., and Koole, G. (2015). Adaptive threshold policies for multi-channel call centers. [IE
Transactions, 47:414-430.

Staffing

Pang, G. and Perry, O. (2014). A logarithmic safety staffing rule for contact centers with call blending,.

Management Science, 61(1):73-01.



Adaptive Threshold Policies

Main contribution

Efficient adaptive threshold policy easily implementable in the
ACD
|

MOde“ng Inbound calls

[ » J«—

Agents
Outbound calls
- Throughput of the outbound tasks (7), Maximize T
- Waiting time distribution of the calls (P(W<t)) subject to SL = a,

0 15 min 30 min 45 min 7h30min 7 h 45 min

SN

Decisions on the Threshold
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Adaptive Threshold Policies

Outline

- Stationary case

- Adaptive Threshold Policy (ATP)

- Non stationary case



Adaptive Threshold Policies

Performance measures

F—U k E— i t‘{'?_u+]?,[-!
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Optimal solution on two Intervals

Reduce the
increasing of u

Light Workload >

s Reduce the
decreasing of u

High Workload

More Flexibility

26



Adaptive Threshold Policies

ATP Policy
c: the real threshold after i intervals
SL.: the service level on calls over the last first j intervals
h;: the value of change for ¢,

.@% C':Ci-hi \
SL,> a Ci=Ci+hi /

Suggestion
h=1-c/sif SL=a Slow increasing with high thresholds
h=c/sifSL<a Slow decreasing with low thresholds



Comparison with Optimality

Theorem

Adaptive Threshold Policies

Consider 0 < uy,us < 5 such that SL(uy) < o < SL(us). If it exists v € R for which

(11, u2) € arg maz T(u) + vSL(u), then randomizing between uy; and uy is optimal.
il

Optimal ¢ Optimal T ATP T | Difference

Scenario 1

(A=4, p=pp=02, s =28) 25.49 1.39 1.37 1.46%
Scenario 2

(A=0.02, p=pp=02 5=1) 0.13 0.02 0.02 0.00%
SCenario 5

(A =18, p = pp = 0.2, s = 100) 03.91 1.65 1.58 4.43%
Scenario 4

(A =4, p =027, yp = 0.15, 5 = 28) 26.63 1.89 1.80 0.00%
SCenario

(A=4, p=017, pg =1, s = 28) 23.21 2.00 1.79 11.73%
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Adaptive Threshold Policies

Non Stationary Analysis

3 Max(a—SL;.0)
* Measure of the errors : 7 = %=

mn

* Confidence interval for the proportion.
* Coefficient of aversion to the risk: A
* Function of comparison (Utility): T, — A x 7.

h T SL T U h T SL T U
0.1 | 1.17 80.6% 0.0046 0.71 0.1 | 1.53 72.15% 0.0782 -6.3
0.2 |1.12 80.5% 0.0036 0.77 021138 787% 0.0201 -0.63
Sel 05 |1.04 80.1% 00032 0.72|5c2 05123 814% 0.0063 0.60
1 0.98 80.0% 0.0035 0.63 1 | 1.19 80.7% 0.0062 0.57
ATP | 1.09  R80.7% 0.0027 0.82 ad | 1.12  85.6% 0.0008 1.04
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Adaptive Threshold Policies

Numerical lllustration, non-stationary analysis

1 a 11 14 21 26 31 1 a 11 14 21 25 3l

(a) Threshold (b) Service Level

3 — e i o IR 5 T 5}
[T "l [T,

]

L] L
1 a 11 16 21 26 il

(¢) Email Throughput 30



Adaptive Threshold Policies

CENTRALE
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Conclusion

- Efficient adaptive threshold policy

- Comparison with the optimal policy with a

constant stationary arrival rate

- Comparison with other intuitive policies under

a non stationary analysis



