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Introduction



Mixed Integer Non Linear Programming

(MINLP)

min f(x, y)
gilx,y) < 0 Vi=1,....m
xe X
yeyY

where f(x,y) :R" - R, gi(x,y) :R" - RVi=1,...,m,
XCRM™YCN2andn=ny+ no.

Hypothesis: f and g can be written in a closed form and are
twice continuously differentiable functions.



Motivating Applications

Principle of a pumped-storage power plant
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Convex MINLP methods



What is a convex MINLP?

Convex Mixed Integer NonLinear Programming (MINLP).

min f(x, y)
glx,y) < 0
x € X={x|xeR" Dx<d xt<x<xY}
y € Y={ylyez® Ay<ay-<y<yY}

with f(x,y) : Rm*™ — R and g(x,y) : RM" "% — R™ are
* continuous
* twice differentiable
* convex
functions.
> Local optima are also global optima.



Convex MINLP Algorithms

» Branch-and-Bound (BB).
» QOuter-Approximation (OA).
» Generalized Benders Decomposition (GBD).
» Extended Cutting Plane (ECP).
» LP/NLP-based Branch-and-Bound (QG).
» Hybrid Algorithms (Hyb).
J. Krongvist, D. E. Bernal, A. Lundell, I. E. Grossmann, A

review and comparison of solvers for convex MINLP,
Optimization and Engineering, 20 (2), pp. 397—455, 2019.



Convex MINLP methods
Branch-and-Bound



Branch-and-Bound (BB)

NLP relaxation

min f(x, y)
glx,y) < 0
x € X
y € {ylAr<a}
yi < of je{1,2,...,m}
yi > Bf je{1,2,...,n)}

k: current step of a Branch-and-Bound procedure;
oX: current lower bound on y (af > ytb);
K current upper bound on y (3% < yY).



Branch-and-Bound (BB)

Gupta and Ravindran, 1985. Link BB for MILPs.

1: f* = 400, M= {PO}, LB(P®) = —oco where P° = NLP relaxation.
2: while M # 0 do

3:  Choose the current subproblem P € M, M = N\ {P}.

4:  Solve P obtaining (X, y).

5: if Pinfeasible v f(X,y) > f* then

6: continue

7: endif

8: ify€Z™ then

9: *=1xy), (x*,y*) = (X, ¥).

10: Update MM potentially fathoming subproblems.

11:  else

12: Take a fractional value y; and obtain two subproblems P! = P with
af = ) and P? = P with 82 = |;] + 1.

13: LB(P‘) = LB(P2) = (X, 7).

14: n=ny{r', P?}.

15:  endif

16: end while

17: return (x*,y*).

Fathoming is performed when:
» The subproblem solution is MINLP feasible (f*).
> The subproblem is infeasible.
> The subproblem PX has LB(P) > f*.



Branch-and-Bound (BB)




Branch-and-Bound (BB)

Proposition

If the functions f and g are convex and twice continuously
differentiable, X and Y are bounded, it follows that
branch-and-bound terminates at an optimal solution after
searching a finite number of nodes (or that the instance is
infeasible).

Proof.
» Every NLP node can be solved to global optimality
» As X and Y are bounded, the B&B tree is finite
» Thus, similar proof for MILP B&B (see Th. 24.1 of Schrijver

(1986)).
L]



Convex MINLP methods

Outer-Approximation



Outer-Approximation (OA)

Duran and Grossmann, 1986.

.

min ~y
‘ k
4‘ 5 f 8 & & f(xk,y“)w«xk,y“)’( ;’;k ) < v vk
/_“‘)\ . -
* * ‘{:4\‘*‘:,, ok
'k B ai(x*, y¥) + vgi(xk, y)T < ; ;k vkvi e Ik
e Y- -

——
. =

< x —
IN
(=}

o6

K={1,2,.... m}vk=1,... K.
NB. The linearization constraints of MILP relaxation are not
valid for non-convex MINLPs.



Outer-Approximation (OA)

MILP relaxation

min ~y
k k k iyt [ X — XK
VI (50 ) <
y—-y
vk kK vk KT X — x¥ .k
9i(x*, ") + Vgi(x*, y") y_yk ) S0 Vkvicl
x € X
y € Y.
where /K C {1,2,..., m}. Two “classical’ choices:

> F={1,2,...,m}
> = {/lg( y9)>0,1<i<m}



Outer-Approximation (OA)

1: K =1, define an initial MILP relaxation, f* = +oc,

LB= —oc.

