

Solving Robust Binary Optimization Problem with Budget Uncertainty

Christina Büsing, Timo Gersing, Arie Koster

Seminar Combinatorial Optimization under uncertainty through robustness

C. Büsing

Solving Robust Binary Optimization Problem with Budget Uncertainty

1

1

Mixed Integer Program

$$\min c^{\top} x$$
$$Ax \ge b$$
$$x \in \{0, 1\}$$

C. Büsing

Mixed Integer Program

$$\min \frac{c^{\top} x}{Ax \ge b}$$
$$x \in \{0, 1\}$$

C. Büsing

Mixed Integer Program

$$\min c^{\top} x$$
$$Ax \ge b$$
$$x \in \{0, 1\}$$

Historical Data/Measurements

505160 1	6AUG2011:1	1-SM/ICD	SM-2KAMM	24AUG2012:1	24AUG2012:1	1,58246+12 0	1 11LST	5 Im Kalender	16AUG2011:	16AUG201
511769 1	7AUG2011:11	1-UNTERS	WDH	16AUG2012:0	16AUG2012.0	2,325E+11 1	1 I1ECHO	5 Im Kalender	17AUG2011:	17AUG201
564409 3	IOAUG2011:11	1-SM/ICD	SM-1KAMM8	28AUG2012:1	28AUG2012:1	3,7552E+12 1	1 11LST	5 Im Kalender	30AUG2011:	30AUG201
569745 3	1AUG2011:1	1-SM/ICD	SM-1KAMM	29AUG2012:	29AUG2012:1	7,2358E+12 E	1 11LST	5 Im Kalender	31AUG2011:	31AUG201
569745 3	1AUG2011:11	1-SM/ICD	SM-1KAMM8	29AUG2012:	29AUG2012:1	7,2358E+12 1	1 11LST	5 Im Kalender	31AUG2011:	31AUG201
569745 3	LAUG2011:1	1-SM/ICD	SM-1KAMM8	29AUG2012:1	29AUG2012:1	7,2358E+12 1	1 11LST	5 Im Kalender	31AUG2011:	31AUG201
644371 2	OSEP2011:1	1-UNTERS	WDH	17SEP2012-0	175EP2012:0	3,4235+12 1	1 IM1K	5 Stornierung	195EP2011:0	205EP201
644372.2	IOSEP2011:1	1-UNTERS	GKP+BGA+D	17SEP2012.0	175EP2012:0	3,423E+12 1	1 IM1K	5 Stornierung	195EP2011:0	205EP201
648823 2	95EP 2011:1-1	1-SM/ICD	SM-2KAMM8	265EP2012:1	265EP2012:1/	2.5708E+12 I	1 11LST	5 Im Kalender	195EP2011:1	295EP201
11316 0	MOCT2011:11	1-SM/ICD	SM-2KAMM	255EP2012:1	255EP2012:1	6,3114E+11 0	1 11LST	5 Im Kalender	04OCT2011:1	010CT201
43860 1	10CT2011:1	1-SM/ICD	SM-2KAMM8	06SEP2012:1	065EP2012:1-	3,9465E+12 1	1 11LST	5 Im Kalender	110CT2011:1	11OCT201
00872 1	40CT2011:11	1-SM/ICD	SM-1KAMM9	11/01/2012:14	11/01/2012:14	2.9754E+11 0	1 11LST	5 Im Kalender	140CT2011:1	14OCT201
33627 1	2DEC2011-0	1-SM/ICD	ICD-BIVENT	10AUG2012:	10AUG2012:1	1,44955+10 0	1 11LST	5 Stornierung	23AUG2011:	1206C201
34844 1	6DEC2011:1	1-SM/ICD	ICD-2KAMM	15JUN2012:1	15JUN2012:1	1,264E+12 1	1 11LST	5 Im Kalender	16DEC2011:1	16DEC201
945266 0	BNOV2011: 1	1-SM/ICD	SM-2KAMM9	27/01/2012:01	27JUL2012:08	1.2934E+12 0	1 11LST	5 Im Kalender	03NOV2011:	03NOV20
17375 2	70CT2011:11	MED1	HOLTERITAG	16JUL2012:11	16JUL2012:11	3,51750+12 0	1 11PO	10 Im Kalender	270CT2011:1	270CT201
317375 2	70CT2011:1	MED1	HOLTERSTAG	16/012012:10	16JUL2012:10	3.5175E+12 I	1 1190	10 Status über	270CT2011:1	27OCT201
47160 0	6FE82012:1	1-SM/ICD	ICD-1KAMM	130012012:10	13/012012:10	5.6679E+12 0	1 I1ECHO	5 Res. ROM/U	13JAN2012:1	06FEB201
12889 0	6JAN2012:1	1-ECHOKAR	TTE	23MAY20124	23MAY20123	3,9628+11 8	1 115CHO	10 Im Kalender	06JAN2012:1	05JAN203
12889 0	6JAN2012:1	1-ECHOKAR	TTE	23MAY20123	23MAY2012:1	3.962E+11 8	1 I1ECHO	10 Status über	06JAN20121	05JAN203
54641.0	6FE82012:10	1-SM/ICD	ICD-2KAMM	02AUG2012:	02AUG2012:0	3.0771E+12 0	1 (1LST	5 Im Kalender	06FEB2012:1	06FEB201
254641 0	67182012:1	1-SM/ICD	ICD-2KAMM	02AUG2012:0	02AUG2012.C	3.0771E+12	1 11LST	5 Stornierung	O6FEB2012-1	05FEB201

C. Büsing

Constraint 372

$$\begin{split} a^Tx &\equiv -15.79081x_{826} - 8.598819x_{827} - 1.88789x_{828} - 1.362417x_{829} \\ &\quad -1.526049x_{830} - 0.031883x_{849} - 28.725555x_{850} - 10.792065x_{851} \\ &\quad -0.19004x_{852} - 2.757176x_{853} - 12.290832x_{854} + 717.562256x_{855} \\ &\quad -0.057865x_{856} - 3.785417x_{857} - 78.30661x_{858} - 122.163055x_{859} \\ &\quad -6.46609x_{860} - 0.48371x_{861} - 0.615264x_{862} - 1.353783x_{863} \\ &\quad -84.644257x_{864} - 122.459045x_{865} - 43.15593x_{866} - 1.712592x_{870} \\ &\quad -0.401597x_{871} + x_{880} - 0.946049x_{898} - 0.946049x_{916} \\ &\geq b \equiv 23.387405 \end{split}$$

Constraint 372

$$\begin{split} a^T x &\equiv -15.79081 x_{826} - 8.598819 x_{827} - 1.88789 x_{828} - 1.362417 x_{829} \\ &\quad -1.526049 x_{830} - 0.031883 x_{849} - 28.725555 x_{850} - 10.792065 x_{851} \\ &\quad -0.19004 x_{852} - 2.757176 x_{853} - 12.290832 x_{854} + 717.562256 x_{855} \\ &\quad -0.057865 x_{856} - 3.785417 x_{857} - 78.30661 x_{858} - 122.163055 x_{859} \\ &\quad -6.46609 x_{860} - 0.48371 x_{861} - 0.615264 x_{862} - 1.353783 x_{863} \\ &\quad -84.644257 x_{864} - 122.459045 x_{865} - 43.15593 x_{866} - 1.712592 x_{870} \\ &\quad -0.401597 x_{871} + x_{880} - 0.946049 x_{898} - 0.946049 x_{916} \\ &\geq b \equiv 23.387405 \end{split}$$

$x_{826}^* = 255.6112787181108$	$x_{827}^* = 6240.488912232100$
$x_{828}^* = 3624.613324098961$	$x_{829}^* = 18.20205065283259$
$x_{849}^* = 174397.0389573037$	$x_{870}^* = 14250.00176680900$
$x_{871}^* = 25910.00731692178$	$x_{880}^* = 104958.3199274139$

Constraint 372

$$\begin{split} a^T x &\equiv -15.79081 x_{826} - 8.598819 x_{827} - 1.88789 x_{828} - 1.362417 x_{829} \\ &\quad -1.526049 x_{830} - 0.031883 x_{849} - 28.725555 x_{850} - 10.792065 x_{851} \\ &\quad -0.19004 x_{852} - 2.757176 x_{853} - 12.290832 x_{854} + 717.562256 x_{855} \\ &\quad -0.057865 x_{856} - 3.785417 x_{857} - 78.30661 x_{858} - 122.163055 x_{859} \\ &\quad -6.46609 x_{860} - 0.48371 x_{861} - 0.615264 x_{862} - 1.353783 x_{863} \\ &\quad -84.644257 x_{864} - 122.459045 x_{865} - 43.15593 x_{866} - 1.712592 x_{870} \\ &\quad -0.401597 x_{871} + x_{880} - 0.946049 x_{898} - 0.946049 x_{916} \\ &\geq b \equiv 23.387405 \end{split}$$

Optimal "classical" solution

$x_{826}^* = 255.6112787181108$	$x_{827}^* = 6240.488912232100$
$x_{828}^* = 3624.613324098961$	$x_{829}^* = 18.20205065283259$
$x_{849}^* = 174397.0389573037$	$x_{870}^* = 14250.00176680900$
$x_{871}^* = 25910.00731692178$	$x_{880}^* = 104958.3199274139$

Can the coefficients be known with such a high accuracy?

Constraint 372

$$\begin{split} a^Tx &\equiv -15.79081x_{826} - 8.598819x_{827} - 1.88789x_{828} - 1.362417x_{829} \\ &\quad -1.526049x_{830} - 0.031883x_{849} - 28.725555x_{850} - 10.792065x_{851} \\ &\quad -0.19004x_{852} - 2.757176x_{853} - 12.290832x_{854} + 717.562256x_{855} \\ &\quad -0.057865x_{856} - 3.785417x_{857} - 78.30661x_{858} - 122.163055x_{859} \\ &\quad -6.46609x_{860} - 0.48371x_{861} - 0.615264x_{862} - 1.353783x_{863} \\ &\quad -84.644257x_{864} - 122.459045x_{865} - 43.15593x_{866} - 1.712592x_{870} \\ &\quad -0.401597x_{871} + x_{880} - 0.946049x_{898} - 0.946049x_{916} \\ &\geq b \equiv 23.387405 \end{split}$$

$x_{826}^* = 255.6112787181108$	$x_{827}^* = 6240.488912232100$
$x_{828}^* = 3624.613324098961$	$x_{829}^* = 18.20205065283259$
$x_{849}^* = 174397.0389573037$	$x_{870}^* = 14250.00176680900$
$x_{871}^* = 25910.00731692178$	$x_{880}^* = 104958.3199274139$

- Can the coefficients be known with such a high accuracy?
- Assume 0.1%-accurate approximation

Constraint 372

$$\begin{split} a^T x &\equiv -15.79081 x_{826} - 8.598819 x_{827} - 1.88789 x_{828} - 1.362417 x_{829} \\ &\quad -1.526049 x_{830} - 0.031883 x_{849} - 28.725555 x_{850} - 10.792065 x_{851} \\ &\quad -0.19004 x_{852} - 2.757176 x_{853} - 12.290832 x_{854} + 717.562256 x_{855} \\ &\quad -0.057865 x_{856} - 3.785417 x_{857} - 78.30661 x_{858} - 122.163055 x_{859} \\ &\quad -6.46609 x_{860} - 0.48371 x_{861} - 0.615264 x_{862} - 1.353783 x_{863} \\ &\quad -84.644257 x_{864} - 122.459045 x_{865} - 43.15593 x_{866} - 1.712592 x_{870} \\ &\quad -0.401597 x_{871} + x_{880} - 0.946049 x_{898} - 0.946049 x_{916} \\ &\geq b \equiv 23.387405 \end{split}$$

$x_{826}^* = 255.6112787181108$	$x_{827}^* = 6240.488912232100$
$x_{828}^* = 3624.613324098961$	$x_{829}^* = 18.20205065283259$
$x_{849}^* = 174397.0389573037$	$x_{870}^* = 14250.00176680900$
$x_{871}^* = 25910.00731692178$	$x_{880}^* = 104958.3199274139$

- Can the coefficients be known with such a high accuracy?
- Assume 0.1%-accurate approximation
- Worst violation: 450%

Constraint 372

$$\begin{split} a^T x &\equiv -15.79081 x_{826} - 8.598819 x_{827} - 1.88789 x_{828} - 1.362417 x_{829} \\ &\quad -1.526049 x_{830} - 0.031883 x_{849} - 28.725555 x_{850} - 10.792065 x_{851} \\ &\quad -0.19004 x_{852} - 2.757176 x_{853} - 12.290832 x_{854} + 717.562256 x_{855} \\ &\quad -0.057865 x_{856} - 3.785417 x_{857} - 78.30661 x_{858} - 122.163055 x_{859} \\ &\quad -6.46609 x_{860} - 0.48371 x_{861} - 0.615264 x_{862} - 1.353783 x_{863} \\ &\quad -84.644257 x_{864} - 122.459045 x_{865} - 43.15593 x_{866} - 1.712592 x_{870} \\ &\quad -0.401597 x_{871} + x_{880} - 0.946049 x_{898} - 0.946049 x_{916} \\ &\geq b \equiv 23.387405 \end{split}$$

$x_{826}^* = 255.6112787181108$	$x_{827}^* = 6240.488912232100$
$x_{828}^* = 3624.613324098961$	$x_{829}^* = 18.20205065283259$
$x_{849}^* = 174397.0389573037$	$x_{870}^* = 14250.00176680900$
$x_{871}^* = 25910.00731692178$	$x_{880}^* = 104958.3199274139$

- Can the coefficients be known with such a high accuracy?
- Assume 0.1%-accurate approximation
- Worst violation: 450%
- Random perturbation: $(1 + \xi_j)a_j$

Constraint 372

$$\begin{split} a^T x &\equiv -15.79081 x_{826} - 8.598819 x_{827} - 1.88789 x_{828} - 1.362417 x_{829} \\ &\quad -1.526049 x_{830} - 0.031883 x_{849} - 28.725555 x_{850} - 10.792065 x_{851} \\ &\quad -0.19004 x_{852} - 2.757176 x_{853} - 12.290832 x_{854} + 717.562256 x_{855} \\ &\quad -0.057865 x_{856} - 3.785417 x_{857} - 78.30661 x_{858} - 122.163055 x_{859} \\ &\quad -6.46609 x_{860} - 0.48371 x_{861} - 0.615264 x_{862} - 1.353783 x_{863} \\ &\quad -84.644257 x_{864} - 122.459045 x_{865} - 43.15593 x_{866} - 1.712592 x_{870} \\ &\quad -0.401597 x_{871} + x_{880} - 0.946049 x_{898} - 0.946049 x_{916} \\ &\geq b \equiv 23.387405 \end{split}$$

Optimal "classical" solution

$x_{826}^* = 255.6112787181108$	$x_{827}^* = 6240.488912232100$
$x_{828}^* = 3624.613324098961$	$x_{829}^* = 18.20205065283259$
$x_{849}^* = 174397.0389573037$	$x_{870}^* = 14250.00176680900$
$x_{871}^* = 25910.00731692178$	$x_{880}^* = 104958.3199274139$

