A short tutorial on methods for mixed integer non linear programming

Claudia D'Ambrosio

LIX, CNRS \& École Polytechnique Institut Polytechnique de Paris

12ème journée du GT OR

Outline

IntroductionConvex MINLP methodsBranch-and-BoundOuter-ApproximationGeneralized Benders Decomposition
Extended Cutting Plane
LP/NLP-based Branch-and-Bound
Hybrid Algorithms
Applying convex MINLP methods to nonconvex MINLPs?
Global Optimization Methods
Spatial Branch-and-Bound
Standard form
ConvexificationExpression trees
Practical Tools
Conclusions

Outline

Introduction
Convex MINLP methods
Branch-and-Bound
Outer-Approximation
Generalized Benders Decomposition
Extended Cutting Plane
LP/NLP-based Branch-and-Bound
Hybrid Algorithms
Applying convex MINLP methods to nonconvex MINLPs?
Global Optimization Methods
Spatial Branch-and-Bound
Standard formConvexificationExpression trees
Practical Tools
Conclusions

Mixed Integer Non Linear Programming

(MINLP)

$$
\begin{array}{r}
\min f(x, y) \\
g_{i}(x, y) \leq 0 \quad \forall i=1, \ldots, m \\
x \in X \\
y \in Y
\end{array}
$$

where $f(x, y): \mathbb{R}^{n} \rightarrow \mathbb{R}, g_{i}(x, y): \mathbb{R}^{n} \rightarrow \mathbb{R} \forall i=1, \ldots, m$, $X \subseteq \mathbb{R}^{n_{1}} Y \subseteq \mathbb{N}^{n_{2}}$ and $n=n_{1}+n_{2}$.

Hypothesis: f and g can be written in a closed form and are twice continuously differentiable functions.

Motivating Applications

Outline

Introduction

Convex MINLP methods
Branch-and-Bound
Outer-Approximation
Generalized Benders Decomposition
Extended Cutting Plane
LP/NLP-based Branch-and-Bound
Hybrid Algorithms
Applying convex MINLP methods to nonconvex MINLPs?
Global Optimization Methods
Spatial Branch-and-Bound
Standard form
Convexification
Expression trees
Practical Tools
Conclusions

What is a convex MINLP?

Convex Mixed Integer NonLinear Programming (MINLP).

$$
\begin{aligned}
\min f(x, y) & \\
g(x, y) & \leq 0 \\
x & \in X=\left\{x \mid x \in \mathbb{R}^{n_{1}}, D x \leq d, x^{L} \leq x \leq x^{U}\right\} \\
y & \in Y=\left\{y \mid y \in \mathbb{Z}^{n_{2}}, A y \leq a, y^{L} \leq y \leq y^{U}\right\}
\end{aligned}
$$

with $f(x, y): \mathbb{R}^{n_{1}+n_{2}} \rightarrow \mathbb{R}$ and $g(x, y): \mathbb{R}^{n_{1}+n_{2}} \rightarrow \mathbb{R}^{m}$ are

* continuous
* twice differentiable
* convex
functions.
- Local optima are also global optima.

Convex MINLP Algorithms

- Branch-and-Bound (BB).
- Outer-Approximation (OA).
- Generalized Benders Decomposition (GBD).
- Extended Cutting Plane (ECP).
- LP/NLP-based Branch-and-Bound (QG).
- Hybrid Algorithms (Hyb).
J. Kronqvist, D. E. Bernal, A. Lundell, I. E. Grossmann, A review and comparison of solvers for convex MINLP, Optimization and Engineering, 20 (2), pp. 397-455, 2019.

Outline

IntroductionConvex MINLP methodsBranch-and-BoundOuter-ApproximationGeneralized Benders Decomposition
Extended Cutting Plane
LP/NLP-based Branch-and-BoundHybrid Algorithms
Applying convex MINLP methods to nonconvex MINLPs?
Global Optimization Methods
Spatial Branch-and-Bound
Standard formConvexificationExpression trees
Practical Tools
Conclusions

Branch-and-Bound (BB)

NLP relaxation

$$
\begin{array}{rlrl}
\min f(x, y) & & \\
g(x, y) & \leq 0 & \\
x & \in X & \\
y & \in\{y \mid A y \leq a\} & \\
y_{j} & \leq \alpha_{j}^{k} & j \in\left\{1,2, \ldots, n_{2}\right\} \\
y_{j} & \geq \beta_{j}^{k} & j \in\left\{1,2, \ldots, n_{2}\right\}
\end{array}
$$

k : current step of a Branch-and-Bound procedure;
α^{k} : current lower bound on $y\left(\alpha^{k} \geq y^{L}\right)$;
β^{k} : current upper bound on $y\left(\beta^{k} \leq y^{U}\right)$.