2: while f* # LB do

3:

9:
10:
11:
12:
13:

o N gk

Solve the current MILP relaxation (obtaining (xX, yX))
and update LB.
Solve the current NLP restriction for yX.
if NLP restriction for yX infeasible then

Solve the infeasibility subproblem for yX.
else

if f(xX, yK) < f* then

fr=f(x,y5), (0, y) = (X5, 5.

end if
end if
Generate linearization cuts, update MILP relax.
K=K+1.

14: end while
15: return (x*, y*)



NLP restriction and Feasibility subproblem

NLP restriction for a fixed y*:

Infeasibility subproblem for a fixed y*:

min U
gy < u
x € X
u € Ry



Worst-case complexity of outer approximation

Hijazi, Bonami, Ouorou. An Outer-Inner Approximation for
separable MINLPs, INFORMS Journal on Computing (2014)

min 0
i(" 1)2 _ n-1
— 2 = 4
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Figure: Source Belotti et al. (2013)



Convex MINLP methods

Generalized Benders Decomposition



Generalized Benders Decomposition (GBD)

Geoffrion, 1972.
Similar to OA, but with a different MILP relaxation, i.e.,

» x € X is relaxed.
> F={i|g(x¥,yk)=0,1<i<m}vk=1,... K.

Proposition

Given the same set of K subproblems, the LB provided by the
MILP relaxation of OA is > of the one provided by the MILP
relaxation of GDB.

Proof.

(Sketch of) It can be shown that the constraints of GDB MILP
relaxation are surrogate of the ones of OA MILP relaxation
(see, Quesada and Grossmann, 1992). O



Convex MINLP methods

Extended Cutting Plane



Extended Cutting Plane (ECP)

Westerlund and Pettersson, 1995.

: K =1, obtain an initial MILP relaxation.

while do
Solve the MILP relaxation obtaining (xX, y¥).
if no constraint is violated by (xX, y%) then

return (xX, y¥) (optimal solution).
else
Generate (some) new linearization constraints from
(x¥, yX) and update MILP relaxation.
8: endif
99 K=K-+1.
10: end while
More iterations needed wrt OA.

N g s



Convex MINLP methods

LP/NLP-based Branch-and-Bound



LP/NLP-based Branch-and-Bound (QG)

Quesada and Grossmann, 1992.

1: Obtain an initial MILP relaxation.
2: Solve the MILP relaxation through BB for MILP, but,
anytime a MILP feasible solution is found

» Solve NLP restriction.

> Generate new linearization constraints.

» Update open MILP relaxation subproblems.
Link OA, but only 1 MILP relaxation is solved, and updated in
the tree search.

Finite convergence as for BB.



LP/NLP-based Branch-and-Bound (QG)

LB=18
yr =1 y1=0
LB =20 @
hj/ \}/E:O
=21 =22



Convex MINLP methods

Hybrid Algorithms



Hybrid Algorithms (Hyb)

For example, Bonami et al., 2008 (BONMIN).

Very similar to Quesada and Grossmann, 1992, but NLP solved
not only when the node is integer feasible but also, for example,
any 10 nodes.

Pros : more “nonlinear” information added to the MILP
relaxation.
Cons : More NLP solved.

Alternative,

Abhishek et al., 2010 (FILMINT).

Very similar to Quesada and Grossmann, 1992, but add
linearization cuts not only when the node is integer feasible
(different strategies).

Pros : more “nonlinear” information added to the MILP
relaxation.

Cons : MILP relaxation more difficult to solve.




LP/NLP-based Branch-and-Bound (QG)

E.g., Bonami et al., 2008 with NLP every 2 nodes.

LB=18
LB =24
}’2j/ \YE:O

@ &

f* =26 0



Number of subproblems solved

# MILP # NLP note
BB 0 # nodes
OA |# iterations # iterations
GBD |# iterations # iterations 1
ECP |# iterations 0
QG 1 1 + # explored MILP solutions
Hyb ALL10 1 1 + # explored MILP solutions |2
Hyb CMUIBM 1 [# explored MILP solutions,# nodes]

Table: Number of MILP and NLP subproblems solved by each
algorithm.