- Can the coefficients be known with such a high accuracy?
- Assume 0.1%-accurate approximation
- ▶ Worst violation: 450%
- Random perturbation: $(1 + \xi_j)a_j$
- Relative violation:

$$V = \frac{b - \tilde{a}^T x^*}{b} \times 100\%$$

C. Büsing

Constraint 372

$$\begin{split} a^T x &\equiv -15.79081 x_{826} - 8.598819 x_{827} - 1.88789 x_{828} - 1.362417 x_{829} \\ &\quad -1.526049 x_{830} - 0.031883 x_{849} - 28.725555 x_{850} - 10.792065 x_{851} \\ &\quad -0.19004 x_{852} - 2.757176 x_{853} - 12.290832 x_{854} + 717.562256 x_{855} \\ &\quad -0.057865 x_{856} - 3.785417 x_{857} - 78.30661 x_{858} - 122.163055 x_{859} \\ &\quad -6.46609 x_{860} - 0.48371 x_{861} - 0.615264 x_{862} - 1.353783 x_{863} \\ &\quad -84.644257 x_{864} - 122.459045 x_{865} - 43.15593 x_{866} - 1.712592 x_{870} \\ &\quad -0.401597 x_{871} + x_{880} - 0.946049 x_{898} - 0.946049 x_{916} \\ &\geq b \equiv 23.387405 \end{split}$$

$x_{826}^* = 255.6112787181108$	$x_{827}^* = 6240.488912232100$
$x_{828}^* = 3624.613324098961$	$x_{829}^* = 18.20205065283259$
$x_{849}^* = 174397.0389573037$	$x_{870}^* = 14250.00176680900$
$x_{871}^* = 25910.00731692178$	$x_{880}^* = 104958.3199274139$

- Can the coefficients be known with such a high accuracy?
- Assume 0.1%-accurate approximation
- Worst violation: 450%
- **•** Random perturbation: $(1 + \xi_j)a_j$
- Relative violation:

$$V = \frac{b - \tilde{a}^T x^*}{b} \times 100\%$$

•
$$\mathsf{Prob}\{V > 0\} = 0.5$$

- $Prob\{V > 150\%\} = 0.18$
- Mean(V) = 125%

Constraint 372

$$\begin{split} a^T x &\equiv -15.79081 x_{826} - 8.598819 x_{827} - 1.88789 x_{828} - 1.362417 x_{829} \\ &\quad -1.526049 x_{830} - 0.031883 x_{849} - 28.725555 x_{850} - 10.792065 x_{851} \\ &\quad -0.19004 x_{852} - 2.757176 x_{853} - 12.290832 x_{854} + 717.562256 x_{855} \\ &\quad -0.057865 x_{856} - 3.785417 x_{857} - 78.30661 x_{858} - 122.163055 x_{859} \\ &\quad -6.46609 x_{860} - 0.48371 x_{861} - 0.615264 x_{862} - 1.353783 x_{863} \\ &\quad -84.644257 x_{864} - 122.459045 x_{865} - 43.15593 x_{866} - 1.712592 x_{870} \\ &\quad -0.401597 x_{871} + x_{880} - 0.946049 x_{898} - 0.946049 x_{916} \\ &\geq b \equiv 23.387405 \end{split}$$

Optimal "classical" solution

$x_{826}^* = 255.6112787181108$	$x_{827}^* = 6240.488912232100$
$x_{828}^* = 3624.613324098961$	$x_{829}^* = 18.20205065283259$
$x_{849}^* = 174397.0389573037$	$x_{870}^* = 14250.00176680900$
$x_{871}^* = 25910.00731692178$	$x_{880}^* = 104958.3199274139$

- Can the coefficients be known with such a high accuracy?
- Assume 0.1%-accurate approximation
- Worst violation: 450%
- Random perturbation: $(1 + \xi_j)a_j$
- Relative violation:

$$V = \frac{b - \tilde{a}^T x^*}{b} \times 100\%$$

•
$$\mathsf{Prob}\{V > 0\} = 0.5$$

- ▶ $\mathsf{Prob}\{V > 150\%\} = 0.18$
- Mean(V) = 125%

Robust optimization: robust solutions remain (almost) always feasible

C. Büsing

Constraint 372

$$\begin{split} a^T x &\equiv -15.79081 x_{826} - 8.598819 x_{827} - 1.88789 x_{828} - 1.362417 x_{829} \\ &\quad -1.526049 x_{830} - 0.031883 x_{849} - 28.725555 x_{850} - 10.792065 x_{851} \\ &\quad -0.19004 x_{852} - 2.757176 x_{853} - 12.290832 x_{854} + 717.562256 x_{855} \\ &\quad -0.057865 x_{856} - 3.785417 x_{857} - 78.30661 x_{858} - 122.163055 x_{859} \\ &\quad -6.46609 x_{860} - 0.48371 x_{861} - 0.615264 x_{862} - 1.353783 x_{863} \\ &\quad -84.644257 x_{864} - 122.459045 x_{865} - 43.15593 x_{866} - 1.712592 x_{870} \\ &\quad -0.401597 x_{871} + x_{880} - 0.946049 x_{898} - 0.946049 x_{916} \\ &\geq b \equiv 23.387405 \end{split}$$

Optimal "classical" solution

$x_{826}^* = 255.6112787181108$	$x_{827}^* = 6240.488912232100$
$x_{828}^* = 3624.613324098961$	$x_{829}^* = 18.20205065283259$
$x_{849}^* = 174397.0389573037$	$x_{870}^* = 14250.00176680900$
$x_{871}^* = 25910.00731692178$	$x_{880}^* = 104958.3199274139$

- Can the coefficients be known with such a high accuracy?
- Assume 0.1%-accurate approximation
- Worst violation: 450%
- Random perturbation: $(1 + \xi_j)a_j$
- Relative violation:

$$V = \frac{b - \tilde{a}^T x^*}{b} \times 100\%$$

•
$$\mathsf{Prob}\{V > 0\} = 0.5$$

- ▶ $\mathsf{Prob}\{V > 150\%\} = 0.18$
- Mean(V) = 125%
- Robust optimization: robust solutions remain (almost) always feasible
- Usually still very good objective value

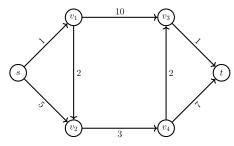
C. Büsing

$$\min\left\{\max_{S\in\mathcal{S}}\sum_{i=1}^{n}c_{i}^{S}x_{i}\mid Ax\leq b,x\in\{0,1\}^{n}\right\}$$

Given a set of feasible solution $X = \{x \in \{0,1\}^n \mid Ax \leq b\}$. Let S be a set of scenarios defining cost functions $c^S : N \to \mathbb{R}$, $S \in S$. A robust optimial solution x^* is a feasible solution minimizing the worst case costs, i.e., solve

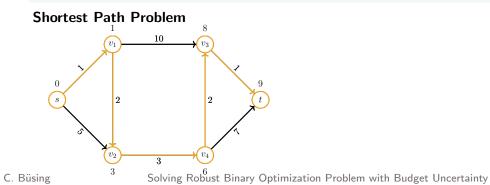
$$\min\left\{\max_{S\in\mathcal{S}}\sum_{i=1}^{n}c_{i}^{S}x_{i}\mid Ax\leq b,x\in\{0,1\}^{n}\right\}$$

Shortest Path Problem

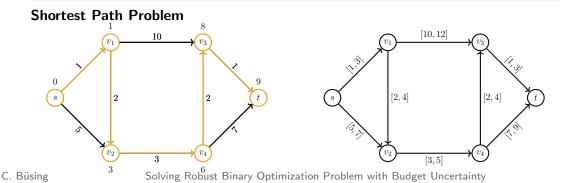


C. Büsing

$$\min\left\{\max_{S\in\mathcal{S}}\sum_{i=1}^{n}c_{i}^{S}x_{i}\mid Ax\leq b,x\in\{0,1\}^{n}\right\}$$



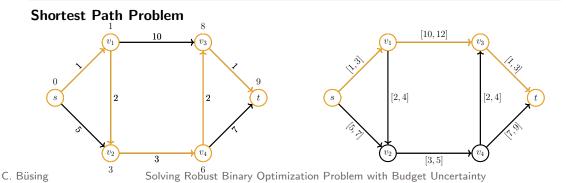
$$\min\left\{\max_{S\in\mathcal{S}}\sum_{i=1}^{n}c_{i}^{S}x_{i}\mid Ax\leq b,x\in\{0,1\}^{n}\right\}$$



3

Definition (Robust Binary Programming with cost uncertainties)

$$\min\left\{\max_{S\in\mathcal{S}}\sum_{i=1}^{n}c_{i}^{S}x_{i}\mid Ax\leq b,x\in\{0,1\}^{n}\right\}$$



3

Definition (Robust Binary Programming with cost uncertainties)

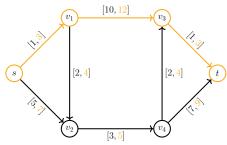
$$\min\left\{\max_{S\in\mathcal{S}}\sum_{i=1}^{n}c_{i}^{S}x_{i}\mid Ax\leq b,x\in\{0,1\}^{n}\right\}$$



Given a set of feasible solution $\mathcal{X} = \{x \in \{0,1\}^n \mid Ax \leq b\}$, costs $c : N \to \mathbb{R}$ and deviations $\hat{c} : N \to \mathbb{R}$ and a parameter $\Gamma \in \mathbb{N}$. An optimal solution solves

$$\min\left\{\max_{S\subseteq N, |S|\leq \Gamma}\sum_{i\in S}\hat{c}_i x_i + \sum_{i=1}^n c_i x_i \mid Ax \le b, x \in \{0,1\}^n\right\}$$

Shortest Path Problem

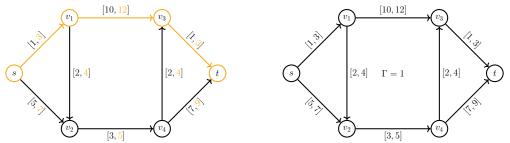


C. Büsing

Given a set of feasible solution $\mathcal{X} = \{x \in \{0,1\}^n \mid Ax \leq b\}$, costs $c : N \to \mathbb{R}$ and deviations $\hat{c} : N \to \mathbb{R}$ and a parameter $\Gamma \in \mathbb{N}$. An optimal solution solves

$$\min\left\{\max_{S\subseteq N, |S|\leq \Gamma}\sum_{i\in S}\hat{c}_i x_i + \sum_{i=1}^n c_i x_i \mid Ax \le b, x \in \{0,1\}^n\right\}$$

Shortest Path Problem

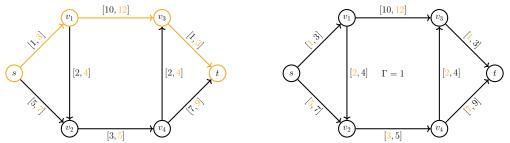


C. Büsing

Given a set of feasible solution $\mathcal{X} = \{x \in \{0,1\}^n \mid Ax \leq b\}$, costs $c : N \to \mathbb{R}$ and deviations $\hat{c} : N \to \mathbb{R}$ and a parameter $\Gamma \in \mathbb{N}$. An optimal solution solves

$$\min\left\{\max_{S\subseteq N, |S|\leq \Gamma}\sum_{i\in S}\hat{c}_i x_i + \sum_{i=1}^n c_i x_i \mid Ax \le b, x \in \{0,1\}^n\right\}$$

Shortest Path Problem

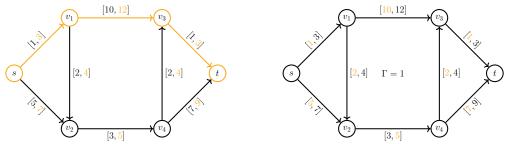


C. Büsing

Given a set of feasible solution $\mathcal{X} = \{x \in \{0,1\}^n \mid Ax \leq b\}$, costs $c : N \to \mathbb{R}$ and deviations $\hat{c} : N \to \mathbb{R}$ and a parameter $\Gamma \in \mathbb{N}$. An optimal solution solves

$$\min\left\{\max_{S\subseteq N, |S|\leq \Gamma}\sum_{i\in S}\hat{c}_i x_i + \sum_{i=1}^n c_i x_i \mid Ax \le b, x \in \{0,1\}^n\right\}$$

Shortest Path Problem



C. Büsing

Given a set of feasible solution $\mathcal{X} = \{x \in \{0,1\}^n \mid Ax \leq b\}$, costs $c : N \to \mathbb{R}$ and deviations $\hat{c} : N \to \mathbb{R}$ and a parameter $\Gamma \in \mathbb{N}$. Both problems are equivalent

Given a set of feasible solution $\mathcal{X} = \{x \in \{0,1\}^n \mid Ax \leq b\}$, costs $c : N \to \mathbb{R}$ and deviations $\hat{c} : N \to \mathbb{R}$ and a parameter $\Gamma \in \mathbb{N}$. Both problems are equivalent

Proof: max

$$\sum_{i \in N} \hat{c}_i x_i y_i$$
$$\sum_{i \in N} y_i \le \Gamma$$
$$y \in \{0, 1\}^n$$

Given a set of feasible solution $\mathcal{X} = \{x \in \{0,1\}^n \mid Ax \leq b\}$, costs $c : N \to \mathbb{R}$ and deviations $\hat{c} : N \to \mathbb{R}$ and a parameter $\Gamma \in \mathbb{N}$. Both problems are equivalent

Proof: max

$$\sum_{i \in N} \hat{c}_i x_i y_i$$
$$\sum_{i \in N} y_i \le \Gamma$$
$$y \in \{0, 1\}^n$$

Totally unimodular

C. Büsing

Given a set of feasible solution $\mathcal{X} = \{x \in \{0,1\}^n \mid Ax \leq b\}$, costs $c : N \to \mathbb{R}$ and deviations $\hat{c} : N \to \mathbb{R}$ and a parameter $\Gamma \in \mathbb{N}$. Both problems are equivalent

$$\begin{array}{c|c|c|c|c|c|c|} \min & \max_{S \subseteq N, |S| \le \Gamma} \sum_{i \in S} \hat{c}_i x_i + \sum_{i \in N} c_i x_i & \min & \Gamma z + \sum_{i \in N} p_i + \sum_{i \in N} c_i x_i \\ \text{s.t.} & Ax \ge b & \\ & x \in \{0,1\}^n & & \text{s.t.} & Ax \ge b \\ & & x \in \{0,1\}^n & & z + p_i \ge \hat{c}_i x_i & \forall i \in N \\ & & p \in \mathbb{R}^n_{\ge 0}, z \ge 0, x \in \{0,1\}^n \end{array}$$

Proof: max

$$\sum_{i \in N} \hat{c}_i x_i y_i$$
$$\sum_{i \in N} y_i \le \Gamma$$
$$0 \le y_i \le 1$$