Branch-and-Bound (BB)

Gupta and Ravindran, 1985. Link BB for MILPs.
1: $f^{*}=+\infty, \Pi=\left\{P^{0}\right\}, L B\left(P^{0}\right)=-\infty$ where $P^{0}=$ NLP relaxation.
2: while $\Pi \neq \emptyset$ do
3: \quad Choose the current subproblem $P \in \Pi, \Pi=\Pi \backslash\{P\}$.
4: \quad Solve P obtaining (\bar{x}, \bar{y}).
5: \quad if P infeasible $\vee f(\bar{x}, \bar{y}) \geq f^{*}$ then
6: continue
7: end if
8: \quad if $\bar{y} \in \mathbb{Z}^{n_{2}}$ then
9: $\quad f^{*}=f(\bar{x}, \bar{y}),\left(x^{*}, y^{*}\right)=(\bar{x}, \bar{y})$.
10: Update Π potentially fathoming subproblems.
11: else
12: \quad Take a fractional value \bar{y}_{j} and obtain two subproblems $P^{1}=P$ with $\alpha_{j}^{1}=\left\lfloor\bar{y}_{j}\right\rfloor$ and $P^{2}=P$ with $\beta_{j}^{2}=\left\lfloor\bar{y}_{j}\right\rfloor+1$.
13: $\quad L B\left(P^{1}\right)=\angle B\left(P^{2}\right)=f(\bar{x}, \bar{y})$.
14: $\quad \Pi=\Pi \bigcup\left\{P^{1}, P^{2}\right\}$.
15: end if
16: end while
17: return $\left(x^{*}, y^{*}\right)$.
Fathoming is performed when:

- The subproblem solution is MINLP feasible (f^{*}).
- The subproblem is infeasible.
- The subproblem P^{k} has $L B\left(P^{k}\right) \geq f^{*}$.

Branch-and-Bound (BB)

Branch-and-Bound (BB)

Proposition

If the functions f and g are convex and twice continuously differentiable, X and Y are bounded, it follows that branch-and-bound terminates at an optimal solution after searching a finite number of nodes (or that the instance is infeasible).

Proof.

- Every NLP node can be solved to global optimality
- As X and Y are bounded, the B\&B tree is finite
- Thus, similar proof for MILP B\&B (see Th. 24.1 of Schrijver (1986)).

Outline

Introduction
Convex MINLP methodsBranch-and-Bound
Outer-Approximation
Generalized Benders Decomposition
Extended Cutting Plane
LP/NLP-based Branch-and-BoundHybrid Algorithms
Applying convex MINLP methods to nonconvex MINLPs?
Global Optimization Methods
Spatial Branch-and-Bound
Standard formConvexificationExpression trees
Practical Tools
Conclusions

Outer-Approximation (OA)

Duran and Grossmann, 1986.

$$
\begin{aligned}
\min \gamma & \\
f\left(x^{k}, y^{k}\right)+\nabla f\left(x^{k}, y^{k}\right)^{T}\binom{x-x^{k}}{y-y^{k}} & \leq \quad \gamma \quad \forall k \\
g_{i}\left(x^{k}, y^{k}\right)+\nabla g_{i}\left(x^{k}, y^{k}\right)^{T}\binom{x-x^{k}}{y-y^{k}} & \leq 0 \quad \forall k \forall i \in I^{k} \\
x & \in x \\
y & \in \quad Y .
\end{aligned}
$$

$I^{k}=\{1,2, \ldots, m\} \forall k=1, \ldots, K$.

NB. The linearization constraints of MILP relaxation are not valid for non-convex MINLPs.

