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Mixed Integer Non Linear Programming

(MINLP)

min f (x , y)
gi(x , y) ≤ 0 ∀i = 1, . . . ,m

x ∈ X
y ∈ Y

where f (x , y) : Rn → R, gi(x , y) : Rn → R ∀i = 1, . . . ,m,
X ⊆ Rn1 Y ⊆ Nn2 and n = n1 + n2.

Hypothesis: f and g can be written in a closed form and are
twice continuously differentiable functions.



Motivating Applications
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What is a convex MINLP?

Convex Mixed Integer NonLinear Programming (MINLP).

min f (x , y)
g(x , y) ≤ 0

x ∈ X = {x | x ∈ Rn1 ,Dx ≤ d , xL ≤ x ≤ xU}
y ∈ Y = {y | y ∈ Zn2 ,Ay ≤ a, yL ≤ y ≤ yU}

with f (x , y) : Rn1+n2 → R and g(x , y) : Rn1+n2 → Rm are
* continuous
* twice differentiable
* convex

functions.
▶ Local optima are also global optima.



Convex MINLP Algorithms

▶ Branch-and-Bound (BB).

▶ Outer-Approximation (OA).

▶ Generalized Benders Decomposition (GBD).

▶ Extended Cutting Plane (ECP).

▶ LP/NLP-based Branch-and-Bound (QG).

▶ Hybrid Algorithms (Hyb).

J. Kronqvist, D. E. Bernal, A. Lundell, I. E. Grossmann, A
review and comparison of solvers for convex MINLP,
Optimization and Engineering, 20 (2), pp. 397–455, 2019.
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Branch-and-Bound (BB)

NLP relaxation

min f (x , y)
g(x , y) ≤ 0

x ∈ X
y ∈ {y | Ay ≤ a}
yj ≤ αk

j j ∈ {1,2, . . . ,n2}

yj ≥ βk
j j ∈ {1,2, . . . ,n2}

k : current step of a Branch-and-Bound procedure;
αk : current lower bound on y (αk ≥ yL);
βk : current upper bound on y (βk ≤ yU ).



Branch-and-Bound (BB)
Gupta and Ravindran, 1985. Link BB for MILPs.
1: f∗ = +∞, Π = {P0}, LB(P0) = −∞ where P0 = NLP relaxation.
2: while Π ̸= ∅ do
3: Choose the current subproblem P ∈ Π, Π = Π \ {P}.
4: Solve P obtaining (x̄ , ȳ).
5: if P infeasible ∨ f (x̄ , ȳ) ≥ f∗ then
6: continue
7: end if
8: if ȳ ∈ Zn2 then
9: f∗ = f (x̄ , ȳ), (x∗, y∗) = (x̄ , ȳ).
10: Update Π potentially fathoming subproblems.
11: else
12: Take a fractional value ȳj and obtain two subproblems P1 = P with

α1
j = ⌊ȳj⌋ and P2 = P with β2

j = ⌊ȳj⌋+ 1.
13: LB(P1) = LB(P2) = f (x̄ , ȳ).
14: Π = Π

⋃
{P1,P2}.

15: end if
16: end while
17: return (x∗, y∗).
Fathoming is performed when:

▶ The subproblem solution is MINLP feasible (f∗).
▶ The subproblem is infeasible.
▶ The subproblem Pk has LB(Pk ) ≥ f∗.



Branch-and-Bound (BB)
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Branch-and-Bound (BB)

Proposition
If the functions f and g are convex and twice continuously
differentiable, X and Y are bounded, it follows that
branch-and-bound terminates at an optimal solution after
searching a finite number of nodes (or that the instance is
infeasible).

Proof.
▶ Every NLP node can be solved to global optimality
▶ As X and Y are bounded, the B&B tree is finite
▶ Thus, similar proof for MILP B&B (see Th. 24.1 of Schrijver

(1986)).
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Outer-Approximation (OA)

Duran and Grossmann, 1986.

min γ

f (xk
, yk ) + ∇f (xk

, yk )T
(

x − xk

y − yk

)
≤ γ ∀k

gi (x
k
, yk ) + ∇gi (x

k
, yk )T

(
x − xk

y − yk

)
≤ 0 ∀k ∀i ∈ Ik

x ∈ X

y ∈ Y .

Ik = {1,2, . . . ,m} ∀k = 1, . . . ,K .
NB. The linearization constraints of MILP relaxation are not
valid for non-convex MINLPs.