Tweaker lower bound w.r.t. OA, MILP with less constraints than the one of
OA

2stronger lower bound w.r.t. QG, MILP with more constraints than the one
of QG



Applying convex MINLP methods to nonconvex MINLPs?



MINLP branch-and-bound with local NLP solver

Branch-and-bound algorithm: solve continuous (NLP)
relaxation at each node of the search tree and branch on
variables.

NLP solver used:

Local NLP solvers — local optimum

No valid bound for nonconvex MINLPs.

“LB” =30 LB8"-30

@ =0 -1
¥ =1 =0 r 4
“B" =35 “LB" =35
* _
}K % =31

f* =261 ]



Outer Approximation and nonconvex MINLPs

Several methods for convex MINLPs use Outer
Approximation cuts (Duran and Grossman, 1986) which are
not exact for nonconvex MINLPs.

gix) <0 = gi(x)+Va(x)T (x—x*) <0

where Vg(x¥) is the Jacobian of g(x) evaluated at point (x*).

| o
(x0.90)
| \



Global Optimization Methods
Spatial Branch-and-Bound



Spatial Branch-and-Bound

Falk and Soland (1969) “An algorithm for separable nonconvex
programming problems”.

25 years ago: first general-purpose “exact” algorithms for
nonconvex MINLP.

>
>
>

Tree-like search

Explores search space exhaustively but implicitly
Builds a sequence of decreasing upper bounds and
increasing lower bounds to the global optimum
Exponential worst-case

Only general-purpose “exact” algorithm for MINLP
Since continuous vars are involved, should say
“c-approximate”

Like BB for MILP, but may branch on continuous vars
Done whenever one is involved in a nonconvex term



Spatial

ai 2 a3 ad

Original problem P

RPN




Spatial B&B: Pruning

1. P was branched into Cy, C»
2. Cq was branched into Cs, C4

3. Csz was pruned by optimality
(x* € G(C3) was found)

4. C,, C4 were pruned by bound
(lower bound for Co worse than f*)

5. No more nodes: whole space explored, x* € G(P)

» Search generates a tree
» Suproblems are nodes

» Nodes can be pruned by optimality, bound or infeasibility
(when subproblem is infeasible)

» Otherwise, they are branched



Spatial B&B: General idea

Aimed at solving “factorable functions”, i.e., f and g of the form:
S I fw(x.y)
h Kk

where fux(x, y) are univariate functions Vh, k.

» Exact reformulation of MINLP so as to have “isolated
basic nonlinear functions” (additional variables and
constraints).

» Relax (linear/convex) the basic nonlinear terms (library of
envelopes/underestimators).

» Relaxation depends on variable bounds, thus branching
potentially strengthen it.



Global Optimization Methods

Spatial Branch-and-Bound
Standard form



Spatial B&B: exact reformulation to standard form

Consider a NLP for simplicity. Transform it in a standard form
like:

min CcT(x, w)
A(x, w) b
wj = x)x forsuitable i, j
x € X
w e W

IN

where, for example, Q) € {sum, product, quotient, power,
exp, log, sin, cos, abs} (Couenne).



Global Optimization Methods
Spatial Branch-and-Bound

Convexification



Spatial B&B: convexification

Relax w; = x; @ x; V suitable /,j where &) € {sum, product,
quotient, power, exp, log, sin, cos, abs} such that:

wj < overestimator(x,-®xj)

wj > underestimator(x; (X) X))

Convex relaxation is not the tightest possible, but built
automatically .
» Underestimator/overestimator of convex/concave function:
tangent cuts (OA)
» Odd powers or Trigonometric functions: separate intervals
in which function is convex or concave and do as for
convex/concave functions

» Product or Quotient: Mc Cormick relaxation



Spatial B&B: Examples of Convexifications

T

(b) z2 = log xy

P. Belotti, J. Lee, L. Liberti, F. Margot, A. Wachter, “Branching
and bounds tightening techniques for non-convex MINLP”.
Optimization Methods and Software 24(4-5): 597-634 (2009).