Outer-Approximation (OA)

MILP relaxation

$$
\begin{aligned}
\min \gamma & \\
f\left(x^{k}, y^{k}\right)+\nabla f\left(x^{k}, y^{k}\right)^{T}\binom{x-x^{k}}{y-y^{k}} & \leq \gamma \quad \forall k \\
g_{i}\left(x^{k}, y^{k}\right)+\nabla g_{i}\left(x^{k}, y^{k}\right)^{T}\binom{x-x^{k}}{y-y^{k}} & \leq 0 \quad \forall k \forall i \in I^{k} \\
x & \in X \\
y & \in Y .
\end{aligned}
$$

where $I^{k} \subseteq\{1,2, \ldots, m\}$. Two "classical" choices:

- $I^{k}=\{1,2, \ldots, m\}$
- $I^{k}=\left\{i \mid g\left(x^{k}, y^{k}\right)>0,1 \leq i \leq m\right\}$

Outer-Approximation (OA)

1: $K=1$, define an initial MILP relaxation, $f^{*}=+\infty$,
$\mathrm{LB}=-\infty$.
2: while $f^{*} \neq \mathrm{LB}$ do
3: \quad Solve the current MILP relaxation (obtaining $\left(x^{K}, y^{K}\right)$) and update LB.
4: Solve the current NLP restriction for y^{K}.
5: if NLP restriction for y^{K} infeasible then
6: \quad Solve the infeasibility subproblem for y^{K}.
7: else
8: if $f\left(x^{K}, y^{K}\right)<f^{*}$ then
9: $\quad f^{*}=f\left(x^{K}, y^{K}\right),\left(x^{*}, y^{*}\right)=\left(x^{K}, y^{K}\right)$.
10: end if
11: end if
12: Generate linearization cuts, update MILP relax.
13: $\quad K=K+1$.
14: end while
15: return $\left(x^{*}, y^{*}\right)$

NLP restriction and Feasibility subproblem

NLP restriction for a fixed y^{k} :

$$
\begin{aligned}
\min f\left(x, y^{k}\right) & \\
g\left(x, y^{k}\right) & \leq 0 \\
x & \in X
\end{aligned}
$$

Infeasibility subproblem for a fixed y^{k} :

$$
\begin{aligned}
\min u & \\
g\left(x, y^{k}\right) & \leq u \\
x & \in x \\
u & \in \mathbb{R}_{+} .
\end{aligned}
$$

Worst-case complexity of outer approximation

Hijazi, Bonami, Ouorou. An Outer-Inner Approximation for separable MINLPs, INFORMS Journal on Computing (2014)

$$
\begin{aligned}
\sum_{i=1}^{n}\left(x_{i}-\frac{1}{2}\right)^{2} & \leq \frac{n-1}{4} \\
x & \in\{0,1\}^{n}
\end{aligned}
$$

Figure: Source Belotti et al. (2013)

Outline

Introduction
Convex MINLP methods
Branch-and-Bound
Outer-Approximation
Generalized Benders Decomposition
Extended Cutting Plane
LP/NLP-based Branch-and-Bound
Hybrid Algorithms
Applying convex MINLP methods to nonconvex MINLPs?
Global Optimization Methods
Spatial Branch-and-Bound
Standard form
Convexification
Expression trees
Practical Tools
Conclusions

Generalized Benders Decomposition (GBD)

Geoffrion, 1972.
Similar to OA, but with a different MILP relaxation, i.e.,

- $x \in X$ is relaxed.
- $I^{k}=\left\{i \mid g\left(x^{k}, y^{k}\right)=0,1 \leq i \leq m\right\} \forall k=1, \ldots, K$.

Proposition
Given the same set of K subproblems, the LB provided by the MILP relaxation of OA is \geq of the one provided by the MILP relaxation of GDB.

Proof.
(Sketch of) It can be shown that the constraints of GDB MILP relaxation are surrogate of the ones of OA MILP relaxation (see, Quesada and Grossmann, 1992).

Outline

Introduction
Convex MINLP methods
Branch-and-Bound
Outer-Approximation
Generalized Benders Decomposition
Extended Cutting Plane
LP/NLP-based Branch-and-Bound
Hybrid Algorithms
Applying convex MINLP methods to nonconvex MINLPs?
Global Optimization Methods
Spatial Branch-and-Bound
Standard form
Convexification
Expression trees
Practical Tools
Conclusions

Extended Cutting Plane (ECP)

Westerlund and Pettersson, 1995.