Totally unimodular

C. Büsing

Given a set of feasible solution $\mathcal{X} = \{x \in \{0,1\}^n \mid Ax \leq b\}$, costs $c : N \to \mathbb{R}$ and deviations $\hat{c} : N \to \mathbb{R}$ and a parameter $\Gamma \in \mathbb{N}$. Both problems are equivalent

$$\begin{array}{c|c|c|c|c|c|c|} \min & \max_{S \subseteq N, |S| \le \Gamma} \sum_{i \in S} \hat{c}_i x_i + \sum_{i \in N} c_i x_i & \min & \Gamma z + \sum_{i \in N} p_i + \sum_{i \in N} c_i x_i \\ \text{s.t.} & Ax \ge b & \\ & x \in \{0,1\}^n & & \text{s.t.} & Ax \ge b \\ & & x \in \{0,1\}^n & & z + p_i \ge \hat{c}_i x_i & \forall i \in N \\ & & p \in \mathbb{R}^n_{\ge 0}, z \ge 0, x \in \{0,1\}^n \end{array}$$

Proof: max

$$\sum_{i \in N} \hat{c}_i x_i y_i$$
$$\sum_{i \in N} y_i \le \Gamma$$
$$0 \le y_i \le 1$$

Totally unimodular

C. Büsing

Given a set of feasible solution $\mathcal{X} = \{x \in \{0,1\}^n \mid Ax \leq b\}$, costs $c : N \to \mathbb{R}$ and deviations $\hat{c} : N \to \mathbb{R}$ and a parameter $\Gamma \in \mathbb{N}$. Both problems are equivalent

Proof: max

$$\sum_{i \in N} \hat{c}_i x_i y_i$$
$$\sum_{i \in N} y_i \le \Gamma$$
$$0 \le y_i \le 1$$

Totally unimodular

Dualize

C. Büsing

Given a set of feasible solution $\mathcal{X} = \{x \in \{0,1\}^n \mid Ax \leq b\}$, costs $c : N \to \mathbb{R}$ and deviations $\hat{c} : N \to \mathbb{R}$ and a parameter $\Gamma \in \mathbb{N}$. Both problems are equivalent

Totally unimodular

Dualize

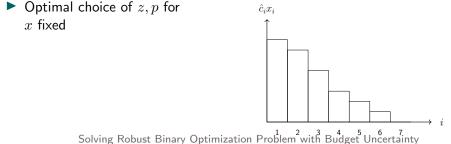
C. Büsing

Given a set of feasible solution $\mathcal{X} = \{x \in \{0,1\}^n \mid Ax \leq b\}$, costs $c : N \to \mathbb{R}$ and deviations $\hat{c}: N \to \mathbb{R}$ and a parameter $\Gamma \in \mathbb{N}$. Both problems are equivalent

$$\min \max_{\substack{S \subseteq N, |S| \le \Gamma}} \sum_{i \in S} \hat{c}_i x_i + \sum_{i \in N} c_i x_i$$

s.t.
$$Ax \ge b$$
$$x \in \{0, 1\}^n$$

$$\begin{aligned} \min & \Gamma z + \sum_{i \in N} p_i + \sum_{i \in N} c_i x_i \\ \text{s.t.} & Ax \geq b \\ & z + p_i \geq \hat{c}_i x_i \quad \forall i \in N \\ & p \in \mathbb{R}^n_{\geq 0}, z \geq 0, x \in \{0,1\}^n \end{aligned}$$



C. Büsing

6

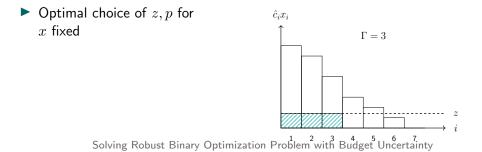
Given a set of feasible solution $\mathcal{X} = \{x \in \{0,1\}^n \mid Ax \leq b\}$, costs $c : N \to \mathbb{R}$ and deviations $\hat{c} : N \to \mathbb{R}$ and a parameter $\Gamma \in \mathbb{N}$. Both problems are equivalent

$$\min \max_{\substack{S \subseteq N, |S| \le \Gamma}} \sum_{i \in S} \hat{c}_i x_i + \sum_{i \in N} c_i x_i$$
s.t.
$$Ax \ge b$$

$$x \in \{0, 1\}^n$$

min
$$\Gamma z + \sum_{i \in N} p_i + \sum_{i \in N} c_i x_i$$

i.t.
$$Ax \ge b$$
$$z + p_i \ge \hat{c}_i x_i \quad \forall i \in N$$
$$p \in \mathbb{R}^n_{\ge 0}, z \ge 0, x \in \{0, 1\}^n$$



C. Büsing

Given a set of feasible solution $\mathcal{X} = \{x \in \{0,1\}^n \mid Ax \leq b\}$, costs $c : N \to \mathbb{R}$ and deviations $\hat{c} : N \to \mathbb{R}$ and a parameter $\Gamma \in \mathbb{N}$. Both problems are equivalent

$$\min \max_{\substack{S \subseteq N, |S| \le \Gamma}} \sum_{i \in S} \hat{c}_i x_i + \sum_{i \in N} c_i x_i$$
s.t.
$$Ax \ge b$$

$$x \in \{0, 1\}^n$$

min
$$\Gamma z + \sum_{i \in N} p_i + \sum_{i \in N} c_i x_i$$

i.t.
$$Ax \ge b$$
$$z + p_i \ge \hat{c}_i x_i \quad \forall i \in N$$
$$p \in \mathbb{R}^n_{\ge 0}, z \ge 0, x \in \{0, 1\}^n$$

• Optimal choice of
$$z, p$$
 for
 x fixed

$$r = 3$$

$$p_i = (\hat{c}_i x_i - z)^+$$

C. Büsing

Solving Robust Binary Optimization Problem² with Budget⁵ Uncertainty

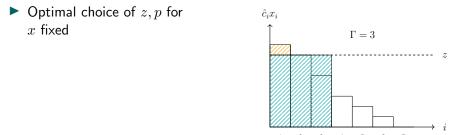
Given a set of feasible solution $\mathcal{X} = \{x \in \{0,1\}^n \mid Ax \leq b\}$, costs $c : N \to \mathbb{R}$ and deviations $\hat{c} : N \to \mathbb{R}$ and a parameter $\Gamma \in \mathbb{N}$. Both problems are equivalent

$$\min \max_{\substack{S \subseteq N, |S| \le \Gamma}} \sum_{i \in S} \hat{c}_i x_i + \sum_{i \in N} c_i x_i$$
s.t.
$$Ax \ge b$$

$$x \in \{0, 1\}^n$$

min
$$\Gamma z + \sum_{i \in N} p_i + \sum_{i \in N} c_i x_i$$

i.t.
$$Ax \ge b$$
$$z + p_i \ge \hat{c}_i x_i \quad \forall i \in N$$
$$p \in \mathbb{R}^n_{>0}, z \ge 0, x \in \{0, 1\}^n$$



C. Büsing

Theorem (Bertsimas & Sim 2004)

Given a set of feasible solution $\mathcal{X} = \{x \in \{0,1\}^n \mid Ax \leq b\}$, costs $c : N \to \mathbb{R}$ and deviations $\hat{c} : N \to \mathbb{R}$ and a parameter $\Gamma \in \mathbb{N}$. Both problems are equivalent

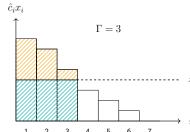
$$\min \max_{\substack{S \subseteq N, |S| \le \Gamma}} \sum_{i \in S} \hat{c}_i x_i + \sum_{i \in N} c_i x_i$$
s.t.
$$Ax \ge b$$

$$x \in \{0, 1\}^n$$

min
$$\Gamma z + \sum_{i \in N} p_i + \sum_{i \in N} c_i x_i$$

i.t.
$$Ax \ge b$$
$$z + p_i \ge \hat{c}_i x_i \quad \forall i \in N$$
$$p \in \mathbb{R}^n_{>0}, z \ge 0, x \in \{0, 1\}^n$$

- Optimal choice of z, p for x fixed
- z optimal between Γ and Γ + 1 largest value ĉ_ix_i



C. Büsing

Theorem (Bertsimas & Sim 2004)

Given a set of feasible solution $\mathcal{X} = \{x \in \{0,1\}^n \mid Ax \leq b\}$, costs $c : N \to \mathbb{R}$ and deviations $\hat{c} : N \to \mathbb{R}$ and a parameter $\Gamma \in \mathbb{N}$. Both problems are equivalent

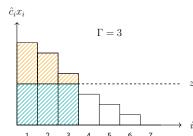
$$\min \max_{\substack{S \subseteq N, |S| \le \Gamma}} \sum_{i \in S} \hat{c}_i x_i + \sum_{i \in N} c_i x_i$$
s.t.
$$Ax \ge b$$

$$x \in \{0, 1\}^n$$

min
$$\Gamma z + \sum_{i \in N} p_i + \sum_{i \in N} c_i x_i$$

i.t.
$$Ax \ge b$$
$$z + p_i \ge \hat{c}_i x_i \quad \forall i \in N$$
$$p \in \mathbb{R}^n_{>0}, z \ge 0, x \in \{0, 1\}^n$$

- Optimal choice of z, p for x fixed
- z optimal between Γ and Γ + 1 largest value ĉ_ix_i
- We pay the Γ largest values ĉ_ix_i



C. Büsing

 compact formulation, no use of big M

- compact formulation, no use of big M
- let's solve some problems!

Practical Performance

7

	1	Cuts/								
	Node	Left	Objective	IInf	Best	Integer	Best	Bound	ItCnt	Gap
	23720047	15197259	11719,	6862	20	11606,00	000	12288,	1353 5505746	7 5,88%
	23770901	l 15226459	11828,	1686	23	11606,00	000	12287,	7700 5518096	7 5,87%
	23821565	5 15255529	12011,	4041	24	11606,00	000	12287,	4030 55303333	1 5,87%
	23871269	9 15283781	11783,	7154	22	11606,00	000	12287,	0473 55424214	4 5,87%
	Elapsed t	ime = 343	4,41 sec.	5979817	7,73 t	icks, tree	= 33	53,00 M	B, solutions	= 12
compact formulation,	Nodefile	size = 13	05,88 MB 7	27,49 №	1B aft	er compres	sion			
C L	23922166	5 15312936	12191,	2914	28	11606,00	000	12286,	6809 55547450	0 5,86%
no use of big M	23972875	5 15342043	12200,	0047	28	11606,00	000	12286,	3216 55668913	3 5,86%
_	24023053	3 15370543	11736,	4889	21	11606,00	000	12285,	9418 55790174	4 5,86%
	24073375	5 15399019	12100,	5997	25	11606,00	000	12285,	5821 5591249	5 5,86%
	24124016	5 15427933	12185,	6295	27	11606,00	000	12285,	2237 56034120	0 5,85%
let's solve some	24174475	5 15456520	12076,	8979	25	11606,00	000	12284,	8592 56156283	3 5,85%
	24223910) 15484613	11936,	4399	23	11606,00	000	12284,	4984 56276599	9 5,85%
problems!	24273972	2 15512958	11751,	6692	24	11606,00	000	12284,	1408 56398555	2 5,84%
presidenter	24324148	3 15541333	11929,	2290	23	11606,00	000	12283,	7841 56521083	3 5,84%
	24374451	L 15569768	12255,	0014	27	11606,00	000	12283,	4225 56644319	9 5,84%
	Elapsed t	cime = 352	8,01 sec.	6132528	3,45 t	cicks, tree	e = 34	08,61 M	B, solutions	= 12
robust knapsack:	Nodefile	size = 13	60,88 MB 7	55,91 №	1B aft	er compres	sion			
robust knapsack.	24424125	5 15598043	11993,	2112	23	11606,00	000	12283,	0698 56764602	2 5,83%
	24475158	3 15626928	12240,	6841	27	11606,00	000	12282,	7013 56887548	B 5,83%
	24526113	3 15655874	12232,	6254	27	11606,00	000	12282,	3386 57011130	0 5,83%
	24576245	5 15684253	12236,	5555	30	11606,00	000	12281,	9808 57133348	8 5,82%
	24625778	3 15712276	cu	toff		11606,00	000	12281,	6332 57253146	6 5,82%
	24676376	3 15740977	11992,	7508	26	11606,00	000	12281,	2759 57374978	8 5,82%
	24726652	2 15769305	12240,	2652	28	11606,00	000	12280,	9179 5749690	1 5,82%
	24777038	3 15797704	11615,	6468	22	11606,00	000	12280,	5627 5761842	1 5,81%
	24827584	15826342	12045,	1031	24	11606,00	000	12280,	2089 57740203	1 5,81%
	24877740	15854780	cu	toff		11606,00	000	12279,	8571 5786064	5 5,81%
								64,00 M	lB, solutions	= 12
	Nodefile	size = 14	16,87 MB 7	84,63 M	1B aft	cer compres	sion			
C. Büsing Solving Ro	obust Bin	ary Opti	mization	Probl	em \	with Budg	get U	Incerta	ainty	

Practical Performance

7

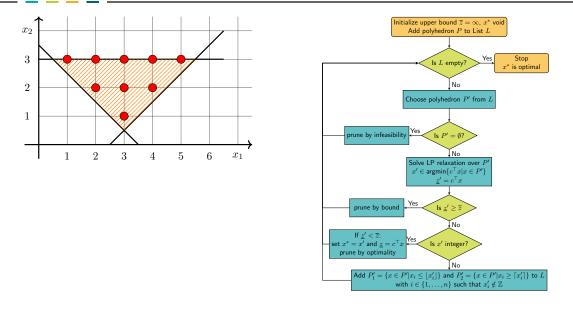
	Nodes				Cuts/							
	Node	Left	Objective	IInf	Best	Integer	Best	Bound	ItCnt	Gap		
	23720047	15197259	9 11719	6862	20	11606,0	000	12288,	1353 550574	167 5,88		
	23770901	15226459	9 11828	1686	23	11606,0	000	12287,	7700 551809	967 5,87		
	23821565	5 15255529	9 12011	,4041	24	11606,0	000	12287,4	1030 55303	331 5,87		
	23871269	1528378	11783	7154	22	11606,0	000	12287,0	0473 554242	214 5,87		
	Elapsed t	ime = 343	34,41 sec.	597981	7,73	ticks, tre	e = 33	53,00 MI	3, solution	ns = 12		
compact formulation,	Nodefile	size = 13	305,88 MB '	727,49	MB af	ter compre	ssion					
	23922166	5 15312936	5 12191	,2914	28	11606,0	000	12286,0	6809 555474			
no use of big M	23972875	15342043	3 12200	,0047	28	11606,0	000	12286,3	3216 556689	913 5,86		
	24023053	15370543	3 11736	4889	21	11606,0	000	12285,9	9418 55790:	L74 5,86		
	24073375	5 15399019	9 12100	5997	25	11606,0	000	12285,	5821 559124	195 5,86		
	24124016	5 15427933	3 12185	6295	27	11606,0	000	12285,	2237 56034	L20 5,85		
let's solve some	24174475	5 15456520	12076	8979	25	11606,0	000	12284,8	3592 561562	283 5,85		
	24223910	15484613	3 11936	4399	23	11606,0	000	12284,4	1984 56276	599 5,85		
problems!	24273972	2 15512958	3 11751	6692	24	11606,0	000	12284,	L408 56398	552 5,84		
[24324148	3 15541333	3 11929	2290	23	11606,0	000	12283,	7841 565210	083 5,84		
	24374451	15569768	3 12255	,0014	27	11606,0	000	12283,4	1225 566443	319 5,84		
	Elapsed t	ime = 352	28,01 sec.	613252	8,45	ticks, tre	e = 34	08,61 M	3, solution	ns = 12		
robust knapsack:	Nodefile	size = 13	360,88 MB '	755,91	MB af	ter compre	ssion					
F TODUSE KITAPSACK.	24424125	5 15598043	3 11993	,2112	23	11606,0	000	12283,0	0698 567646	502 5,83		
	24475158	3 15626928	3 12240	6841	27	11606,0	000	12282,	7013 56887	548 5,83		
	24526113	3 15655874	12232	6254	27	11606,0	000	12282,3	3386 57011:	L30 5,83		
	24576245	5 15684253	3 12236	5555	30	11606,0	000	12281,9	9808 571333	348 5,82		
	24625778	3 15712276	3 c1	itoff		11606,0	000	12281,0	3332 57253	L46 5,82		
	24676376	5 15740977	/ 11992	7508	26	11606,0	000	12281,2	2759 573749	978 5,82		
	24726652	2 15769305	5 12240	2652	28	11606,0	000	12280,9	9179 574969	901 5,82		
	24777038	3 15797704	11615	6468	22	11606,0	000	12280,	5627 576184	121 5,81		
	24827584	15826342	2 12045	1031	24	11606,0	000	12280,2	2089 577402	201 5,81		
	24877740	15854780) ci	itoff		11606,0	000	12279,8	3571 578600	545 5,81		
	Elapsed t	;ime = 362	23,59 sec.	628511	9,25	ticks, tre	e = 34	64,00 MI	3, solution	ns = 12		
	Nodefile	size = 14	16,87 MB	784,63	MB af	ter compre	ssion					
. Büsing Solving Ro	obust Bin	arv Opt	imization	Prob	lem	with Buc	get l	Incerta	intv			

