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Ignoring Uncertainties

PILOT4 from NETLIB library

▶ Constraint 372

▶ Optimal “classical” solution

▶ Can the coefficients be known with
such a high accuracy?

▶ Assume 0.1%-accurate approximation

▶ Worst violation: 450%

▶ Random perturbation: (1 + ξj)aj

▶ Relative violation:

V = b−ãT x∗

b
× 100%

▶ Prob{V > 0} = 0.5

▶ Prob{V > 150%} = 0.18

▶ Mean(V ) = 125%

▶ Robust optimization: robust solutions remain (almost) always feasible

▶ Usually still very good objective value
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C. Büsing Solving Robust Binary Optimization Problem with Budget Uncertainty 2



Ignoring Uncertainties

PILOT4 from NETLIB library

▶ Constraint 372

▶ Optimal “classical” solution

▶ Can the coefficients be known with
such a high accuracy?

▶ Assume 0.1%-accurate approximation

▶ Worst violation: 450%

▶ Random perturbation: (1 + ξj)aj

▶ Relative violation:

V = b−ãT x∗
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Robust Optimization

Definition (Robust Binary Programming with cost uncertainties)

Given a set of feasible solution X = {x ∈ {0, 1}n | Ax ≤ b}. Let S be a set of
scenarios defining cost functions cS : N → R, S ∈ S. A robust optimial solution x∗ is
a feasible solution minimizing the worst case costs, i.e., solve

min

{
max
S∈S

n∑
i=1

cSi xi | Ax ≤ b, x ∈ {0, 1}n
}

Shortest Path Problem

C. Büsing Solving Robust Binary Optimization Problem with Budget Uncertainty 3



Robust Optimization

Definition (Robust Binary Programming with cost uncertainties)

Given a set of feasible solution X = {x ∈ {0, 1}n | Ax ≤ b}. Let S be a set of
scenarios defining cost functions cS : N → R, S ∈ S. A robust optimial solution x∗ is
a feasible solution minimizing the worst case costs, i.e., solve

min

{
max
S∈S

n∑
i=1

cSi xi | Ax ≤ b, x ∈ {0, 1}n
}

Shortest Path Problem

s

v1

1

v3

v2 v4

1

t

1

5

10

3

1

7

2 2
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C. Büsing Solving Robust Binary Optimization Problem with Budget Uncertainty 3



Robust Optimization

Definition (Robust Binary Programming with cost uncertainties)

Given a set of feasible solution X = {x ∈ {0, 1}n | Ax ≤ b}. Let S be a set of
scenarios defining cost functions cS : N → R, S ∈ S. A robust optimial solution x∗ is
a feasible solution minimizing the worst case costs, i.e., solve

min

{
max
S∈S

n∑
i=1

cSi xi | Ax ≤ b, x ∈ {0, 1}n
}

Shortest Path Problem

s

v1

1

v3

v2 v4

1

t

1

5

10

3

1

7

2 2s

0

v1

1

v3

8

v2

3

v4

6

t

9

1

5

10

3

1

7

2 2 s

v1

1

v3

v2 v4

1

t

[1
, 3
]

[5, 7]

[10, 12]

[3, 5]

[1, 3]

[7
, 9
]

[2, 4] [2, 4]s

v1 v3

v2 v4

t
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C. Büsing Solving Robust Binary Optimization Problem with Budget Uncertainty 3



Robust Optimization under Budget Uncertainties

Definition (Robust Binary Problem with budget uncertainties)
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deviations ĉ : N → R and a parameter Γ ∈ N. An optimal solution solves

min

{
max

S⊆N,|S|≤Γ

∑
i∈S
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Budget Uncertainties

Theorem (Bertsimas & Sim 2004)