Outer-Approximation (OA)

MILP relaxation

min γ

f (xk , yk ) +∇f (xk , yk )T
(

x − xk

y − yk

)
≤ γ ∀k

gi(xk , yk ) +∇gi(xk , yk )T
(

x − xk

y − yk

)
≤ 0 ∀k ∀i ∈ Ik

x ∈ X
y ∈ Y .

where Ik ⊆ {1,2, . . . ,m}. Two “classical” choices:
▶ Ik = {1,2, . . . ,m}
▶ Ik = {i | g(xk , yk ) > 0,1 ≤ i ≤ m}



Outer-Approximation (OA)

1: K = 1, define an initial MILP relaxation, f ∗ = +∞,
LB= −∞.

2: while f ∗ ̸= LB do
3: Solve the current MILP relaxation (obtaining (xK , yK ))

and update LB.
4: Solve the current NLP restriction for yK .
5: if NLP restriction for yK infeasible then
6: Solve the infeasibility subproblem for yK .
7: else
8: if f (xK , yK ) < f ∗ then
9: f ∗ = f (xK , yK ), (x∗, y∗) = (xK , yK ).

10: end if
11: end if
12: Generate linearization cuts, update MILP relax.
13: K = K + 1.
14: end while
15: return (x∗, y∗)



NLP restriction and Feasibility subproblem

NLP restriction for a fixed yk :

min f (x , yk )

g(x , yk ) ≤ 0
x ∈ X .

Infeasibility subproblem for a fixed yk :

minu
g(x , yk ) ≤ u

x ∈ X
u ∈ R+.



Worst-case complexity of outer approximation

Hijazi, Bonami, Ouorou. An Outer-Inner Approximation for
separable MINLPs, INFORMS Journal on Computing (2014)

min0
n∑

i=1

(
xi −

1
2

)2

≤ n − 1
4

x ∈ {0,1}n

Figure: Source Belotti et al. (2013)
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Generalized Benders Decomposition (GBD)

Geoffrion, 1972.
Similar to OA, but with a different MILP relaxation, i.e.,
▶ x ∈ X is relaxed.
▶ Ik = {i | g(xk , yk ) = 0,1 ≤ i ≤ m} ∀k = 1, . . . ,K .

Proposition
Given the same set of K subproblems, the LB provided by the
MILP relaxation of OA is ≥ of the one provided by the MILP
relaxation of GDB.

Proof.
(Sketch of) It can be shown that the constraints of GDB MILP
relaxation are surrogate of the ones of OA MILP relaxation
(see, Quesada and Grossmann, 1992).
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Extended Cutting Plane (ECP)

Westerlund and Pettersson, 1995.

1: K = 1, obtain an initial MILP relaxation.
2: while do
3: Solve the MILP relaxation obtaining (xK , yK ).
4: if no constraint is violated by (xK , yK ) then
5: return (xK , yK ) (optimal solution).
6: else
7: Generate (some) new linearization constraints from

(xK , yK ) and update MILP relaxation.
8: end if
9: K = K + 1.

10: end while
More iterations needed wrt OA.
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LP/NLP-based Branch-and-Bound (QG)

Quesada and Grossmann, 1992.

1: Obtain an initial MILP relaxation.
2: Solve the MILP relaxation through BB for MILP, but,

anytime a MILP feasible solution is found
▶ Solve NLP restriction.
▶ Generate new linearization constraints.
▶ Update open MILP relaxation subproblems.

Link OA, but only 1 MILP relaxation is solved, and updated in
the tree search.

Finite convergence as for BB.



LP/NLP-based Branch-and-Bound (QG)
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Hybrid Algorithms (Hyb)

For example, Bonami et al., 2008 (BONMIN).

Very similar to Quesada and Grossmann, 1992, but NLP solved
not only when the node is integer feasible but also, for example,
any 10 nodes.

Pros : more “nonlinear” information added to the MILP
relaxation.
Cons : More NLP solved.

Alternative,

Abhishek et al., 2010 (FILMINT).
Very similar to Quesada and Grossmann, 1992, but add
linearization cuts not only when the node is integer feasible
(different strategies).
Pros : more “nonlinear” information added to the MILP
relaxation.
Cons : MILP relaxation more difficult to solve.