Practical Performance

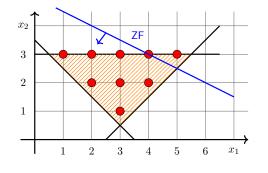
7

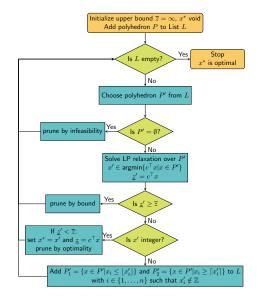
		Nodes									
	Node	Left	Objective	IInf	Best	Integer	Best	Bound	ItCnt	Gap	
	2372004	7 15197	259 11719	,6862	20	11606,000	00	12288	,1353 550574	67	5,88%
	2377090	1 15226	459 11828	,1686	23	11606,000		12287	,7700 551809	67	5,87%
	2382156	5 15255	529 12011	,4041	24	11606,000		12287	,4030 553033		5,87%
		9 15283			22	11606,000			,0473 554242		5,87%
an and at famme lation			3434,41 sec.					53,00 1	MB, solutior	s = 12	2
 compact formulation, 			1305,88 MB								
no use of big M		6 15312			28	11606,000			,6809 555474		5,86%
no use of big M		5 15342			28	11606,000			,3216 556689		5,86%
		3 15370			21	11606,000			,9418 557901		5,86%
		5 15399			25	11606,000			,5821 559124		5,86%
		6 15427			27	11606,000			,2237 560341		5,85%
let's solve some		5 15456			25	11606,000			,8592 561562		5,85%
		0 15484		-	23	11606,000			,4984 562765		5,85%
problems!		2 15512			24	11606,000			,1408 563985		5,84%
•		8 15541			23	11606,000			,7841 565210		5,84%
		1 15569			27	11606,000			,4225 566443		5,84%
			3528,01 sec.					08,61	MB, solution	s = 12	2
robust knapsack:			1360,88 MB					40000	0000 507040	~~	F 00%
•		5 15598		-	23	11606,000			,0698 567646		5,83%
50 items can already		8 15626 3 15655			27 27	11606,000			,7013 568875		5,83%
,		5 15684		-	30	11606,000 11606,000			,3386 570111		5,83% 5,82%
be intractable		5 15664 8 15712		,5555 itoff	30	11606,000			,9808 571333 ,6332 572531		5,82%
		6 15712			26	11606,000			,2759 573749		5,82%
		2 15769			20	11606,000			,2739 573748 ,9179 574969		5,82%
		8 15797			20	11606,000			,5627 576184		5,81%
		4 15826			22	11606.000			,2089 577402		5,81%
		0 15854		, 1031 itoff	24	11606,000			,8571 578606		5,81%
	Elapsed	time =	3623,59 sec. 1416,87 MB	62851		ticks, tree	= 34				

C. Büsing

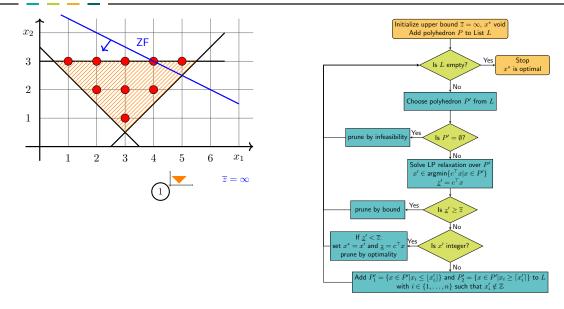


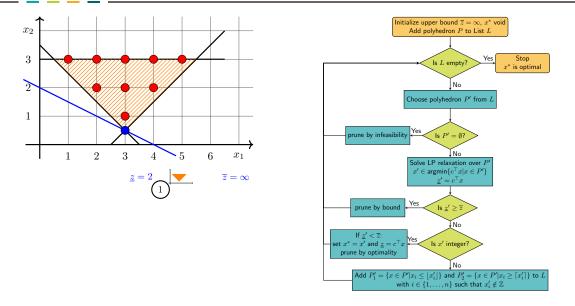
C. Büsing



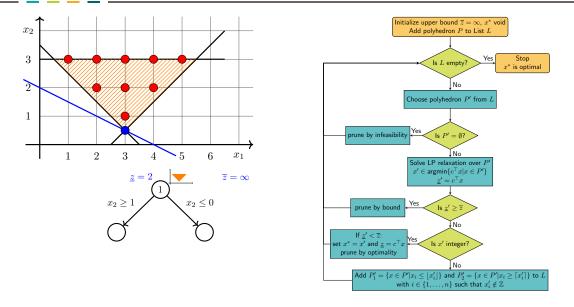


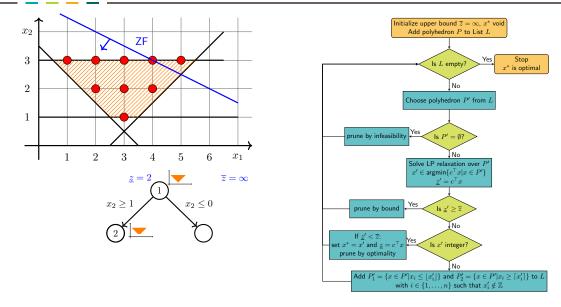
C. Büsing



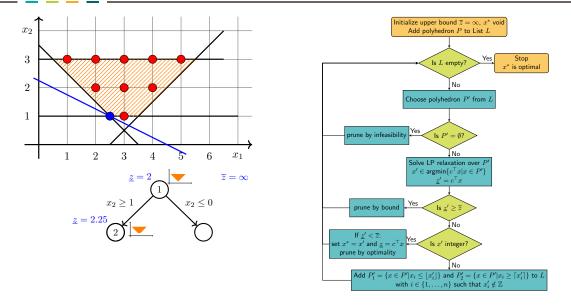


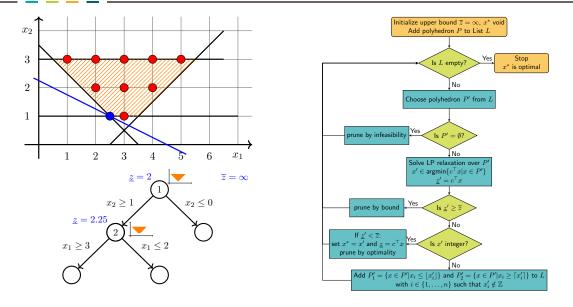
C. Büsing

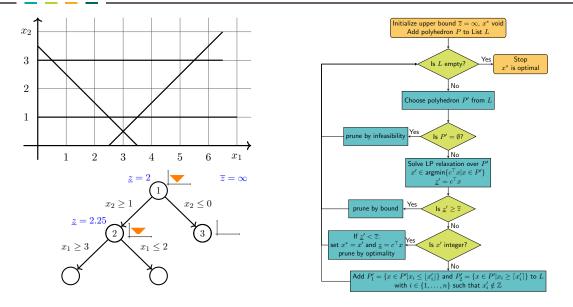




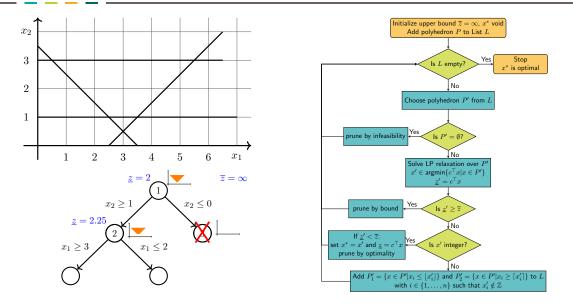
C. Büsing



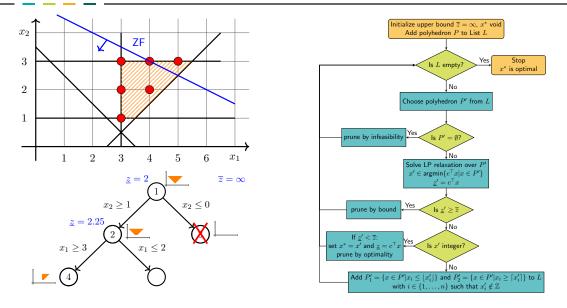


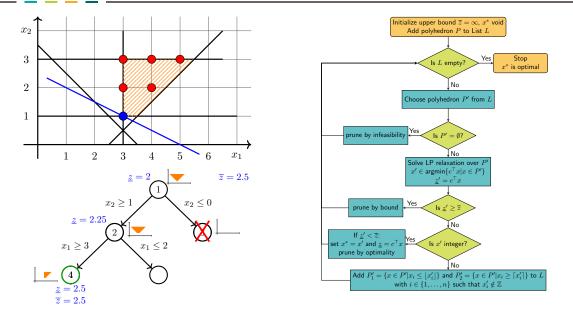


C. Büsing

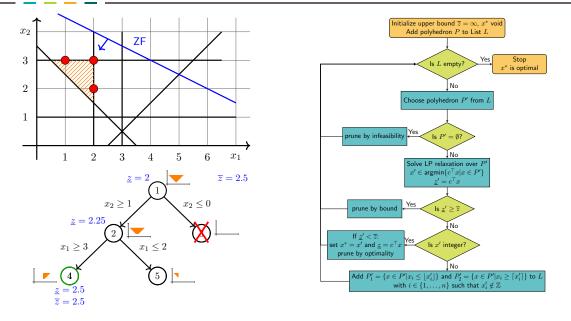


C. Büsing

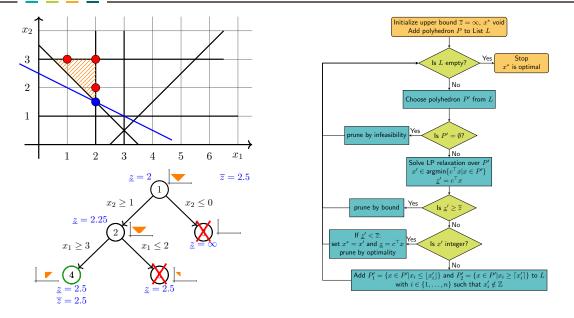




C. Büsing



C. Büsing



C. Büsing

 Robust model performs poorly due to weak LP-relaxation

- Robust model performs poorly due to weak LP-relaxation
- Example: choose element with smallest weight

min
$$\sum_{i \in N} c_i x_i$$

s.t. $\sum_{i \in N} x_i = 1$

 $x \in \{0,1\}^n$

C. Büsing

- Robust model performs poorly due to weak LP-relaxation
- Example: choose element with smallest weight for uniform weights

min
$$\sum_{i \in N} c x_i$$

s.t. $\sum_{i \in N} x_i = 1$

 $x \in \{0,1\}^n$

C. Büsing

- Robust model performs poorly due to weak LP-relaxation
- Example: choose element with smallest weight for uniform weights
- Consider uniform deviations, $\Gamma = 1$

min
$$\sum_{i \in N} c x_i$$

s.t. $\sum_{i \in N} x_i = 1$

 $x \in \{0,1\}^n$

- Robust model performs poorly due to weak LP-relaxation
- Example: choose element with smallest weight for uniform weights
- Consider uniform deviations, $\Gamma = 1$

$$\begin{array}{ll} \min & z + \sum_{i \in N} p_i + \sum_{i \in N} c \ x_i \\ \text{s.t.} & \sum_{i \in N} x_i = 1 \\ & z + p_i \geq \hat{c} \ x_i \quad \forall i \in N \\ & p \in \mathbb{R}^n, z \geq 0, x \in \{0,1\}^n \end{array}$$

C. Büsing

- Robust model performs poorly due to weak LP-relaxation
- Example: choose element with smallest weight for uniform weights
- Consider uniform deviations, $\Gamma = 1$

• $(1, 0, \dots, 0)$ integer optimal with solution value $c + \hat{c}$

Solving Robust Binary Optimization Problem with Budget Uncertainty

2

1

3

4

5

6

7

- Robust model performs poorly due to weak LP-relaxation
- Example: choose element with smallest weight for uniform weights
- Consider uniform deviations, $\Gamma = 1$
- min $z + \sum_{i \in N} p_i + \sum_{i \in N} c x_i$ s.t. $\sum_{i \in N} x_i = 1$ $z + p_i \ge \hat{c} x_i \quad \forall i \in N$ $p \in \mathbb{R}^n, z \ge 0, x \in \{0, 1\}^n$

• $(1, 0, \dots, 0)$ integer optimal with solution value $c + \hat{c}$

5

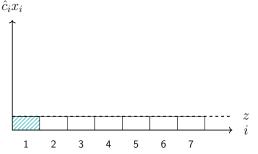
6 7

• $(\frac{1}{n}, \dots, \frac{1}{n})$ continuous optimal with solution value $c + \frac{\hat{c}}{n}$

- Robust model performs poorly due to weak LP-relaxation
- Example: choose element with smallest weight for uniform weights
- Consider uniform deviations, $\Gamma = 1$

$$\begin{array}{ll} \min & z + \sum_{i \in N} p_i + \sum_{i \in N} c \ x_i \\ \text{s.t.} & \sum_{i \in N} x_i = 1 \\ & z + p_i \geq \hat{c} \ x_i \quad \forall i \in N \\ & p \in \mathbb{R}^n, z \geq 0, x \in \{0,1\}^n \end{array}$$