Example: Standard Form Reformulation

min X2 4 X4 Xp
X1 +X2 =

xy € [0,1]
Xo €

becomes

min Wy + Wo
Wy = X

W = XiXo

X1+ X2

X1

m m v
S
—

Xo



Convex hull of pieces weaker than the whole convex

hull
Consider the following feasible Convex hull of standard form
set:
o o X3+Xx4 > 1
X{ + X5 > 1 X3 < X-|2
X1, % € [0,2] Xy < X3
Convex hull: xq + x > 1 x1,X2 € [0,2]

z1

Figure: Source Belotti et al. (2013)



Global Optimization Methods
Spatial Branch-and-Bound

Expression trees



Expression trees

Representation of objective f and constraints g

Encode mathematical expressions in trees or DAGs
E.g. X2 + Xy Xo:
+

X1 2 X1 X2



Practical Tools



Convex MINLP Solvers

VV VYV VvV VYV VVYyVVvVVYYVYY

ALPHA-ECP: https://www.gams.com/latest/docs/S_ALPHAECP.html
AOA: https://www.aimms.com/english/developers/resources/solvers/aoa
BONMIN: https://projects.coin-or.org/Bonmin

DICOPT: https://www.gams.com/24.8/docs/solvers/dicopt/index.html
FilMINT: https://www.mcs.anl.gov/~leyffer/papers/fm.pdf
Juniper: https://www.github.com/lanl-ansi/juniper.jl

LAGO: https://projects.coin-or.org/LaGO

MINLPBB: https://www-unix.mcs.anl.gov/~leyffer/solvers.htm
MINOTAUR: https://wiki.mes.anl.gov/minotaur

Muriqui: http://waw.wendelmelo.net/software

Pavito: https://www.github.com/juliaopt/pavito.jl

SBB: https://www.gams.com/latest/docs/S_SBB.html

SHOT https://github.com/coin-or/shot


https://www.gams.com/latest/docs/S_ALPHAECP.html
https://www.aimms.com/english/developers/resources/solvers/aoa
https://projects.coin-or.org/Bonmin
https://www.gams.com/24.8/docs/solvers/dicopt/index.html
https://www.mcs.anl.gov/~leyffer/papers/fm.pdf
https://www.github.com/lanl-ansi/juniper.jl
https://projects.coin-or.org/LaGO
https://www-unix.mcs.anl.gov/~leyffer/solvers.htm
https://wiki.mcs.anl.gov/minotaur
http://www.wendelmelo.net/software
https://www.github.com/juliaopt/pavito.jl
https://www.gams.com/latest/docs/S_SBB.html
https://github.com/coin-or/shot

Convex MINLP solvers comparison

MILP decomposition based solvers
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Convex MINLP solvers comparison

Number of instances solved

Branch and bound type solvers
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Nonconvex MINLP Solvers

10 Jul 2023

Mixed Integer Nonlinear Programming Benchmark (MINLPLIB)

H. Mittelmann (mittelmann@asu.edu)

The following codes were run through GAMS with a limit of 2 hours on these instances from
MINILPLIB and with eight threads on an Intel i7-11700K, 64GB, 3.6GHz. All problems were solved GLOBALLY.

Description of selection process of benchmark instances. Statistics of the instances.

B B o S B B R
Unscaled and scaled shifted geometric means of run times

Feasibility tolerance set to 1e-6. All non-successes are counted as max-time.
The second line lists the number of problems (87 total) solved.

ANTIGONE BARON COUENNE LINDO OCTERACT SCIP
unscaled 1447.1 86.2 3304.4 1208.9 36.8 380.5
scaled 39.3 2.3 89.8 32.8 1.0 10.3
solved 53 77 24 42 87 64

Since Octeract will be removed from GAMS, it will be frozen at version 4.7.1



Modeling Languages

Modeling languages, e.g., AMPL, GAMS, JUMP, PYOMO, etc.
Example:

param Nj;

set VARS ordered := {1..N};
param Umax default 100;
param U {3j in VARS};

param a {j in VARS};

param b {j in VARS};

param ¢ {j in VARS};

param d {j in VARS};

param w{VARS};

param C;

var X {j in VARS} >= 0, <= U[]J], integer;

maximize Total_Profit:
sum {j in VARS} c[j]/(l+b[jl*exp(-aljl*(X[F1+d[3]1)));

subject to KP_constraint: sum{j in VARS} w[jl*X[j] <= C;



Neos
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Conclusions



Conclusions

» Methods for convex MINLP

» Methods for nonconvex MINLP
> Perspectives
»> Best way to reformulate , then convexify ?

» Tailored convexification techniques for relevant classes of
MINLP

» Valid inequalities to strengthen the convexification
» Branching strategies
> ...
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