LP/NLP-based Branch-and-Bound (QG)

E.g., Bonami et al., 2008 with NLP every 2 nodes.
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Number of subproblems solved

# MILP # NLP note
BB 0 # nodes
OA # iterations # iterations

GBD # iterations # iterations 1

ECP # iterations 0
QG 1 1 + # explored MILP solutions

Hyb ALL10 1 1 + # explored MILP solutions 2

Hyb CMUIBM 1 [# explored MILP solutions,# nodes]

Table: Number of MILP and NLP subproblems solved by each
algorithm.

1weaker lower bound w.r.t. OA, MILP with less constraints than the one of
OA

2stronger lower bound w.r.t. QG, MILP with more constraints than the one
of QG
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MINLP branch-and-bound with local NLP solver

Branch-and-bound algorithm: solve continuous (NLP)
relaxation at each node of the search tree and branch on
variables.
NLP solver used:
Local NLP solvers → local optimum
No valid bound for nonconvex MINLPs.
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Outer Approximation and nonconvex MINLPs

Several methods for convex MINLPs use Outer
Approximation cuts (Duran and Grossman, 1986) which are
not exact for nonconvex MINLPs.

gi(x) ≤ 0 → gi(xk ) +∇gi(xk )T (
x − xk

)
≤ 0

where ∇g(xk ) is the Jacobian of g(x) evaluated at point (xk ).
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Spatial Branch-and-Bound

Falk and Soland (1969) “An algorithm for separable nonconvex
programming problems”.
25 years ago: first general-purpose “exact” algorithms for
nonconvex MINLP.
▶ Tree-like search
▶ Explores search space exhaustively but implicitly
▶ Builds a sequence of decreasing upper bounds and

increasing lower bounds to the global optimum
▶ Exponential worst-case
▶ Only general-purpose “exact” algorithm for MINLP

Since continuous vars are involved, should say
“ε-approximate”

▶ Like BB for MILP, but may branch on continuous vars
Done whenever one is involved in a nonconvex term



Spatial B&B: Example

Original problem P

Starting point x ′

Local (upper bounding) solution x∗

Convex relaxation (lower) bound f̄ with |f ∗ − f̄ | > ε

Branch at x = x̄ into C1,C2

Convex relaxation on C1: lower bounding solution x̄

localSolve. from x̄: new upper bounding solution x∗

|f ∗ − f̄ | > ε: branch at x = x̄

Repeat on C3: get x̄ = x∗ and |f ∗ − f̄ | < ε, no more branching

Repeat on C2: f̄ > f ∗ (can’t improve x∗ in C2)

Repeat on C4: f̄ > f ∗ (can’t improve x∗ in C4)

No more subproblems left, return x∗ and terminate

Pic by L. Liberti



Spatial B&B: Pruning

1. P was branched into C1,C2

2. C1 was branched into C3,C4

3. C3 was pruned by optimality
(x∗ ∈ G(C3) was found)

4. C2,C4 were pruned by bound
(lower bound for C2 worse than f ∗)

5. No more nodes: whole space explored, x∗ ∈ G(P)

▶ Search generates a tree
▶ Suproblems are nodes
▶ Nodes can be pruned by optimality, bound or infeasibility

(when subproblem is infeasible)
▶ Otherwise, they are branched



Spatial B&B: General idea

Aimed at solving “factorable functions”, i.e., f and g of the form:∑
h

∏
k

fhk (x , y)

where fhk (x , y) are univariate functions ∀h, k .

▶ Exact reformulation of MINLP so as to have “isolated
basic nonlinear functions” (additional variables and
constraints).

▶ Relax (linear/convex) the basic nonlinear terms (library of
envelopes/underestimators).

▶ Relaxation depends on variable bounds, thus branching
potentially strengthen it.
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Spatial B&B: exact reformulation to standard form

Consider a NLP for simplicity. Transform it in a standard form
like:

min c⊺(x ,w)

A(x ,w) ≤ b

wij = xi
⊗

xj for suitable i , j

x ∈ X
w ∈ W

where, for example,
⊗

∈ {sum, product, quotient, power,
exp, log, sin, cos, abs} (Couenne).
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Spatial B&B: convexification

Relax wij = xi
⊗

xj ∀ suitable i , j where
⊗

∈ {sum, product,
quotient, power, exp, log, sin, cos, abs} such that:

wij ≤ overestimator(xi
⊗

xj)

wij ≥ underestimator(xi
⊗

xj)

Convex relaxation is not the tightest possible, but built
automatically .
▶ Underestimator/overestimator of convex/concave function:

tangent cuts (OA)
▶ Odd powers or Trigonometric functions: separate intervals

in which function is convex or concave and do as for
convex/concave functions

▶ Product or Quotient: Mc Cormick relaxation



Spatial B&B: Examples of Convexifications

P. Belotti, J. Lee, L. Liberti, F. Margot, A. Wächter, “Branching
and bounds tightening techniques for non-convex MINLP”.
Optimization Methods and Software 24(4-5): 597-634 (2009).