Given a set of feasible solution X = {x ∈ {0, 1}n | Ax ≤ b}, costs c : N → R and
deviations ĉ : N → R and a parameter Γ ∈ N. Both problems are equivalent

min max
S⊆N,|S|≤Γ

∑
i∈S

ĉixi +
∑
i∈N

cixi

s.t. Ax ≥ b

x ∈ {0, 1}n

min Γz +
∑
i∈N

pi +
∑
i∈N

cixi

s.t. Ax ≥ b

z + pi ≥ ĉixi ∀i ∈ N

p ∈ Rn
≥0, z ≥ 0, x ∈ {0, 1}n

Proof: max
∑

ĉixiyi∑
i∈N

yi ≤ Γ

y ∈ {0, 1}n

▶ Totally unimodular

▶ Dualize
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ĉixi +
∑
i∈N

cixi

s.t. Ax ≥ b

x ∈ {0, 1}n

min Γz +
∑
i∈N

pi +
∑
i∈N

cixi

s.t. Ax ≥ b

z + pi ≥ ĉixi ∀i ∈ N
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values ĉixi

i

ĉixi

1 2 3 4 5 6 7

Γ = 3

z

}pi = (ĉixi − z)+

z

z
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ĉixi +
∑
i∈N

cixi

s.t. Ax ≥ b

x ∈ {0, 1}n

min Γz +
∑
i∈N

pi +
∑
i∈N

cixi

s.t. Ax ≥ b

z + pi ≥ ĉixi ∀i ∈ N
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z + pi ≥ ĉixi ∀i ∈ N

p ∈ Rn
≥0, z ≥ 0, x ∈ {0, 1}n

▶ Optimal choice of z, p for
x fixed

▶ z optimal between Γ and
Γ + 1 largest value ĉixi
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Practical Performance

▶ compact formulation,
no use of big M

▶ let’s solve some
problems!

▶ robust knapsack:

50 items can already
be intractable

Nodes Cuts/

Node Left Objective IInf Best Integer Best Bound ItCnt Gap

23720047 15197259 11719,6862 20 11606,0000 12288,1353 55057467 5,88%

23770901 15226459 11828,1686 23 11606,0000 12287,7700 55180967 5,87%

23821565 15255529 12011,4041 24 11606,0000 12287,4030 55303331 5,87%

23871269 15283781 11783,7154 22 11606,0000 12287,0473 55424214 5,87%

Elapsed time = 3434,41 sec. 5979817,73 ticks, tree = 3353,00 MB, solutions = 12

Nodefile size = 1305,88 MB 727,49 MB after compression

23922166 15312936 12191,2914 28 11606,0000 12286,6809 55547450 5,86%

23972875 15342043 12200,0047 28 11606,0000 12286,3216 55668913 5,86%

24023053 15370543 11736,4889 21 11606,0000 12285,9418 55790174 5,86%

24073375 15399019 12100,5997 25 11606,0000 12285,5821 55912495 5,86%

24124016 15427933 12185,6295 27 11606,0000 12285,2237 56034120 5,85%

24174475 15456520 12076,8979 25 11606,0000 12284,8592 56156283 5,85%

24223910 15484613 11936,4399 23 11606,0000 12284,4984 56276599 5,85%

24273972 15512958 11751,6692 24 11606,0000 12284,1408 56398552 5,84%

24324148 15541333 11929,2290 23 11606,0000 12283,7841 56521083 5,84%

24374451 15569768 12255,0014 27 11606,0000 12283,4225 56644319 5,84%

Elapsed time = 3528,01 sec. 6132528,45 ticks, tree = 3408,61 MB, solutions = 12

Nodefile size = 1360,88 MB 755,91 MB after compression

24424125 15598043 11993,2112 23 11606,0000 12283,0698 56764602 5,83%

24475158 15626928 12240,6841 27 11606,0000 12282,7013 56887548 5,83%

24526113 15655874 12232,6254 27 11606,0000 12282,3386 57011130 5,83%

24576245 15684253 12236,5555 30 11606,0000 12281,9808 57133348 5,82%

24625778 15712276 cutoff 11606,0000 12281,6332 57253146 5,82%

24676376 15740977 11992,7508 26 11606,0000 12281,2759 57374978 5,82%

24726652 15769305 12240,2652 28 11606,0000 12280,9179 57496901 5,82%

24777038 15797704 11615,6468 22 11606,0000 12280,5627 57618421 5,81%

24827584 15826342 12045,1031 24 11606,0000 12280,2089 57740201 5,81%

24877740 15854780 cutoff 11606,0000 12279,8571 57860645 5,81%

Elapsed time = 3623,59 sec. 6285119,25 ticks, tree = 3464,00 MB, solutions = 12

Nodefile size = 1416,87 MB 784,63 MB after compression
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Branch & Bound
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x2
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z = ∞z = 2.5