1: $K=1$, obtain an initial MILP relaxation.
2: while do
3: \quad Solve the MILP relaxation obtaining $\left(x^{K}, y^{K}\right)$.
4: if no constraint is violated by $\left(x^{K}, y^{K}\right)$ then
5: return $\left(x^{K}, y^{K}\right)$ (optimal solution).
6: else
7: \quad Generate (some) new linearization constraints from $\left(x^{K}, y^{K}\right)$ and update MILP relaxation.
8: end if
9: $\quad K=K+1$.
10: end while
More iterations needed wrt OA.

Outline

Introduction
Convex MINLP methods
Branch-and-BoundOuter-ApproximationGeneralized Benders Decomposition
Extended Cutting Plane
LP/NLP-based Branch-and-Bound
Hybrid Algorithms
Applying convex MINLP methods to nonconvex MINLPs?
Global Optimization Methods
Spatial Branch-and-Bound
Standard formConvexificationExpression trees
Practical Tools
Conclusions

LP/NLP-based Branch-and-Bound (QG)

Quesada and Grossmann, 1992.
1: Obtain an initial MILP relaxation.
2: Solve the MILP relaxation through BB for MILP, but, anytime a MILP feasible solution is found

- Solve NLP restriction.
- Generate new linearization constraints.
- Update open MILP relaxation subproblems.

Link OA, but only 1 MILP relaxation is solved, and updated in the tree search.

Finite convergence as for BB.

LP/NLP-based Branch-and-Bound (QG)

Outline

Introduction
Convex MINLP methods
Branch-and-Bound
Outer-Approximation
Generalized Benders Decomposition
Extended Cutting Plane
LP/NLP-based Branch-and-Bound
Hybrid Algorithms
Applying convex MINLP methods to nonconvex MINLPs?
Global Optimization Methods
Spatial Branch-and-Bound
Standard form
Convexification
Expression trees
Practical Tools
Conclusions

Hybrid Algorithms (Hyb)

For example, Bonami et al., 2008 (BONMIN).
Very similar to Quesada and Grossmann, 1992, but NLP solved not only when the node is integer feasible but also, for example, any 10 nodes.

Pros : more "nonlinear" information added to the MILP relaxation.
Cons : More NLP solved.
Alternative,
Abhishek et al., 2010 (FILMINT).
Very similar to Quesada and Grossmann, 1992, but add linearization cuts not only when the node is integer feasible (different strategies).
Pros : more "nonlinear" information added to the MILP relaxation.
Cons : MILP relaxation more difficult to solve.

LP/NLP-based Branch-and-Bound (QG)

E.g., Bonami et al., 2008 with NLP every 2 nodes.

Number of subproblems solved

	\# MILP	\# NLP	note
BB	0	\# nodes	
OA	\# iterations	\# iterations	1
GBD	\# iterations	\# iterations	
ECP	\# iterations	0	
QG	1	$1+$ \# explored MILP solutions	2
Hyb ALL10	1	$1+$ \# explored MILP solutions	2
Hyb CMUIBM	1	\# explored MILP solutions,\# nodes]	

Table: Number of MILP and NLP subproblems solved by each algorithm.

[^0]
Outline

Introduction

Convex MINLP methods

Branch-and-Bound
Outer-Approximation
Generalized Benders Decomposition
Extended Cutting Plane
LP/NLP-based Branch-and-Bound
Hybrid Algorithms
Applying convex MINLP methods to nonconvex MINLPs?
Global Optimization Methods
Spatial Branch-and-Bound
Standard form
Convexification
Expression trees
Practical Tools
Conclusions

MINLP branch-and-bound with local NLP solver

Branch-and-bound algorithm: solve continuous (NLP) relaxation at each node of the search tree and branch on variables.
NLP solver used:
Local NLP solvers \rightarrow local optimum
No valid bound for nonconvex MINLPs.

Outer Approximation and nonconvex MINLPs

Several methods for convex MINLPs use Outer Approximation cuts (Duran and Grossman, 1986) which are not exact for nonconvex MINLPs.

$$
g_{i}(x) \leq 0 \quad \rightarrow \quad g_{i}\left(x^{k}\right)+\nabla g_{i}\left(x^{k}\right)^{T}\left(x-x^{k}\right) \leq 0
$$

where $\nabla g\left(x^{k}\right)$ is the Jacobian of $g(x)$ evaluated at point $\left(x^{k}\right)$.