- $(1, 0, \dots, 0)$ integer optimal with solution value $c + \hat{c}$
- $(\frac{1}{n}, \dots, \frac{1}{n})$ continuous optimal with solution value $c + \frac{\hat{c}}{n}$
- Influence of uncertainty vanishes



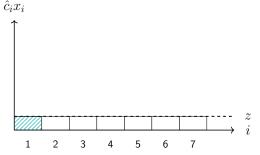
C. Büsing

- Robust model performs poorly due to weak LP-relaxation
- Example: choose element with smallest weight for uniform weights
- Consider uniform deviations, $\Gamma = 1$

min
$$z + \sum_{i \in N} p_i + \sum_{i \in N} c x_i$$

s.t.
$$\sum_{i \in N} x_i = 1$$
$$z + p_i \ge \hat{c} x_i \quad \forall i \in N$$
$$p \in \mathbb{R}^n, z \ge 0, x \in \{0, 1\}^n$$

- $(1, 0, \dots, 0)$ integer optimal with solution value $c + \hat{c}$
- $(\frac{1}{n}, \dots, \frac{1}{n})$ continuous optimal with solution value $c + \frac{\hat{c}}{n}$
- Influence of uncertainty vanishes



Inherent "problem" to robust optimization: diversification

C. Büsing

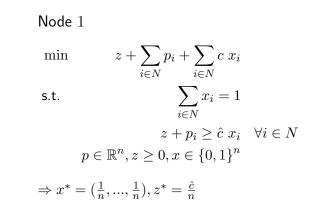
Problem

min s.t. $z + \sum_{i \in N} p_i + \sum_{i \in N} c x_i$ $\sum_{i \in N} x_i = 1$ $z + p_i \ge \hat{c} x_i \quad \forall i \in N$

 $p \in \mathbb{R}^n, z \ge 0, x \in \{0,1\}^n$

C. Büsing

1



C. Büsing

Solving Robust Binary Optimization Problem with Budget Uncertainty

10

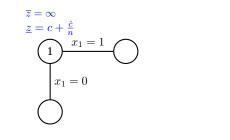
 $\overline{z} = \infty$ $\underline{z} = c + \frac{\hat{c}}{n}$ (1)

Node 1 $z + \sum_{i \in N} p_i + \sum_{i \in N} c x_i$ \min $\sum x_i = 1$ s.t. $i \in N$ $z + p_i \geq \hat{c} x_i \quad \forall i \in N$ $p \in \mathbb{R}^n, z \ge 0, x \in \{0, 1\}^n$ $\Rightarrow x^* = (\frac{1}{n}, \dots, \frac{1}{n}), z^* = \frac{\hat{c}}{n}$

C. Büsing

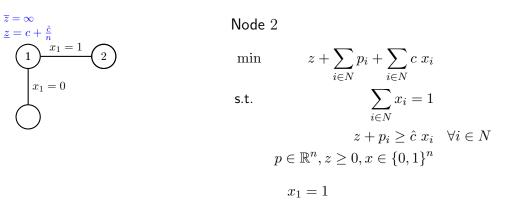
Solving Robust Binary Optimization Problem with Budget Uncertainty

10



Node 1 $z + \sum_{i \in N} p_i + \sum_{i \in N} c x_i$ \min $\sum x_i = 1$ s.t. $i \in N$ $z + p_i \geq \hat{c} x_i \quad \forall i \in N$ $p \in \mathbb{R}^n, z \ge 0, x \in \{0, 1\}^n$ $\Rightarrow x^* = (\frac{1}{n}, \dots, \frac{1}{n}), z^* = \frac{\hat{c}}{n}$

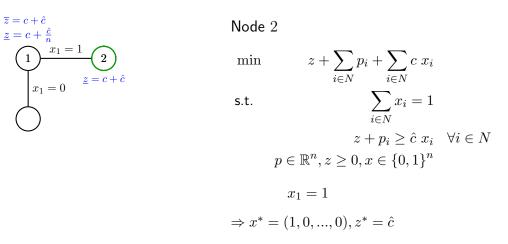
C. Büsing



C. Büsing

Solving Robust Binary Optimization Problem with Budget Uncertainty

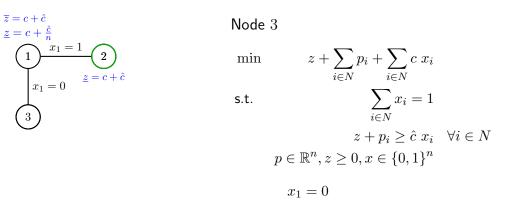
10



C. Büsing

Solving Robust Binary Optimization Problem with Budget Uncertainty

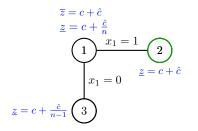
10



C. Büsing

Solving Robust Binary Optimization Problem with Budget Uncertainty

10



Node 3 min

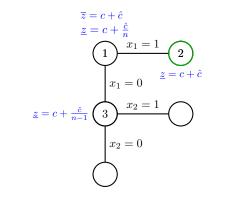
s.t.

 $z + \sum_{i \in N} p_i + \sum_{i \in N} c x_i$ $\sum_{i \in N} x_i = 1$

$$z + p_i \ge \hat{c} \ x_i \quad \forall i \in \mathbb{N}$$
$$p \in \mathbb{R}^n, z \ge 0, x \in \{0, 1\}^n$$

$$\begin{aligned} x_1 &= 0 \\ \Rightarrow x^* &= (0, \frac{1}{n-1}, ..., \frac{1}{n-1}), z^* = \frac{\hat{c}}{n-1} \end{aligned}$$

C. Büsing

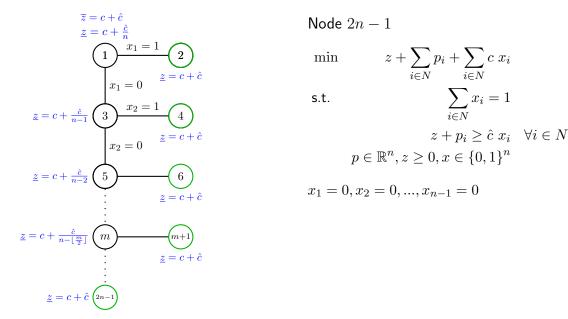


Node 3 min $z + \sum_{i \in N} p_i + \sum_{i \in N} c x_i$ $\sum x_i = 1$ s.t. $i \in N$ $z + p_i \ge \hat{c} x_i \quad \forall i \in N$ $p \in \mathbb{R}^n, z \ge 0, x \in \{0, 1\}^n$ $x_1 = 0$ $\Rightarrow x^* = (0, \frac{1}{n-1}, \dots, \frac{1}{n-1}), z^* = \frac{\hat{c}}{n-1}$

C. Büsing

Solving Robust Binary Optimization Problem with Budget Uncertainty

10



C. Büsing

Solving Robust Binary Optimization Problem with Budget Uncertainty

10

$$\begin{array}{ll} \min & \Gamma z + \sum_{i \in N} p_i + \sum_{i \in N} c_i x_i \\ \text{s.t.} & Ax \geq b \\ & z + p_i \geq \hat{c}_i x_i \quad \forall i \in N \\ & p \in \mathbb{R}^n_{\geq 0}, z \geq 0, x \in \{0,1\}^n \end{array}$$

Strong Formulations

 Atamtürk: four strong versions

 $\begin{array}{ll} \min & \Gamma z + \sum_{i \in N} p_i + \sum_{i \in N} c_i x_i \\ \text{s.t.} & Ax \geq b \\ & z + p_i \geq \hat{c}_i x_i \quad \forall i \in N \\ & p \in \mathbb{R}^n_{\geq 0}, z \geq 0, x \in \{0,1\}^n \end{array}$

C. Büsing

$$\begin{array}{ll} \min & \Gamma z + \sum_{i \in N} p_i + \sum_{i \in N} c_i x_i \\ \text{s.t.} & Ax \geq b \\ & z + p_i \geq \hat{c}_i x_i \quad \forall i \in \\ & p \in \mathbb{R}^n_{\geq 0}, z \geq 0, x \in \{0,1\}^n \end{array}$$

Strong Formulations

 Atamtürk: four strong versions

Branch on z

- Bertsimas & Sim:
 n + 1-subproblems
- Hansknecht et. al: Devide and Conquer

N

Atamtürk Formulations: If the nominal formulation is α-tight then the strongest formulation is also α-tight for the robust problem [At2006]

- Atamtürk Formulations: If the nominal formulation is α-tight then the strongest formulation is also α-tight for the robust problem [At2006]
- ▶ Relatively small z are sufficient to fulfill $p_i + z \ge \hat{c}_i x_i$ for fractional x_i

- Atamtürk Formulations: If the nominal formulation is α-tight then the strongest formulation is also α-tight for the robust problem [At2006]
- ▶ Relatively small z are sufficient to fulfill $p_i + z \ge \hat{c}_i x_i$ for fractional x_i
- Remedy: multiply z with x_i to strengthen the constraint:

$$\begin{array}{ll} \min & & \sum_{i \in N} c_i x_i + \Gamma z + \sum_{i \in N} p_i \\ \text{s.t.} & & Ax \geq b \\ & & p_i + x_i z \geq \hat{c}_i x_i \\ & & x \in \{0,1\}^n, p \in \mathbb{R}^n_{\geq 0}, z \geq 0 \end{array} \quad \forall i \in N \end{array}$$

- Atamtürk Formulations: If the nominal formulation is α-tight then the strongest formulation is also α-tight for the robust problem [At2006]
- ▶ Relatively small z are sufficient to fulfill $p_i + z \ge \hat{c}_i x_i$ for fractional x_i
- Remedy: multiply z with x_i to strengthen the constraint:

$$\begin{array}{ll} \min & \sum_{i \in N} c_i x_i + \Gamma z + \sum_{i \in N} p_i \\ \text{s.t.} & Ax \ge b \\ & p_i + x_i z \ge \hat{c}_i x_i & \forall i \in N \\ & x \in \{0, 1\}^n, p \in \mathbb{R}^n_{\ge 0}, z \ge 0 \end{array}$$
$$\blacktriangleright \text{ Bilinear constraint is equivalent to } \begin{cases} p_i \ge 0 \text{ for } x_i = 0 \\ p_i + z \ge \hat{c}_i x_i \text{ for } x_i = 1 \end{cases}$$

- Atamtürk Formulations: If the nominal formulation is α-tight then the strongest formulation is also α-tight for the robust problem [At2006]
- ▶ Relatively small z are sufficient to fulfill $p_i + z \ge \hat{c}_i x_i$ for fractional x_i
- Remedy: multiply z with x_i to strengthen the constraint:

$$\begin{array}{ll} \min & \sum_{i \in N} c_i x_i + \Gamma z + \sum_{i \in N} p_i \\ \text{s.t.} & Ax \ge b \\ & p_i + x_i z \ge \hat{c}_i x_i & \forall i \in N \\ & x \in \{0,1\}^n, p \in \mathbb{R}^n_{\ge 0}, z \ge 0 \\ \end{array}$$
Bilinear constraint is equivalent to
$$\begin{cases} p_i \ge 0 \text{ for } x_i = 0 \\ p_i + z \ge \hat{c}_i x_i \text{ for } x_i = 1 \end{cases}$$

Theorem

The above bilinear formulation is stronger than any polyhedral formulation.

C. Büsing

- Atamtürk Formulations: If the nominal formulation is α-tight then the strongest formulation is also α-tight for the robust problem [At2006]
- ▶ Relatively small z are sufficient to fulfill $p_i + z \ge \hat{c}_i x_i$ for fractional x_i
- Remedy: multiply z with x_i to strengthen the constraint:

$$\begin{array}{ll} \min & \sum_{i \in N} c_i x_i + \Gamma z + \sum_{i \in N} p_i \\ \text{s.t.} & Ax \ge b \\ & p_i + x_i z \ge \hat{c}_i x_i & \forall i \in N \\ & x \in \{0,1\}^n, p \in \mathbb{R}^n_{\ge 0}, z \ge 0 \\ \end{array}$$
Bilinear constraint is equivalent to
$$\begin{cases} p_i \ge 0 \text{ for } x_i = 0 \\ p_i + z \ge \hat{c}_i x_i \text{ for } x_i = 1 \end{cases}$$

Theorem

The above bilinear formulation is stronger than any polyhedral formulation.

The bilinear formulation is impractical but the foundation for two new approaches

C. Büsing

For fixed
$$z = z'$$
 it holds
 $p_i = (\hat{c}_i x_i - z')^+ = (\hat{c}_i - z')^+ x_i$

$$\begin{array}{ll} \min & \Gamma z + \sum_{i \in N} p_i + \sum_{i \in N} c_i x_i \\ \text{s.t.} & Ax \geq b \\ & z + p_i \geq \hat{c}_i x_i \quad \forall i \in N \\ & p \in \mathbb{R}^n_{\geq 0}, z = z', x \in \{0,1\}^n \end{array}$$

- For fixed z = z' it holds $p_i = (\hat{c}_i x_i - z')^+ = (\hat{c}_i - z')^+ x_i$
- Fixing z yields a nominal problem

min
$$\Gamma z' + \sum_{i \in N} (c_i + (\hat{c}_i - z')^+) x_i$$

s.t. $Ax \ge b$

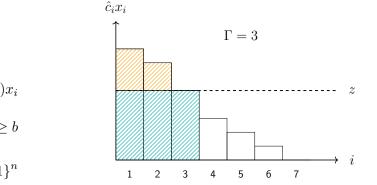
 $x \in \{0,1\}^n$

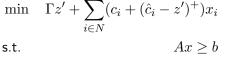
C. Büsing

Promising Approaches: Sequence of Nominal Problems

- For fixed z = z' it holds $p_i = (\hat{c}_i x_i - z')^+ = (\hat{c}_i - z')^+ x_i$
- Fixing z yields a nominal problem

The Γ largest value ĉ_ix_i is an optimal choice for z



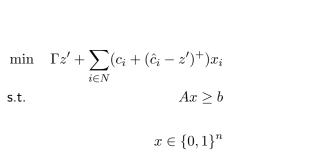


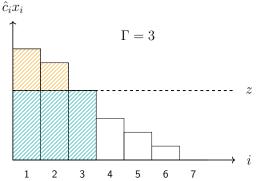
 $x \in \{0,1\}^n$

C. Büsing

- For fixed z = z' it holds $p_i = (\hat{c}_i x_i - z')^+ = (\hat{c}_i - z')^+ x_i$
- Fixing z yields a nominal problem

- The Γ largest value ĉ_ix_i is an optimal choice for z
- $\mathcal{Z} = \{0, \hat{c}_1, \dots, \hat{c}_n\}$ contains an optimal choice for z





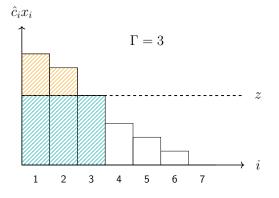
- For fixed z = z' it holds $p_i = (\hat{c}_i x_i - z')^+ = (\hat{c}_i - z')^+ x_i$
- Fixing z yields a nominal problem
- Fix z ∈ Z and solve |Z| nominal problems [BS2003]

min
$$\Gamma z' + \sum_{i \in N} (c_i + (\hat{c}_i - z')^+) x_i$$

s.t. $Ax \ge b$

 $x \in \{0, 1\}^n$

- The Γ largest value ĉ_ix_i is an optimal choice for z
- $\mathcal{Z} = \{0, \hat{c}_1, \dots, \hat{c}_n\}$ contains an optimal choice for z