2 3

4 5

z = 2

z = 2.25

z = ∞

z = 2.5
z = 2.5

z = 2.5

x2 ≥ 1 x2 ≤ 0

x1 ≥ 3 x1 ≤ 2

4

Initialize upper bound z = ∞, x∗ void
Add polyhedron P to List L

Is L empty?
Stop

x∗ is optimal

Choose polyhedron P ′ from L

Is P ′ = ∅?prune by infeasibility

Solve LP relaxation over P ′

x′ ∈ argmin{c⊤x|x ∈ P ′}
z′ = c⊤x

Is z′ ≥ zprune by bound

Is x′ integer?
If z′ < z:

set x∗ = x′ and z = c⊤x
prune by optimality

Add P ′
1 = {x ∈ P ′|xi ≤ ⌊x′i⌋} and P ′

2 = {x ∈ P ′|xi ≥ ⌈x′i⌉} to L
with i ∈ {1, . . . , n} such that x′i /∈ Z

Yes

No

Yes

No

Yes

No

Yes

No
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Bad Relaxation

▶ Robust model performs poorly due to weak
LP-relaxation

▶ Example: choose element with smallest
weight

for uniform weights

▶ Consider uniform deviations, Γ = 1

min
∑
i∈N

cixi

s.t.
∑
i∈N

xi = 1

x ∈ {0, 1}n

▶ (1, 0, . . . , 0) integer optimal with
solution value c+ ĉ

▶ ( 1n , . . . ,
1
n) continuous optimal

with solution value c+ ĉ
n

▶ Influence of uncertainty vanishes

i

ĉixi

1 2 3 4 5 6 7

z

z

▶ Inherent “problem” to robust optimization: diversification
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n

▶ Influence of uncertainty vanishes

i
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Bad Relaxation and B&B

11
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n
x1 = 1

x1 = 0

221
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z = c+ ĉ
n

z = c+ ĉ

3z = c+ ĉ
n−1

x2 = 1

x2 = 0

4

5 6

m m+1

2n−1

z = c+ ĉ

z = c+ ĉ
n−2

z = c+ ĉ

z = c+ ĉ
n−⌊m

2 ⌋
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c xi

s.t.
∑
i∈N

xi = 1
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p ∈ Rn, z ≥ 0, x ∈ {0, 1}n
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3z = c+ ĉ
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n
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z = c+ ĉ
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C. Büsing Solving Robust Binary Optimization Problem with Budget Uncertainty 10



Bad Relaxation and B&B

1

1

z = ∞
z = c+ ĉ
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n

x1 = 1

x1 = 0

221

z = c+ ĉ
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C. Büsing Solving Robust Binary Optimization Problem with Budget Uncertainty 10



Classical Solution Approaches

min Γz +
∑
i∈N

pi +
∑
i∈N

cixi

s.t. Ax ≥ b

z + pi ≥ ĉixi ∀i ∈ N

p ∈ Rn
≥0, z ≥ 0, x ∈ {0, 1}n

Strong Formulations

▶ Atamtürk:
four strong versions

Branch on z

▶ Bertsimas & Sim:
n+ 1-subproblems

▶ Hansknecht et. al:
Devide and Conquer
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A Bilinear Formulation

▶ Atamtürk Formulations: If the nominal formulation is α-tight then the strongest
formulation is also α-tight for the robust problem [At2006]

▶ Relatively small z are sufficient to fulfill pi + z ≥ ĉixi for fractional xi
▶ Remedy: multiply z with xi to strengthen the constraint:

min
∑
i∈N

cixi + Γz +
∑
i∈N

pi

s.t. Ax ≥ b

pi + xiz ≥ ĉixi ∀i ∈ N

x ∈ {0, 1}n , p ∈ Rn
≥0, z ≥ 0

▶ Bilinear constraint is equivalent to

{
pi ≥ 0 for xi = 0

pi + z ≥ ĉixi for xi = 1

Theorem

The above bilinear formulation is stronger than any polyhedral formulation.