Outline

Introduction
Convex MINLP methods
Branch-and-Bound
Outer-Approximation
Generalized Benders Decomposition
Extended Cutting Plane
LP/NLP-based Branch-and-Bound
Hybrid Algorithms
Applying convex MINLP methods to nonconvex MINLPs?
Global Optimization Methods
Spatial Branch-and-Bound
Standard form
Convexification
Expression trees
Practical Tools
Conclusions

Spatial Branch-and-Bound

Falk and Soland (1969) "An algorithm for separable nonconvex programming problems".
25 years ago: first general-purpose "exact" algorithms for nonconvex MINLP.

- Tree-like search
- Explores search space exhaustively but implicitly
- Builds a sequence of decreasing upper bounds and increasing lower bounds to the global optimum
- Exponential worst-case
- Only general-purpose "exact" algorithm for MINLP Since continuous vars are involved, should say " ε-approximate"
- Like BB for MILP, but may branch on continuous vars Done whenever one is involved in a nonconvex term

Spatial B\&B; Examnle

Original problem P

Spatial B\&B: Pruning

1. P was branched into C_{1}, C_{2}
2. C_{1} was branched into C_{3}, C_{4}
3. C_{3} was pruned by optimality ($x^{*} \in \mathcal{G}\left(C_{3}\right)$ was found)
4. C_{2}, C_{4} were pruned by bound (lower bound for C_{2} worse than f^{*})
5. No more nodes: whole space explored, $x^{*} \in \mathcal{G}(P)$

- Search generates a tree
- Suproblems are nodes
- Nodes can be pruned by optimality, bound or infeasibility (when subproblem is infeasible)
- Otherwise, they are branched

Spatial B\&B: General idea

Aimed at solving "factorable functions", i.e., f and g of the form:

$$
\sum_{h} \prod_{k} f_{h k}(x, y)
$$

where $f_{h k}(x, y)$ are univariate functions $\forall h, k$.

- Exact reformulation of MINLP so as to have "isolated basic nonlinear functions" (additional variables and constraints).
- Relax (linear/convex) the basic nonlinear terms (library of envelopes/underestimators).
- Relaxation depends on variable bounds, thus branching potentially strengthen it.

Outline

Introduction
Convex MINLP methods
Branch-and-Bound
Outer-Approximation
Generalized Benders Decomposition
Extended Cutting Plane
LP/NLP-based Branch-and-Bound
Hybrid Algorithms
Applying convex MINLP methods to nonconvex MINLPs?
Global Optimization Methods
Spatial Branch-and-Bound
Standard form
Convexification
Expression trees
Practical Tools
Conclusions

Spatial B\&B: exact reformulation to standard form

Consider a NLP for simplicity. Transform it in a standard form like:

$$
\begin{aligned}
\min c^{\top}(x, w) & \\
A(x, w) & \leq b \\
w_{i j} & =x_{i} \bigotimes x_{j} \quad \text { for suitable } i, j \\
x & \in X \\
w & \in W
\end{aligned}
$$

where, for example, $\otimes \in\{$ sum, product, quotient, power, exp, log, sin, cos, abs\} (Couenne).

Outline

Introduction
Convex MINLP methods
Branch-and-Bound
Outer-Approximation
Generalized Benders Decomposition
Extended Cutting Plane
LP/NLP-based Branch-and-Bound
Hybrid Algorithms
Applying convex MINLP methods to nonconvex MINLPs?
Global Optimization Methods
Spatial Branch-and-Bound
Standard form
Convexification
Expression trees
Practical Tools
Conclusions

Spatial B\&B: convexification

Relax $w_{i j}=x_{i} \otimes x_{j} \forall$ suitable i, j where $\otimes \in\{$ sum, product, quotient, power, $\exp , \log , \sin , \cos$, abs\} such that:

$$
\begin{aligned}
& w_{i j} \leq \text { overestimator }\left(x_{i} \bigotimes x_{j}\right) \\
& w_{i j} \geq \text { underestimator }\left(x_{i} \bigotimes x_{j}\right)
\end{aligned}
$$

Convex relaxation is not the tightest possible, but built automatically.

- Underestimator/overestimator of convex/concave function: tangent cuts (OA)
- Odd powers or Trigonometric functions: separate intervals in which function is convex or concave and do as for convex/concave functions
- Product or Quotient: Mc Cormick relaxation

Spatial B\&B: Examples of Convexifications

P. Belotti, J. Lee, L. Liberti, F. Margot, A. Wächter, "Branching and bounds tightening techniques for non-convex MINLP". Optimization Methods and Software 24(4-5): 597-634 (2009).