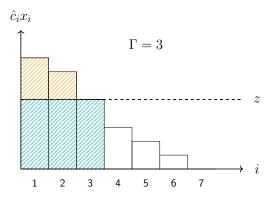
- For fixed z = z' it holds $p_i = (\hat{c}_i x_i - z')^+ = (\hat{c}_i - z')^+ x_i$
- Fixing z yields a nominal problem
- ► Fix z ∈ Z and solve |Z| nominal problems [BS2003]
- $|\mathcal{Z}|$ reducible to $\lceil \frac{n-\Gamma}{2} \rceil + 1$ [LK2014]

min
$$\Gamma z' + \sum_{i \in N} (c_i + (\hat{c}_i - z')^+) x_i$$

s.t. $Ax \ge b$

 $x \in \{0,1\}^n$

- The Γ largest value ĉ_ix_i is an optimal choice for z
- $\mathcal{Z} = \{0, \hat{c}_1, \dots, \hat{c}_n\}$ contains an optimal choice for z



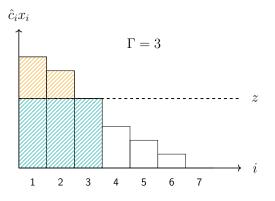
- For fixed z = z' it holds $p_i = (\hat{c}_i x_i - z')^+ = (\hat{c}_i - z')^+ x_i$
- Fixing z yields a nominal problem
- ► Fix z ∈ Z and solve |Z| nominal problems [BS2003]
- $|\mathcal{Z}|$ reducible to $\lceil \frac{n-\Gamma}{2} \rceil + 1$ [LK2014]
- Prune z on the fly using relations between objective values [HRS2018]

min
$$\Gamma z' + \sum_{i \in N} (c_i + (\hat{c}_i - z')^+) x_i$$

s.t. $Ax \ge b$

 $x \in \{0, 1\}^n$

- The Γ largest value ĉ_ix_i is an optimal choice for z
- $\mathcal{Z} = \{0, \hat{c}_1, \dots, \hat{c}_n\}$ contains an optimal choice for z



C. Büsing

▶ an optimal $z \in \{0, \hat{c}_1, \dots, \hat{c}_n\}$ exists

▶ an optimal $z \in \{0, \hat{c}_1, \dots, \hat{c}_n\}$ exists ▶ fixing z yields nominal problem

- ▶ an optimal $z \in \{0, \hat{c}_1, \dots, \hat{c}_n\}$ exists
- fixing z yields nominal problem \Rightarrow solve n + 1 nominal problems [BS2003]

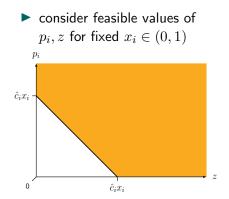
- ▶ an optimal $z \in \{0, \hat{c}_1, \dots, \hat{c}_n\}$ exists
- fixing z yields nominal problem \Rightarrow solve n + 1 nominal problems [BS2003]
- n+1 may be too large for brute enumeration

- ▶ an optimal $z \in \{0, \hat{c}_1, \dots, \hat{c}_n\}$ exists
- fixing z yields nominal problem \Rightarrow solve n + 1 nominal problems [BS2003]
- ▶ n+1 may be too large for brute enumeration \Rightarrow bound z instead of fixing it

- ▶ an optimal $z \in \{0, \hat{c}_1, \dots, \hat{c}_n\}$ exists
- fixing z yields nominal problem \Rightarrow solve n + 1 nominal problems [BS2003]
- ▶ n+1 may be too large for brute enumeration \Rightarrow bound z instead of fixing it

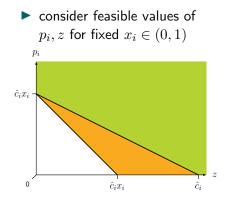
```
• consider feasible values of p_i, z for fixed x_i \in (0, 1)
```


- ▶ an optimal $z \in \{0, \hat{c}_1, \dots, \hat{c}_n\}$ exists
- Fixing z yields nominal problem \Rightarrow solve n + 1 nominal problems [BS2003]
- ▶ n+1 may be too large for brute enumeration \Rightarrow bound z instead of fixing it



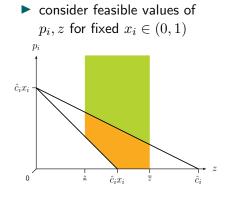
• original constraint $p_i \geq \hat{c}_i x_i - z$

an optimal z ∈ {0, ĉ₁,..., ĉ_n} exists
fixing z yields nominal problem ⇒ solve n + 1 nominal problems [BS2003]
n + 1 may be too large for brute enumeration ⇒ bound z instead of fixing it



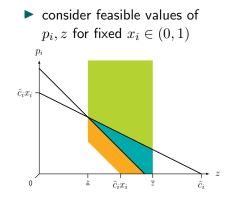
- original constraint $p_i \ge \hat{c}_i x_i z$
- bilinear constraint $p_i \ge \hat{c}_i x_i x_i z$

an optimal z ∈ {0, ĉ₁,..., ĉ_n} exists
fixing z yields nominal problem ⇒ solve n + 1 nominal problems [BS2003]
n + 1 may be too large for brute enumeration ⇒ bound z instead of fixing it



- original constraint $p_i \ge \hat{c}_i x_i z$
- bilinear constraint $p_i \ge \hat{c}_i x_i x_i z$
- assume we are given bounds $\underline{z} \leq z \leq \overline{z}$

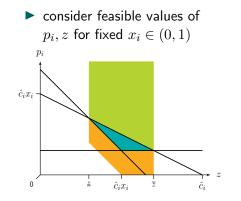
an optimal z ∈ {0, ĉ₁,..., ĉ_n} exists
fixing z yields nominal problem ⇒ solve n + 1 nominal problems [BS2003]
n + 1 may be too large for brute enumeration ⇒ bound z instead of fixing it



- original constraint $p_i \ge \hat{c}_i x_i z$
- bilinear constraint $p_i \ge \hat{c}_i x_i x_i z$
- assume we are given bounds $\underline{z} \leq z \leq \overline{z}$
- we linearize the bilinear constraint to

$$p_i \ge (\hat{c}_i - \underline{z})x_i + \underline{z} - z \tag{1}$$

an optimal z ∈ {0, ĉ₁,..., ĉ_n} exists
fixing z yields nominal problem ⇒ solve n + 1 nominal problems [BS2003]
n + 1 may be too large for brute enumeration ⇒ bound z instead of fixing it



- original constraint $p_i \ge \hat{c}_i x_i z$
- bilinear constraint $p_i \ge \hat{c}_i x_i x_i z$
- assume we are given bounds $\underline{z} \leq z \leq \overline{z}$
- we linearize the bilinear constraint to

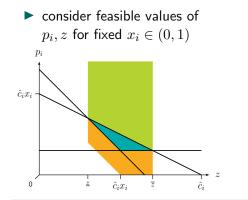
$$p_i \ge (\hat{c}_i - \underline{z})x_i + \underline{z} - z \tag{1}$$

and

$$p_i \ge (\hat{c}_i - \overline{z}) x_i \tag{2}$$

Using Bounds on \boldsymbol{z}

an optimal z ∈ {0, ĉ₁,..., ĉ_n} exists
fixing z yields nominal problem ⇒ solve n + 1 nominal problems [BS2003]
n + 1 may be too large for brute enumeration ⇒ bound z instead of fixing it



- original constraint $p_i \ge \hat{c}_i x_i z$
- bilinear constraint $p_i \ge \hat{c}_i x_i x_i z$
- assume we are given bounds $\underline{z} \leq z \leq \overline{z}$
- we linearize the bilinear constraint to

$$p_i \ge (\hat{c}_i - \underline{z})x_i + \underline{z} - z \tag{1}$$

and

$$p_i \ge (\hat{c}_i - \overline{z})x_i \tag{2}$$

Proposition

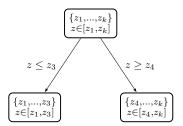
Inequalities (1) and (2) approximate the bilinear one and are equally strong if $z \in \{\underline{z}, \overline{z}\}$. C. Büsing Solving Robust Binary Optimization Problem with Budget Uncertainty

• let $\mathcal{Z} = \{z_1, \dots, z_k\}$ contain an optimal value for z

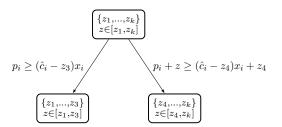
- let $\mathcal{Z} = \{z_1, \dots, z_k\}$ contain an optimal value for z
- idea: branch on Z to find promising values for z

- let $\mathcal{Z} = \{z_1, \dots, z_k\}$ contain an optimal value for z
- idea: branch on Z to find promising values for z
- solve LP-relaxation

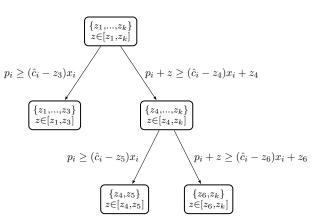
- ▶ let $Z = \{z_1, ..., z_k\}$ contain an optimal value for z
- idea: branch on Z to find promising values for z
- solve LP-relaxation
- branch and restrict z to new domains



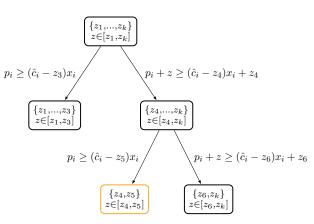
- ▶ let $Z = \{z_1, ..., z_k\}$ contain an optimal value for z
- idea: branch on Z to find promising values for z
- solve LP-relaxation
- branch and restrict z to new domains
- ▶ apply stronger linearization using new bounds <u>z</u>, <u>z</u>



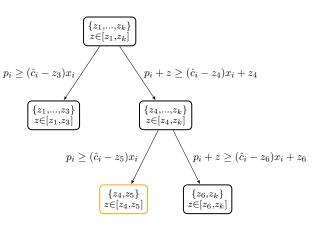
- ▶ let Z = {z₁,..., z_k} contain an optimal value for z
- idea: branch on Z to find promising values for z
- solve LP-relaxation
- branch and restrict z to new domains
- ▶ apply stronger linearization using new bounds <u>z</u>, <u>z</u>



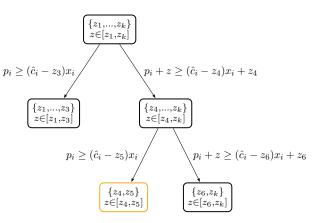
- ▶ let Z = {z₁,..., z_k} contain an optimal value for z
- idea: branch on Z to find promising values for z
- solve LP-relaxation
- branch and restrict z to new domains
- ▶ apply stronger linearization using new bounds <u>z</u>, <u>z</u>
- solve integer subproblem once bilinear formulation is sufficiently approximated



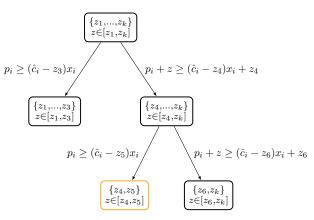
- ▶ let Z = {z₁,..., z_k} contain an optimal value for z
- idea: branch on Z to find promising values for z
- solve LP-relaxation
- branch and restrict z to new domains
- ▶ apply stronger linearization using new bounds <u>z</u>, <u>z</u>
- solve integer subproblem once bilinear formulation is sufficiently approximated
- advantages:
 - stronger LP-relaxations in subproblems



- let $\mathcal{Z} = \{z_1, \dots, z_k\}$ contain an optimal value for z
- idea: branch on Z to find promising values for z
- solve LP-relaxation
- branch and restrict z to new domains
- ▶ apply stronger linearization using new bounds <u>z</u>, <u>z</u>
- solve integer subproblem once bilinear formulation is sufficiently approximated
- advantages:
 - stronger LP-relaxations in subproblems
 - fast pruning of non-optimal z



- ▶ let $Z = \{z_1, ..., z_k\}$ contain an optimal value for z
- idea: branch on Z to find promising values for z
- solve LP-relaxation
- branch and restrict z to new domains
- ▶ apply stronger linearization using new bounds <u>z</u>, <u>z</u>
- solve integer subproblem once bilinear formulation is sufficiently approximated
- advantages:
 - stronger LP-relaxations in subproblems
 - fast pruning of non-optimal z
 - bounds on z yield many more structural properties



there are many more structures to use

- there are many more structures to use
- ▶ observation: feasibility of $x \in \{0,1\}^n$ is independent of z

- there are many more structures to use
- ▶ observation: feasibility of $x \in \{0,1\}^n$ is independent of z
 - 1. possibility to draw conclusions between different subproblems

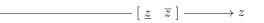
- \blacktriangleright so far: non-linearize problem, branch on continuous variable z (spatial B&B-ish)
- there are many more structures to use
- observation: feasibility of $x \in \{0,1\}^n$ is independent of z
 - possibility to draw conclusions between different subproblems (super interesting, but no time for that ⁽³⁾)

- \blacktriangleright so far: non-linearize problem, branch on continuous variable z (spatial B&B-ish)
- there are many more structures to use
- observation: feasibility of $x \in \{0,1\}^n$ is independent of z
 - 1. possibility to draw conclusions between different subproblems (super interesting, but no time for that $\textcircled{\sc op}$)
 - 2. $x\in\{0,1\}^n$ can be optimal for subproblems with $z\in[\underline{z},\overline{z}],$ but z might not be optimal for x

- ▶ so far: non-linearize problem, branch on continuous variable z (spatial B&B-ish)
- there are many more structures to use
- observation: feasibility of $x \in \{0,1\}^n$ is independent of z
 - 1. possibility to draw conclusions between different subproblems (super interesting, but no time for that $\textcircled{\sc op}$)
 - 2. $x\in\{0,1\}^n$ can be optimal for subproblems with $z\in[\underline{z},\overline{z}],$ but z might not be optimal for x

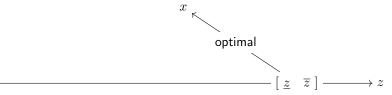
 $\rightarrow z$

- \blacktriangleright so far: non-linearize problem, branch on continuous variable z (spatial B&B-ish)
- there are many more structures to use
- observation: feasibility of $x \in \{0,1\}^n$ is independent of z
 - 1. possibility to draw conclusions between different subproblems (super interesting, but no time for that $\textcircled{\sc op}$)
 - 2. $x\in\{0,1\}^n$ can be optimal for subproblems with $z\in[\underline{z},\overline{z}],$ but z might not be optimal for x