▶ The bilinear formulation is impractical but the foundation for two new approaches

C. Büsing Solving Robust Binary Optimization Problem with Budget Uncertainty 12



A Bilinear Formulation

▶ Atamtürk Formulations: If the nominal formulation is α-tight then the strongest
formulation is also α-tight for the robust problem [At2006]

▶ Relatively small z are sufficient to fulfill pi + z ≥ ĉixi for fractional xi

▶ Remedy: multiply z with xi to strengthen the constraint:

min
∑
i∈N

cixi + Γz +
∑
i∈N

pi

s.t. Ax ≥ b

pi + xiz ≥ ĉixi ∀i ∈ N
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Promising Approaches: Sequence of Nominal Problems

▶ For fixed z = z′ it holds
pi = (ĉixi − z′)+ = (ĉi − z′)+xi

▶ Fixing z yields a nominal problem

▶ Fix z ∈ Z and solve |Z| nominal
problems [BS2003]

▶ |Z| reducible to ⌈n−Γ
2 ⌉+ 1 [LK2014]

▶ Prune z on the fly using relations
between objective values [HRS2018]

min Γz +
∑
i∈N

pi +
∑
i∈N

cixi

s.t. Ax ≥ b

z + pi ≥ ĉixi ∀i ∈ N

p ∈ Rn
≥0, z = z′, x ∈ {0, 1}n

▶ The Γ largest value ĉixi is an optimal
choice for z

▶ Z = {0, ĉ1, . . . , ĉn} contains an
optimal choice for z

i

ĉixi

1 2 3 4 5 6 7

Γ = 3

z
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choice for z
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ĉixi

1 2 3 4 5 6 7

Γ = 3

z
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choice for z
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(ci + (ĉi − z′)+)xi

s.t. Ax ≥ b

x ∈ {0, 1}n

▶ The Γ largest value ĉixi is an optimal
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Using Bounds on z

▶ an optimal z ∈ {0, ĉ1, . . . , ĉn} exists

▶ fixing z yields nominal problem

⇒ solve n+ 1 nominal problems [BS2003]

▶ n+ 1 may be too large for brute enumeration

⇒ bound z instead of fixing it

▶ consider feasible values of
pi, z for fixed xi ∈ (0, 1)

pi

z
0

ĉixi

ĉixi ĉi
z z

▶ original constraint pi ≥ ĉixi − z

▶ bilinear constraint pi ≥ ĉixi − xiz

▶ assume we are given bounds z ≤ z ≤ z

▶ we linearize the bilinear constraint to

pi ≥ (ĉi − z)xi + z − z (1)

and
pi ≥ (ĉi − z)xi (2)

Proposition

Inequalities (1) and (2) approximate the bilinear one and are equally strong if
z ∈ {z, z}.
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z z

▶ original constraint pi ≥ ĉixi − z
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ĉixi
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pi ≥ (ĉi − z)xi (2)

Proposition

Inequalities (1) and (2) approximate the bilinear one and are equally strong if
z ∈ {z, z}.
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▶ fixing z yields nominal problem ⇒ solve n+ 1 nominal problems [BS2003]
▶ n+ 1 may be too large for brute enumeration ⇒ bound z instead of fixing it

▶ consider feasible values of
pi, z for fixed xi ∈ (0, 1)

pi

z
0
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▶ bilinear constraint pi ≥ ĉixi − xiz
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▶ assume we are given bounds z ≤ z ≤ z

▶ we linearize the bilinear constraint to
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pi ≥ (ĉi − z)xi (2)

Proposition

Inequalities (1) and (2) approximate the bilinear one and are equally strong if
z ∈ {z, z}.
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ĉixi ĉi
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Branch & Bound

▶ let Z = {z1, . . . , zk} contain an
optimal value for z

▶ idea: branch on Z to find promising
values for z

▶ solve LP-relaxation

▶ branch and restrict z to new domains

▶ apply stronger linearization using new
bounds z, z

▶ solve integer subproblem once bilinear
formulation is sufficiently
approximated

{z1,...,zk}
z∈[z1,zk]

{z1,...,z3}
z∈[z1,z3]