Example: Standard Form Reformulation

$$
\begin{aligned}
\min x_{1}^{2}+x_{1} x_{2} & \\
x_{1}+x_{2} & \geq 1 \\
x_{1} & \in[0,1] \\
x_{2} & \in[0,1]
\end{aligned}
$$

becomes

$$
\begin{aligned}
\min w_{1}+w_{2} & \\
w_{1} & =x_{1}^{2} \\
w_{2} & =x_{1} x_{2} \\
x_{1}+x_{2} & \geq 1 \\
x_{1} & \in[0,1] \\
x_{2} & \in[0,1]
\end{aligned}
$$

Convex hull of pieces weaker than the whole convex hull

Consider the following feasible set:

$$
\begin{aligned}
x_{1}^{2}+x_{2}^{2} & \geq 1 \\
x_{1}, x_{2} & \in[0,2]
\end{aligned}
$$

Convex hull of standard form

Convex hull: $x_{1}+x_{2} \geq 1$

$$
\begin{aligned}
x_{3}+x_{4} & \geq 1 \\
x_{3} & \leq x_{1}^{2} \\
x_{4} & \leq x_{1}^{2}
\end{aligned}
$$

$$
x_{1}, x_{2} \in[0,2]
$$

Figure: Source Belotti et al. (2013)

Outline

Introduction
Convex MINLP methods
Branch-and-Bound
Outer-Approximation
Generalized Benders Decomposition
Extended Cutting Plane
LP/NLP-based Branch-and-Bound
Hybrid Algorithms
Applying convex MINLP methods to nonconvex MINLPs?
Global Optimization Methods
Spatial Branch-and-Bound
Standard form
Convexification
Expression trees
Practical Tools
Conclusions

Expression trees

Representation of objective f and constraints g
Encode mathematical expressions in trees or DAGs

$$
\text { E.g. } x_{1}^{2}+x_{1} x_{2} \text { : }
$$

Outline

Introduction

Convex MINLP methods
Branch-and-Bound
Outer-Approximation
Generalized Benders Decomposition
Extended Cutting Plane
LP/NLP-based Branch-and-Bound
Hybrid Algorithms
Applying convex MINLP methods to nonconvex MINLPs?
Global Optimization Methods
Spatial Branch-and-Bound
Standard form
Convexification
Expression trees

Practical Tools

Conclusions

Convex MINLP Solvers

- ALPHA-ECP: https://www.gams.com/latest/docs/s_ALPHAECP.html
- AOA: ${ }_{\text {https://www.aimms.com/english/developers/resources/solvers/aoa }}$
- BONMIN: https://projects.coin-or.org/Bonmin
- DICOPT:
https://www.gams.com/24.8/docs/solvers/dicopt/index.html
- FilMINT:
https://www.mcs.anl.gov/~leyffer/papers/fm.pdf
- Juniper: https://www.github.com/lanl-ansi/juniper.jl
- LAGO:
https://projects.coin-or.org/LaGo
- MINLPBB:
https://www-unix.mcs.anl.gov/~leyffer/solvers.htm
- MINOTAUR:
https://wiki.mcs.anl.gov/minotaur
- Muriqui: http://www.wendelmelo.net/software
- Pavito: ${ }_{\text {nttps: }} / /$ www.github.com/juliaopt/pavito.j1
- SBB:
https://www.gams.com/latest/docs/S_SBB.html
- SHOT:
https://github.com/coin-or/shot

Convex MINLP solvers comparison

MILP decomposition based solvers

Convex MINLP solvers comparison

Nonconvex MINLP Solvers

```
10 Jul 2023 =============================================================
    Mixed Integer Nonlinear Programming Benchmark (MINLPLIB)
    ===========================================================
        H. Mittelmann (mittelmann@asu.edu)
```

The following codes were run through GAMS with a limit of 2 hours on these instances from MINLPLIB and with eight threads on an Intel i7-11700K, $64 \mathrm{~GB}, 3.6 \mathrm{GHz}$. All problems were solved GLOBALLY.

Description of selection process of benchmark instances. Statistics of the instances.