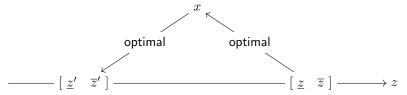


C. Büsing

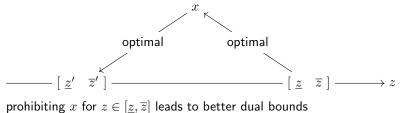
- \blacktriangleright so far: non-linearize problem, branch on continuous variable z (spatial B&B-ish)
- there are many more structures to use
- observation: feasibility of $x \in \{0,1\}^n$ is independent of z
 - 1. possibility to draw conclusions between different subproblems (super interesting, but no time for that $\textcircled{\sc s}$)
 - 2. $x\in\{0,1\}^n$ can be optimal for subproblems with $z\in[\underline{z},\overline{z}],$ but z might not be optimal for x



- \blacktriangleright so far: non-linearize problem, branch on continuous variable z (spatial B&B-ish)
- there are many more structures to use
- observation: feasibility of $x \in \{0,1\}^n$ is independent of z
 - possibility to draw conclusions between different subproblems (super interesting, but no time for that ⁽³⁾)
 - 2. $x\in\{0,1\}^n$ can be optimal for subproblems with $z\in[\underline{z},\overline{z}],$ but z might not be optimal for x

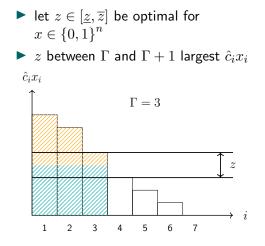


- \blacktriangleright so far: non-linearize problem, branch on continuous variable z (spatial B&B-ish)
- there are many more structures to use
- observation: feasibility of $x \in \{0,1\}^n$ is independent of z
 - possibility to draw conclusions between different subproblems (super interesting, but no time for that ⁽³⁾)
 - 2. $x\in\{0,1\}^n$ can be optimal for subproblems with $z\in[\underline{z},\overline{z}],$ but z might not be optimal for x



• let
$$z \in [\underline{z}, \overline{z}]$$
 be optimal for $x \in \{0, 1\}^n$

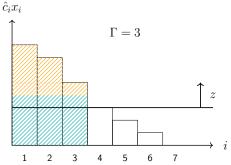
C. Büsing



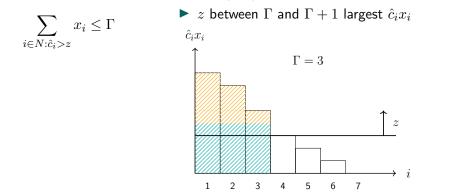
C. Büsing

• there exist at most Γ indices $i \in N$ with $\hat{c}_i x_i > z$

- let $z \in [\underline{z}, \overline{z}]$ be optimal for $x \in \{0, 1\}^n$
- ► z between Γ and $\Gamma + 1$ largest $\hat{c}_i x_i$



• there exist at most Γ indices $i \in N$ with $\hat{c}_i x_i > z$



 $x \in \{0, 1\}^n$

• let $z \in [\underline{z}, \overline{z}]$ be optimal for

• there exist at most Γ indices $i \in N$ with $\hat{c}_i x_i > z$

$$\sum_{i \in N: \hat{c}_i > \overline{z}} x_i \le \sum_{i \in N: \hat{c}_i > z} x_i \le \Gamma$$

- let $z \in [\underline{z}, \overline{z}]$ be optimal for $x \in \{0, 1\}^n$
- \triangleright z between Γ and $\Gamma + 1$ largest $\hat{c}_i x_i$ $\hat{c}_i x_i$ $\Gamma = 3$ z $\rightarrow i$ 1 2 3 4 5 6 7

C. Büsing

• there exist at most Γ indices $i \in N$ with $\hat{c}_i x_i > z$

$$\sum_{i \in N: \hat{c}_i > \overline{z}} x_i \le \Gamma$$

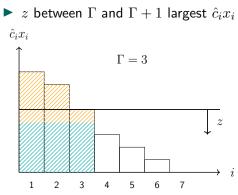
- let $z \in [\underline{z}, \overline{z}]$ be optimal for $x \in \{0, 1\}^n$
- \triangleright z between Γ and $\Gamma + 1$ largest $\hat{c}_i x_i$ $\hat{c}_i x_i$ $\Gamma = 3$ z $\rightarrow i$ 1 2 3 4 5 6 7

• there exist at most Γ indices $i \in N$ with $\hat{c}_i x_i > z$

$$\sum_{i \in N: \hat{c}_i > \overline{z}} x_i \le \Gamma$$

• assume $0 < \underline{z} \leq z$, then there exist at least Γ indices $i \in N$ with $\hat{c}_i x_i \geq z$

• let $z \in [\underline{z}, \overline{z}]$ be optimal for $x \in \{0, 1\}^n$



• there exist at most Γ indices $i \in N$ with $\hat{c}_i x_i > z$

$$\sum_{i \in N: \hat{c}_i > \overline{z}} x_i \le \Gamma$$

• assume $0 < \underline{z} \le z$, then there exist at least Γ indices $i \in N$ with $\hat{c}_i x_i \ge z$

$$\sum_{i \in N: \hat{c}_i \ge z} x_i \ge \Gamma$$

- let $z \in [\underline{z}, \overline{z}]$ be optimal for $x \in \{0, 1\}^n$
- \triangleright z between Γ and $\Gamma + 1$ largest $\hat{c}_i x_i$ $\hat{c}_i x_i$ $\Gamma = 3$ z $\rightarrow i$ 2 3 4 5 6 7 1

• there exist at most Γ indices $i \in N$ with $\hat{c}_i x_i > z$

$$\sum_{i \in N: \hat{c}_i > \overline{z}} x_i \le \Gamma$$

• assume $0 < \underline{z} \le z$, then there exist at least Γ indices $i \in N$ with $\hat{c}_i x_i \ge z$

$$\sum_{i \in N: \hat{c}_i \ge \underline{z}} x_i \ge \sum_{i \in N: \hat{c}_i \ge z} x_i \ge \Gamma$$

- let $z \in [\underline{z}, \overline{z}]$ be optimal for $x \in \{0, 1\}^n$
- \triangleright z between Γ and $\Gamma + 1$ largest $\hat{c}_i x_i$ $\hat{c}_i x_i$ $\Gamma = 3$ z $\rightarrow i$ 2 3 4 5 6 7 1

C. Büsing

• there exist at most Γ indices $i \in N$ with $\hat{c}_i x_i > z$

$$\sum_{i \in N: \hat{c}_i > \overline{z}} x_i \le \Gamma$$

• assume $0 < \underline{z} \le z$, then there exist at least Γ indices $i \in N$ with $\hat{c}_i x_i \ge z$

$$\sum_{i \in N: \hat{c}_i \geq \underline{z}} x_i \geq \Gamma$$

- let $z \in [\underline{z}, \overline{z}]$ be optimal for $x \in \{0, 1\}^n$
- \triangleright z between Γ and $\Gamma + 1$ largest $\hat{c}_i x_i$ $\hat{c}_i x_i$ $\Gamma = 3$ z $\rightarrow i$ 2 3 4 5 6 7 1

• there exist at most Γ indices $i \in N$ with $\hat{c}_i x_i > z$

$$\sum_{i \in N: \hat{c}_i > \overline{z}} x_i \le \Gamma$$

• assume $0 < \underline{z} \leq z$, then there exist at least Γ indices $i \in N$ with $\hat{c}_i x_i \geq z$

$$\sum_{i \in N: \hat{c}_i \geq \underline{z}} x_i \geq \Gamma$$

- let $z \in [\underline{z}, \overline{z}]$ be optimal for $x \in \{0, 1\}^n$
- z between Γ and $\Gamma + 1$ largest $\hat{c}_i x_i$ $\hat{c}_i x_i$ $\Gamma = 3$ zi2 3 4 5 6 7 1

Theorem

There is an optimal $z \in [\underline{z}, \overline{z}]$ for $x \in \{0, 1\}^n$ iff the above inequalities are fulfilled.

C. Büsing

Implemented algorithm in Java with Gurobi for solving subproblems

- Implemented algorithm in Java with Gurobi for solving subproblems
- Additional engineering

- Implemented algorithm in Java with Gurobi for solving subproblems
- Additional engineering
 - Pruning, terminating nominal subproblems, node selection, branching point etc...

- Implemented algorithm in Java with Gurobi for solving subproblems
- Additional engineering
 - Pruning, terminating nominal subproblems, node selection, branching point etc...
- Tested algorithm for robustified instances of MIPLIB 2017

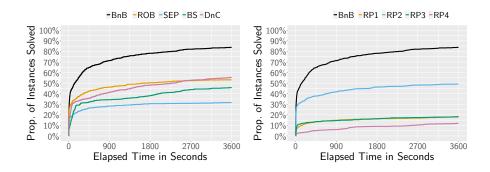
- Implemented algorithm in Java with Gurobi for solving subproblems
- Additional engineering
 - Pruning, terminating nominal subproblems, node selection, branching point etc...
- Tested algorithm for robustified instances of MIPLIB 2017
- 67 suitable basic instances remained after filtering

- Implemented algorithm in Java with Gurobi for solving subproblems
- Additional engineering
 - Pruning, terminating nominal subproblems, node selection, branching point etc...
- Tested algorithm for robustified instances of MIPLIB 2017
- 67 suitable basic instances remained after filtering
- Several instances of different uncertainty levels per basic instance

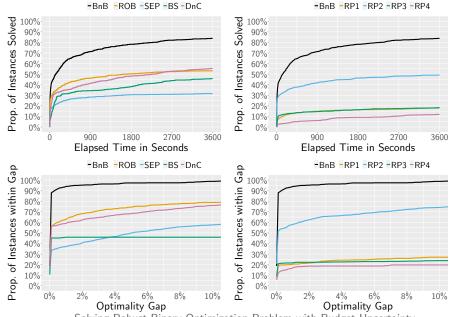
- Implemented algorithm in Java with Gurobi for solving subproblems
- Additional engineering
 - Pruning, terminating nominal subproblems, node selection, branching point etc...
- Tested algorithm for robustified instances of MIPLIB 2017
- 67 suitable basic instances remained after filtering
- Several instances of different uncertainty levels per basic instance
- "State-of-the-art" algorithms for comparison

- Implemented algorithm in Java with Gurobi for solving subproblems
- Additional engineering
 - Pruning, terminating nominal subproblems, node selection, branching point etc...
- Tested algorithm for robustified instances of MIPLIB 2017
- 67 suitable basic instances remained after filtering
- Several instances of different uncertainty levels per basic instance
- "State-of-the-art" algorithms for comparison
 - Bertsimas Sim standard reformulation, cutting-plane approach, Atamtürk's formulations, |Z| nominal subproblems, Divide & Conquer [HRS2018]

Computational Results: B&B vs. Literature



Computational Results: B&B vs. Literature



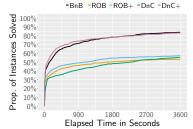
Solving Robust Binary Optimization Problem with Budget Uncertainty

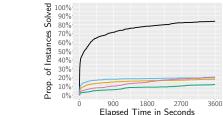
Theoretical results improve competing algorithms substantially

- Theoretical results improve competing algorithms substantially
- E.g. cliques for ROB, optimality-cuts and improved dual bounds for DnC

Improving Algorithms from Literature

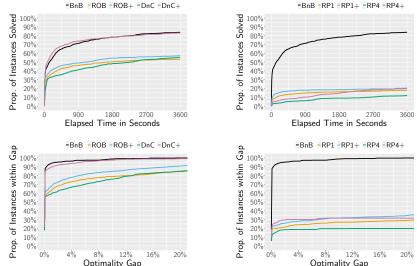
- Theoretical results improve competing algorithms substantially
- E.g. cliques for ROB, optimality-cuts and improved dual bounds for DnC





Improving Algorithms from Literature

- Theoretical results improve competing algorithms substantially
- E.g. cliques for ROB, optimality-cuts and improved dual bounds for DnC



Solving Robust Binary Optimization Problem with Budget Uncertainty

▶ let C^{NOM} , C^{ROB} be the convex hulls of the nominal and robust problems

▶ let C^{NOM} , C^{ROB} be the convex hulls of the nominal and robust problems

• we call an inequality $\sum_{i \in N} \pi_i x_i \leq \pi_0$ recyclable if it is valid for \mathcal{C}^{NOM} and $\pi \geq 0$

Recycling Valid Inequalities

▶ let C^{NOM} , C^{ROB} be the convex hulls of the nominal and robust problems

▶ we call an inequality $\sum_{i \in N} \pi_i x_i \leq \pi_0$ recyclable if it is valid for C^{NOM} and $\pi \geq 0$

Theorem

Let $\sum_{i \in N} \pi_i x_i \leq \pi_0$ be a recyclable inequality. Then the recycled inequality

$$\sum_{i \in N} \pi_i p_i + z \pi_0 \ge \sum_{i \in N} \pi_i \hat{c}_i x_i$$

is valid for C^{ROB} .

Recycling Valid Inequalities

▶ let C^{NOM} , C^{ROB} be the convex hulls of the nominal and robust problems

▶ we call an inequality $\sum_{i \in N} \pi_i x_i \leq \pi_0$ recyclable if it is valid for C^{NOM} and $\pi \geq 0$

Theorem

Let $\sum_{i \in N} \pi_i x_i \leq \pi_0$ be a recyclable inequality. Then the recycled inequality

$$\sum_{i \in N} \pi_i p_i + z \pi_0 \ge \sum_{i \in N} \pi_i \hat{c}_i x_i$$

is valid for C^{ROB} .

Proof: sum all bilinear constraints with coefficients π (valid due to $\pi \ge 0$)

$$\sum_{i \in N} \pi_i(p_i + x_i z) \ge \sum_{i \in N} \pi_i \hat{c}_i x_i$$

C. Büsing

▶ let C^{NOM} , C^{ROB} be the convex hulls of the nominal and robust problems

▶ we call an inequality $\sum_{i \in N} \pi_i x_i \leq \pi_0$ recyclable if it is valid for C^{NOM} and $\pi \geq 0$

Theorem

Let $\sum_{i \in N} \pi_i x_i \leq \pi_0$ be a recyclable inequality. Then the recycled inequality

$$\sum_{i \in N} \pi_i p_i + z \pi_0 \ge \sum_{i \in N} \pi_i \hat{c}_i x_i$$

is valid for C^{ROB} .

Proof: sum all bilinear constraints with coefficients π (valid due to $\pi \ge 0$)

$$\sum_{i \in N} \pi_i (p_i + x_i z) \ge \sum_{i \in N} \pi_i \hat{c}_i x_i$$
$$\Leftrightarrow \sum_{i \in N} \pi_i p_i + z \sum_{i \in N} \pi_i x_i \ge \sum_{i \in N} \pi_i \hat{c}_i x_i$$

C. Büsing

▶ let C^{NOM} , C^{ROB} be the convex hulls of the nominal and robust problems

▶ we call an inequality $\sum_{i \in N} \pi_i x_i \leq \pi_0$ recyclable if it is valid for C^{NOM} and $\pi \geq 0$

Theorem

Let $\sum_{i \in N} \pi_i x_i \leq \pi_0$ be a recyclable inequality. Then the recycled inequality

$$\sum_{i \in N} \pi_i p_i + z \pi_0 \ge \sum_{i \in N} \pi_i \hat{c}_i x_i$$

is valid for C^{ROB} .