{z4,...,zk}
z∈[z4,zk]

z ≤ z3 z ≥ z4pi ≥ (ĉi − z3)xi pi + z ≥ (ĉi − z4)xi + z4

{z6,zk}
z∈[z6,zk]

pi ≥ (ĉi − z5)xi pi + z ≥ (ĉi − z6)xi + z6

{z4,z5}
z∈[z4,z5]
{z4,z5}
z∈[z4,z5]

▶ advantages:
▶ stronger LP-relaxations in subproblems

▶ fast pruning of non-optimal z
▶ bounds on z yield many more structural properties
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pi ≥ (ĉi − z5)xi pi + z ≥ (ĉi − z6)xi + z6
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{z4,z5}
z∈[z4,z5]

{z4,z5}
z∈[z4,z5]

▶ advantages:
▶ stronger LP-relaxations in subproblems
▶ fast pruning of non-optimal z

▶ bounds on z yield many more structural properties
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Observations

▶ so far: non-linearize problem, branch on continuous variable z

(spatial B&B-ish)

▶ there are many more structures to use

▶ observation: feasibility of x ∈ {0, 1}n is independent of z

1. possibility to draw conclusions between different subproblems

(super interesting, but no time for that /)

2. x ∈ {0, 1}n can be optimal for subproblems with z ∈ [z, z], but z might not be
optimal for x

z

[ z z ]

x

optimal

[ z′ z′ ]

optimal

prohibiting x for z ∈ [z, z] leads to better dual bounds
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Optimality-Cuts

▶ there exist at most Γ indices i ∈ N
with ĉixi > z

∑
i∈N :ĉi>z

xi ≤

∑
i∈N :ĉi>z

xi ≤ Γ

▶ assume 0 < z ≤ z, then there exist at
least Γ indices i ∈ N with ĉixi ≥ z

∑
i∈N :ĉi≥z

xi ≥

∑
i∈N :ĉi≥z

xi ≥ Γ

▶ let z ∈ [z, z] be optimal for
x ∈ {0, 1}n

▶ z between Γ and Γ + 1 largest ĉixi

i

ĉixi

1 2 3 4 5 6 7

Γ = 3

z

Theorem

There is an optimal z ∈ [z, z] for x ∈ {0, 1}n iff the above inequalities are fulfilled.
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∑
i∈N :ĉi≥z
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xi ≥
∑

i∈N :ĉi≥z

xi ≥ Γ

▶ let z ∈ [z, z] be optimal for
x ∈ {0, 1}n

▶ z between Γ and Γ + 1 largest ĉixi
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Computational Study

▶ Implemented algorithm in Java with Gurobi for solving subproblems

▶ Additional engineering

▶ Pruning, terminating nominal subproblems, node selection, branching point etc...

▶ Tested algorithm for robustified instances of MIPLIB 2017

▶ 67 suitable basic instances remained after filtering

▶ Several instances of different uncertainty levels per basic instance

▶ “State-of-the-art” algorithms for comparison

▶ Bertsimas Sim standard reformulation, cutting-plane approach, Atamtürk’s
formulations, |Z| nominal subproblems, Divide & Conquer [HRS2018]
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C. Büsing Solving Robust Binary Optimization Problem with Budget Uncertainty 18



Computational Results: B&B vs. Literature
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Improving Algorithms from Literature

▶ Theoretical results improve competing algorithms substantially

▶ E.g. cliques for ROB, optimality-cuts and improved dual bounds for DnC
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Recycling Valid Inequalities

▶ let CNOM, CROB be the convex hulls of the nominal and robust problems

▶ we call an inequality
∑

i∈N πixi ≤ π0 recyclable if it is valid for CNOM and π ≥ 0

Theorem

Let
∑

i∈N πixi ≤ π0 be a recyclable inequality. Then the recycled inequality∑
i∈N

πipi + zπ0 ≥
∑
i∈N

πiĉixi

is valid for CROB.

Proof: sum all bilinear constraints with coefficients π (valid due to π ≥ 0)∑
i∈N

πi(pi + xiz) ≥
∑
i∈N

πiĉixi

⇔
∑
i∈N

πipi + z
∑
i∈N

πixi ≥
∑
i∈N

πiĉixi
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πiĉixi

is valid for CROB.