ANTIGONE, BARON, COUENNE, LINDO, OCTERACT, SCIP

$\underline{\text { Table for all solvers, Result files per solver, Log files per solver, Trace files per solver, Error files per solver }}$
+++ Unscaled and scaled shifted geometric means of run times

Feasibility tolerance set to $1 \mathrm{e}-6$. All non-successes are counted as max-time.
The second line lists the number of problems (87 total) solved.

	ANTIGONE	BARON	COUENNE	LINDO	OCTERACT	SCIP
unscaled	1447.1	86.2	3304.4	1208.9	36.8	380.5
scaled	39.3	2.3	89.8	32.8	1.0	10.3
solved	53	77	24	42	87	64

Modeling Languages

Modeling languages, e.g., AMPL, GAMS, JUMP, PYOMO, etc. Example:

```
param N;
set VARS ordered := {1..N};
param Umax default 100;
param U {j in VARS};
param a {j in VARS};
param b {j in VARS};
param c {j in VARS};
param d {j in VARS};
param w{VARS};
param C;
var X {j in VARS} >= 0, <= U[j], integer;
maximize Total_Profit:
    sum {j in VARS} c[j]/(1+b[j]*exp(-a[j]*(\mathbf{X[j] +d[j])));}
subject to KP_constraint: sum{j in VARS} w[j]*\mathbf{X[j] <= C;}
```


Neos

NEOS: http://www.neos-server.org/neos/.

Outline

Introduction
Convex MINLP methods
Branch-and-BoundOuter-ApproximationGeneralized Benders Decomposition
Extended Cutting Plane
LP/NLP-based Branch-and-Bound
Hybrid Algorithms
Applying convex MINLP methods to nonconvex MINLPs?
Global Optimization Methods
Spatial Branch-and-Bound
Standard formConvexificationExpression trees
Practical Tools
Conclusions

Conclusions

- Methods for convex MINLP
- Methods for nonconvex MINLP
- Perspectives
- Best way to reformulate, then convexify ?
- Tailored convexification techniques for relevant classes of MINLP
- Valid inequalities to strengthen the convexification
- Branching strategies
- ...

References

- D'Ambrosio, Lodi. Mixed Integer Non-Linear Programming Tools: a Practical Overview, 4OR: A Quarterly Journal of Operations Research, 9 (4), pp. 329-349, 2011.
- Bonami, Kilinç, Linderoth, Algorithms and software for convex mixed integer nonlinear programs. In: Lee J, Leyffer S (eds) Mixed integer nonlinear programming. Springer, pp. 1-39, 2012.
- D'Ambrosio, Lodi. Mixed integer nonlinear programming tools: an updated practical overview, Annals of Operations Research, 204, pp. 301-320, 2013.
- Belotti, Kirches, Leyffer, Linderoth, Luedtke, Mahajan, Mixed-integer nonlinear optimization. Acta Numerica, 22, pp. 1-131, 2013.
- Kronqvist, Bernal, Lundell, Grossmann, A review and comparison of solvers for convex MINLP, Optimization and Engineering, 20 (2), pp. 397-455, 2019.
- Sherali, Alameddine, A new reformulation-linearization technique for bilinear programming problems, JOGO, 1991
- Falk, Soland, An algorithm for separable nonconvex programming problems, Manag. Sci. 1969.
- Horst, Tuy, Global Optimization, Springer 1990.
- Ryoo, Sahinidis, Global optimization of nonconvex NLPs and MINLPs with applications in process design, Comp. Chem. Eng. 1995.
- Adjiman, Floudas et al., A global optimization method, $\alpha \mathrm{BB}$, for general twice-differentiable nonconvex NLPs, Comp. Chem. Eng. 1998.
- Smith, Pantelides, A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex MINLPs, Comp. Chem. Eng. 1999.
- Nowak, Relaxation and decomposition methods for Mixed Integer Nonlinear Programming, Birkhäuser, 2005.
- Belotti, et al., Branching and bounds tightening techniques for nonconvex MINLP, Opt. Meth. Softw., 2009.
- Vigerske, PhD Thesis: Decomposition of Multistage Stochastic Programs and a Constraint Integer Programming Approach to Mixed-Integer Nonlinear Programming, Humboldt-University Berlin, 2013.

[^0]: ${ }^{1}$ weaker lower bound w.r.t. OA, MILP with less constraints than the one of OA
 ${ }^{2}$ stronger lower bound w.r.t. QG, MILP with more constraints than the one of QG