Proof: sum all bilinear constraints with coefficients π (valid due to $\pi \ge 0$)

$$\sum_{i \in N} \pi_i (p_i + x_i z) \ge \sum_{i \in N} \pi_i \hat{c}_i x_i$$
$$\Leftrightarrow \sum_{i \in N} \pi_i p_i + z \underbrace{\sum_{i \in N} \pi_i x_i}_{\le \pi_0} \ge \sum_{i \in N} \pi_i \hat{c}_i x_i$$

C. Büsing

Solving Robust Binary Optimization Problem with Budget Uncertainty

 \blacktriangleright recycled inequalities are often facet-defining for $\mathcal{C}^{\rm ROB}$

 \blacktriangleright recycled inequalities are often facet-defining for $\mathcal{C}^{\rm ROB}$

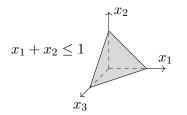
▶ for simplicity: assume $\hat{c}_i > 0$ for all $i \in N$

- \blacktriangleright recycled inequalities are often facet-defining for $\mathcal{C}^{\rm ROB}$
- ▶ for simplicity: assume $\hat{c}_i > 0$ for all $i \in N$

Let $\sum_{i \in N} \pi_i x_i \leq \pi_0$ be a recyclable inequality.

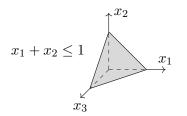
- \blacktriangleright recycled inequalities are often facet-defining for $\mathcal{C}^{\rm ROB}$
- ▶ for simplicity: assume $\hat{c}_i > 0$ for all $i \in N$

Let $\sum_{i \in N} \pi_i x_i \leq \pi_0$ be a recyclable inequality.



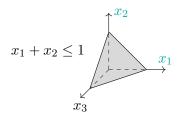
- \blacktriangleright recycled inequalities are often facet-defining for $\mathcal{C}^{\rm ROB}$
- for simplicity: assume $\hat{c}_i > 0$ for all $i \in N$

Let $\sum_{i \in N} \pi_i x_i \leq \pi_0$ be a recyclable inequality. Let $S = \{i \in N | \pi_i > 0\}$ be its support



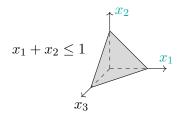
- \blacktriangleright recycled inequalities are often facet-defining for $\mathcal{C}^{\rm ROB}$
- for simplicity: assume $\hat{c}_i > 0$ for all $i \in N$

Let $\sum_{i \in N} \pi_i x_i \leq \pi_0$ be a recyclable inequality. Let $S = \{i \in N | \pi_i > 0\}$ be its support



- \blacktriangleright recycled inequalities are often facet-defining for $\mathcal{C}^{\rm ROB}$
- for simplicity: assume $\hat{c}_i > 0$ for all $i \in N$

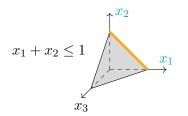
Let $\sum_{i \in N} \pi_i x_i \leq \pi_0$ be a recyclable inequality. Let $S = \{i \in N | \pi_i > 0\}$ be its support and $F = \{x \in C^{\text{NOM}} | \sum_{i \in N} \pi_i x_i = \pi_0\}$ be its nominal face.



C. Büsing

- \blacktriangleright recycled inequalities are often facet-defining for $\mathcal{C}^{\rm ROB}$
- for simplicity: assume $\hat{c}_i > 0$ for all $i \in N$

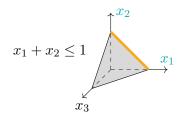
Let $\sum_{i \in N} \pi_i x_i \leq \pi_0$ be a recyclable inequality. Let $S = \{i \in N | \pi_i > 0\}$ be its support and $F = \{x \in \mathcal{C}^{\text{NOM}} | \sum_{i \in N} \pi_i x_i = \pi_0\}$ be its nominal face.



- \blacktriangleright recycled inequalities are often facet-defining for $\mathcal{C}^{\rm ROB}$
- for simplicity: assume $\hat{c}_i > 0$ for all $i \in N$

Let $\sum_{i \in N} \pi_i x_i \leq \pi_0$ be a recyclable inequality. Let $S = \{i \in N | \pi_i > 0\}$ be its support and $F = \{x \in C^{\text{NOM}} | \sum_{i \in N} \pi_i x_i = \pi_0\}$ be its nominal face. The corresponding recycled inequality is facet-defining for C^{ROB} if and only if

 $\dim\left(\operatorname{proj}_{S}\left(F\right)\right) = |S| - 1.$

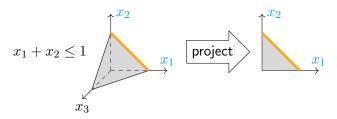


C. Büsing

- \blacktriangleright recycled inequalities are often facet-defining for $\mathcal{C}^{\rm ROB}$
- for simplicity: assume $\hat{c}_i > 0$ for all $i \in N$

Let $\sum_{i \in N} \pi_i x_i \leq \pi_0$ be a recyclable inequality. Let $S = \{i \in N | \pi_i > 0\}$ be its support and $F = \{x \in C^{\text{NOM}} | \sum_{i \in N} \pi_i x_i = \pi_0\}$ be its nominal face. The corresponding recycled inequality is facet-defining for C^{ROB} if and only if

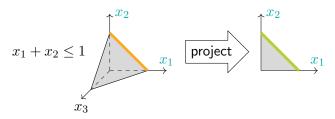
 $\dim\left(\operatorname{proj}_{S}\left(F\right)\right) = |S| - 1.$



- \blacktriangleright recycled inequalities are often facet-defining for $\mathcal{C}^{\rm ROB}$
- for simplicity: assume $\hat{c}_i > 0$ for all $i \in N$

Let $\sum_{i \in N} \pi_i x_i \leq \pi_0$ be a recyclable inequality. Let $S = \{i \in N | \pi_i > 0\}$ be its support and $F = \{x \in C^{\text{NOM}} | \sum_{i \in N} \pi_i x_i = \pi_0\}$ be its nominal face. The corresponding recycled inequality is facet-defining for C^{ROB} if and only if

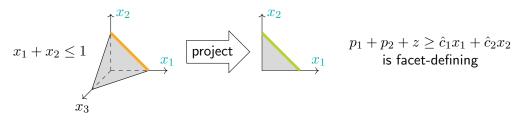
 $\dim\left(\operatorname{proj}_{S}\left(F\right)\right) = |S| - 1.$



- \blacktriangleright recycled inequalities are often facet-defining for $\mathcal{C}^{\mathrm{ROB}}$
- for simplicity: assume $\hat{c}_i > 0$ for all $i \in N$

Let $\sum_{i \in N} \pi_i x_i \leq \pi_0$ be a recyclable inequality. Let $S = \{i \in N | \pi_i > 0\}$ be its support and $F = \{x \in C^{\text{NOM}} | \sum_{i \in N} \pi_i x_i = \pi_0\}$ be its nominal face. The corresponding recycled inequality is facet-defining for C^{ROB} if and only if

 $\dim\left(\operatorname{proj}_{S}\left(F\right)\right) = |S| - 1.$



Assume that \mathcal{C}^{NOM} is full-dimensional. If $\sum_{i \in N} \pi_i x_i \leq \pi_0$ is recyclable and facet-defining for \mathcal{C}^{NOM} , then its recycled inequality is facet-defining for \mathcal{C}^{ROB} .

Assume that \mathcal{C}^{NOM} is full-dimensional. If $\sum_{i \in N} \pi_i x_i \leq \pi_0$ is recyclable and facet-defining for \mathcal{C}^{NOM} , then its recycled inequality is facet-defining for \mathcal{C}^{ROB} .

corollary can be generalized to problems with lower dimension

Assume that \mathcal{C}^{NOM} is full-dimensional. If $\sum_{i \in N} \pi_i x_i \leq \pi_0$ is recyclable and facet-defining for \mathcal{C}^{NOM} , then its recycled inequality is facet-defining for \mathcal{C}^{ROB} .

corollary can be generalized to problems with lower dimension

Observation

Dominated inequalities can also yield facet-defining recycled inequalities.

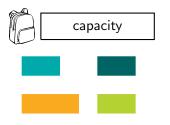
Assume that \mathcal{C}^{NOM} is full-dimensional. If $\sum_{i \in N} \pi_i x_i \leq \pi_0$ is recyclable and facet-defining for \mathcal{C}^{NOM} , then its recycled inequality is facet-defining for \mathcal{C}^{ROB} .

corollary can be generalized to problems with lower dimension

Observation

Dominated inequalities can also yield facet-defining recycled inequalities.

Robust Knapsack



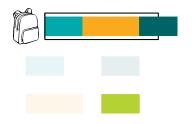
Assume that \mathcal{C}^{NOM} is full-dimensional. If $\sum_{i \in N} \pi_i x_i \leq \pi_0$ is recyclable and facet-defining for \mathcal{C}^{NOM} , then its recycled inequality is facet-defining for \mathcal{C}^{ROB} .

corollary can be generalized to problems with lower dimension

Observation

Dominated inequalities can also yield facet-defining recycled inequalities.

Robust Knapsack



• let
$$\sum_{i \in C} x_i \le |C| - 1$$
 be a minimal cover inequality

Assume that \mathcal{C}^{NOM} is full-dimensional. If $\sum_{i \in N} \pi_i x_i \leq \pi_0$ is recyclable and facet-defining for \mathcal{C}^{NOM} , then its recycled inequality is facet-defining for \mathcal{C}^{ROB} .

corollary can be generalized to problems with lower dimension

Observation

Dominated inequalities can also yield facet-defining recycled inequalities.

Robust Knapsack

- ▶ let $\sum_{i \in C} x_i \le |C| 1$ be a minimal cover inequality
- ▶ in general not facet-defining for knapsack

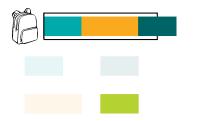
Assume that \mathcal{C}^{NOM} is full-dimensional. If $\sum_{i \in N} \pi_i x_i \leq \pi_0$ is recyclable and facet-defining for \mathcal{C}^{NOM} , then its recycled inequality is facet-defining for \mathcal{C}^{ROB} .

corollary can be generalized to problems with lower dimension

Observation

Dominated inequalities can also yield facet-defining recycled inequalities.

Robust Knapsack



- ▶ let $\sum_{i \in C} x_i \le |C| 1$ be a minimal cover inequality
- ▶ in general not facet-defining for knapsack

▶ but
$$\sum_{i \in C} p_i + (|C| - 1)z \ge \sum_{i \in C} \hat{c}_i x_i$$
 is always facet-defining for robust knapsack

C. Büsing

Solving Robust Binary Optimization Problem with Budget Uncertainty

▶ standard formulation + recycle constraints $\sum_{e \in \delta(v)} x_e \leq 1$ for all nodes v

- ▶ standard formulation + recycle constraints $\sum_{e \in \delta(v)} x_e \leq 1$ for all nodes v
- ▶ 10 random instances each for different numbers of nodes $n \in \{50, 100, 150\}$

- ▶ standard formulation + recycle constraints $\sum_{e \in \delta(v)} x_e \leq 1$ for all nodes v
- ▶ 10 random instances each for different numbers of nodes $n \in \{50, 100, 150\}$

	rob	ust standar	d formulat	ion	recycle constraints			
nodes	timeout	time	P-D	int σan	timeout	time	P-D	int. gap
			integral				integral	
50	0	1.73	0.04	19.53%	0	0.48	0.04	0.33%
100	9	2269.14	3.49	22.82%	0	4.50	0.16	0.32%
150	7	2223.68	2.56	23.66%	0	150.40	0.59	0.27%

- ▶ standard formulation + recycle constraints $\sum_{e \in \delta(v)} x_e \leq 1$ for all nodes v
- ▶ 10 random instances each for different numbers of nodes $n \in \{50, 100, 150\}$
- $\blacktriangleright\,$ closing integrality gap by $\sim 99\%$ for 150 nodes

	robust standard formulation					recycle constraints			
nodes	timeout	time	P-D	int gan	+:	timeout	time	P-D	int. gap
			integral			timeout		integral	
50	0	1.73	0.04	19.53%		0	0.48	0.04	0.33%
100	9	2269.14	3.49	22.82%		0	4.50	0.16	0.32%
150	7	2223.68	2.56	23.66%		0	150.40	0.59	0.27%

- ▶ standard formulation + recycle constraints $\sum_{e \in \delta(v)} x_e \leq 1$ for all nodes v
- ▶ 10 random instances each for different numbers of nodes $n \in \{50, 100, 150\}$
- $\blacktriangleright\,$ closing integrality gap by $\sim 99\%$ for 150 nodes
- $\blacktriangleright~\sim 504\text{-times}$ faster for 100 nodes and $\sim 15\text{-times}$ faster for 150 nodes

	rob	oust standar	d formulat	ion	recycle constraints				
nodes	timeout	time	P-D	int. gap	timeout	time	P-D	int. gap	
			integral		timeout	time	integral		
50	0	1.73	0.04	19.53%	0	0.48	0.04	0.33%	
100	9	2269.14	3.49	22.82%	0	4.50	0.16	0.32%	
150	7	2223.68	2.56	23.66%	0	150.40	0.59	0.27%	

- ▶ standard formulation + recycle constraints $\sum_{e \in \delta(v)} x_e \leq 1$ for all nodes v
- ▶ 10 random instances each for different numbers of nodes $n \in \{50, 100, 150\}$
- $\blacktriangleright\,$ closing integrality gap by $\sim 99\%$ for 150 nodes
- $\blacktriangleright~\sim 504\text{-times}$ faster for 100 nodes and $\sim 15\text{-times}$ faster for 150 nodes
- $\blacktriangleright \sim 22\text{-times smaller primal-dual integral for }100 \text{ nodes and } \sim 4\text{-times smaller for }150 \text{ nodes}$

	rob	ust standar	rd formulat	ion	recycle constraints			
nodoc	timeout	time	P-D	int con	timequit	time	P-D	int con
nodes	timeout	time	integral	int. gap	timeout	time	integral	int. gap
50	0	1.73	0.04	19.53%	0	0.48	0.04	0.33%
100	9	2269.14	3.49	22.82%	0	4.50	0.16	0.32%
150	7	2223.68	2.56	23.66%	0	150.40	0.59	0.27%

Conclusion

Summary

- B&B for robust optimization based on strong bilinear formulation
- uses many structural properties
- conducted extensive computational study
- B&B has significantly better performance compared to literature
- insights useful for improving existing approaches

Conclusion

Summary

- B&B for robust optimization based on strong bilinear formulation
- uses many structural properties
- conducted extensive computational study
- B&B has significantly better performance compared to literature
- insights useful for improving existing approaches

Future Work

- evaluate for uncertain constraints
- generalizable to other robustness concepts(?)

Conclusion

Summary

- B&B for robust optimization based on strong bilinear formulation
- uses many structural properties
- conducted extensive computational study
- B&B has significantly better performance compared to literature
- insights useful for improving existing approaches

Future Work

- evaluate for uncertain constraints
- generalizable to other robustness concepts(?)

Thank you for your attention!

C. Büsing

Solving Robust Binary Optimization Problem with Budget Uncertainty