Proof: sum all bilinear constraints with coefficients π (valid due to π ≥ 0)∑
i∈N

πi(pi + xiz) ≥
∑
i∈N

πiĉixi
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Facet-Defining Recycled Inequalities

▶ recycled inequalities are often facet-defining for CROB

▶ for simplicity: assume ĉi > 0 for all i ∈ N

Theorem

Let
∑

i∈N πixi ≤ π0 be a recyclable inequality.

Let S = {i ∈ N |πi > 0} be its support
and F =

{
x ∈ CNOM

∣∣∑
i∈N πixi = π0

}
be its nominal face.

The corresponding recycled inequality is facet-defining for CROB if and only if

dim (projS (F )) = |S| − 1.

x1 + x2 ≤ 1
x1

x2

x3

project
x1

x2

p1 + p2 + z ≥ ĉ1x1 + ĉ2x2
is facet-defining
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Theorem

Let
∑

i∈N πixi ≤ π0 be a recyclable inequality. Let S = {i ∈ N |πi > 0} be its support

and F =
{
x ∈ CNOM

∣∣∑
i∈N πixi = π0

}
be its nominal face.

The corresponding recycled inequality is facet-defining for CROB if and only if

dim (projS (F )) = |S| − 1.

x1 + x2 ≤ 1
x1

x2

x3

project
x1

x2

p1 + p2 + z ≥ ĉ1x1 + ĉ2x2
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is facet-defining
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Facet-Defining Recycled Inequalities

Corollary

Assume that CNOM is full-dimensional. If
∑

i∈N πixi ≤ π0 is recyclable and
facet-defining for CNOM, then its recycled inequality is facet-defining for CROB.

▶ corollary can be generalized to problems with lower dimension

Observation

Dominated inequalities can also yield facet-defining recycled inequalities.

Robust Knapsack

capacity

▶ let
∑
i∈C

xi ≤ |C| − 1 be a minimal cover

inequality

▶ in general not facet-defining for knapsack

▶ but
∑
i∈C

pi + (|C| − 1)z ≥
∑
i∈C

ĉixi is always

facet-defining for robust knapsack
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C. Büsing Solving Robust Binary Optimization Problem with Budget Uncertainty 23



Facet-Defining Recycled Inequalities

Corollary

Assume that CNOM is full-dimensional. If
∑

i∈N πixi ≤ π0 is recyclable and
facet-defining for CNOM, then its recycled inequality is facet-defining for CROB.

▶ corollary can be generalized to problems with lower dimension

Observation

Dominated inequalities can also yield facet-defining recycled inequalities.

Robust Knapsack

capacity
▶ let

∑
i∈C

xi ≤ |C| − 1 be a minimal cover

inequality

▶ in general not facet-defining for knapsack

▶ but
∑
i∈C

pi + (|C| − 1)z ≥
∑
i∈C
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Computational Study: Bipartite Matching

▶ standard formulation + recycle constraints
∑

e∈δ(v) xe ≤ 1 for all nodes v

▶ 10 random instances each for different numbers of nodes n ∈ {50, 100, 150}
▶ closing integrality gap by ∼ 99% for 150 nodes

▶ ∼ 504-times faster for 100 nodes and ∼ 15-times faster for 150 nodes

▶ ∼ 22-times smaller primal-dual integral for 100 nodes and ∼ 4-times smaller for
150 nodes

robust standard formulation recycle constraints

nodes timeout time
P-D

int. gap timeout time
P-D

int. gap
integral integral

50 0 1.73 0.04 19.53% 0 0.48 0.04 0.33%
100 9 2269.14 3.49 22.82% 0 4.50 0.16 0.32%
150 7 2223.68 2.56 23.66% 0 150.40 0.59 0.27%
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Conclusion

Summary

▶ B&B for robust optimization based on strong
bilinear formulation

▶ uses many structural properties

▶ conducted extensive computational study

▶ B&B has significantly better performance
compared to literature

▶ insights useful for improving existing
approaches

Future Work

▶ evaluate for uncertain constraints

▶ generalizable to other robustness concepts(?)

Thank you for your attention!
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