Example: Standard Form Reformulation

min x2
1 + x1x2

x1 + x2 ≥ 1
x1 ∈ [0,1]
x2 ∈ [0,1]

becomes

minw1 + w2

w1 = x2
1

w2 = x1x2

x1 + x2 ≥ 1
x1 ∈ [0,1]
x2 ∈ [0,1]



Convex hull of pieces weaker than the whole convex
hull

Consider the following feasible
set:

x2
1 + x2

2 ≥ 1
x1, x2 ∈ [0,2]

Convex hull: x1 + x2 ≥ 1

Convex hull of standard form

x3 + x4 ≥ 1
x3 ≤ x2

1

x4 ≤ x2
1

x1, x2 ∈ [0,2]

Figure: Source Belotti et al. (2013)
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Expression trees

Representation of objective f and constraints g

Encode mathematical expressions in trees or DAGs

E.g. x2
1 + x1x2:

+
H
HH

�
��

ˆ ∗
HH��

2x1

HH��
x2x1
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Convex MINLP Solvers

▶ ALPHA-ECP: https://www.gams.com/latest/docs/S_ALPHAECP.html

▶ AOA: https://www.aimms.com/english/developers/resources/solvers/aoa

▶ BONMIN: https://projects.coin-or.org/Bonmin

▶ DICOPT: https://www.gams.com/24.8/docs/solvers/dicopt/index.html

▶ FilMINT: https://www.mcs.anl.gov/~leyffer/papers/fm.pdf

▶ Juniper: https://www.github.com/lanl-ansi/juniper.jl

▶ LAGO: https://projects.coin-or.org/LaGO

▶ MINLPBB: https://www-unix.mcs.anl.gov/~leyffer/solvers.htm

▶ MINOTAUR: https://wiki.mcs.anl.gov/minotaur

▶ Muriqui: http://www.wendelmelo.net/software

▶ Pavito: https://www.github.com/juliaopt/pavito.jl

▶ SBB: https://www.gams.com/latest/docs/S_SBB.html

▶ SHOT: https://github.com/coin-or/shot

▶ ...

https://www.gams.com/latest/docs/S_ALPHAECP.html
https://www.aimms.com/english/developers/resources/solvers/aoa
https://projects.coin-or.org/Bonmin
https://www.gams.com/24.8/docs/solvers/dicopt/index.html
https://www.mcs.anl.gov/~leyffer/papers/fm.pdf
https://www.github.com/lanl-ansi/juniper.jl
https://projects.coin-or.org/LaGO
https://www-unix.mcs.anl.gov/~leyffer/solvers.htm
https://wiki.mcs.anl.gov/minotaur
http://www.wendelmelo.net/software
https://www.github.com/juliaopt/pavito.jl
https://www.gams.com/latest/docs/S_SBB.html
https://github.com/coin-or/shot


Convex MINLP solvers comparison



Convex MINLP solvers comparison



Nonconvex MINLP Solvers



Modeling Languages

Modeling languages, e.g., AMPL, GAMS, JUMP, PYOMO, etc.
Example:

param N;
set VARS ordered := {1..N};
param Umax default 100;
param U {j in VARS};
param a {j in VARS};
param b {j in VARS};
param c {j in VARS};
param d {j in VARS};
param w{VARS};
param C;
var x {j in VARS} >= 0, <= U[j], integer;

maximize Total_Profit:
sum {j in VARS} c[j]/(1+b[j]*exp(-a[j]*(x[j]+d[j])));

subject to KP_constraint: sum{j in VARS} w[j]*x[j] <= C;



Neos

NEOS: http://www.neos-server.org/neos/.

http://www.neos-server.org/neos/
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Conclusions

▶ Methods for convex MINLP

▶ Methods for nonconvex MINLP

▶ Perspectives
▶ Best way to reformulate , then convexify ?

▶ Tailored convexification techniques for relevant classes of
MINLP

▶ Valid inequalities to strengthen the convexification

▶ Branching strategies

▶ . . .
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