Self-Stabilizing Leader Election in Polynomial Steps¹

Karine Altisen Alain Cournier Stéphane Devismes

Anaïs Durand Franck Petit

 $^{^{1}}$ This work has been partially supported by the LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01) and the AGIR project DIAMS.

Distributed Systems = Network + Distributed Algorithm

Processes

- Autonomous = local program, local memory
- Interconnected = communication, asynchronism

Expected Property

Fault-tolerance

Distributed Algorithm Design

- Fault-Tolerance
- Abstract Model
- Design of Algorithm under a Specification
- Proof
- Performances

Distributed Algorithm **Design**

- Fault-Tolerance → Self-Stabilization
- Abstract Model → Locally Shared Memory Model
- Design of Algorithm under a Specification → Leader Election
- Proof
- Performances

Self-Stabilization²

 $^{^{2}}$ Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. 1974

4 / 33

• Reading of the variables of the neighbors

$$Algo = \{ rules := \langle guard \rangle \rightarrow \langle assignments \rangle \}$$

- Reading of the variables of the neighbors
- Enabled nodes

$$Algo = \{ rules := \langle guard \rangle \rightarrow \langle assignments \rangle \}$$

- Reading of the variables of the neighbors
- Enabled nodes
- Daemon election: models the asynchronism

$$Algo = \{ rules := \langle guard \rangle \rightarrow \langle assignments \rangle \}$$

- Reading of the variables of the neighbors
- Enabled nodes
- Daemon election: models the asynchronism
- Update of the local states

$$Algo = \{ rules := \langle guard \rangle \rightarrow \langle assignments \rangle \}$$

Daemons

- Asynchronism: Who is activated? (among enabled nodes)
 - ► Synchronous = all
 - ► *Central* = exactly one
 - Distributed = at least one
- Fairness: When? / How often?
 - Strongly Fair $= \infty$ enabled $\to \infty$ activation
 - Weakly Fair = cont. enabled → activation in finite time
 - ▶ Unfair = _

Complexity

- In space: memory requirement in bits
- In time (mainly stabilization time)
 - ▶ In (atomic) steps
 - ▶ In rounds (execution time according slowest processes)

Leader Election

- Distinguish a process: the leader
- Every process eventually knows the identifier of the leader

Problem

- Silent Self-stabilizing Leader Election
- Locally shared memory model:
 - Locally shared variables
 - Read/write atomicity
 - Distributed unfair daemon (scheduler)
- Network:
 - Any connected topology
 - Bidirectional
 - ► Identified
- No global knowledge on the network

State of the Art

Model	Paper	Knowledge			Daemon	Complexity			Silent
		D	N	В	Ducinon	Memory	Rounds	Steps	Shellt
Message Passing	Afek, Bremler, 1998			×		$\Theta(\log n)$	O(n)	?	✓
	Awerbuch et al, 1993	×				$\Theta(\log D \log n)$	$O(\mathcal{D})$?	✓
	Burman, Kutten, 2007	×				$\Theta(\log D \log n)$	$O(\mathcal{D})$?	✓
	Dolev, Herman, 1997		×		Fair	$\Theta(N \log N)$	$O(\mathcal{D})$?	
Locally	Arora, Gouda, 1994		×		Weakly Fair	$\Theta(\log N)$	O(N)	?	✓
Shared	Datta et al, 2010				Unfair	unbounded	O(n)	?	✓
Memory	Kravchik, Kutten, 2013				Synchronous	$\Theta(\log n)$	$O(\mathcal{D})$?	✓
	2 x Datta <i>et al</i> , 2011				Unfair	$\Theta(\log n)$	O(n)	?	✓

 $\mathcal{D} \hbox{: Diameter} \\ D \geq \mathcal{D} \hbox{: Upper bound on the} \\ \text{diameter} \\$

n: Number of nodes $N \ge n$: Upper bound on the number of nodes

B: Upper bound on the link-capacity

Our Contribution

Algorithm \mathcal{LE}

- Memory requirement asymptotically optimal: $\Theta(\log n)$ bits/process
- Stabilization time (worst case):
 - ▶ $3n + \mathcal{D}$ rounds
 - Lower Bound: $\frac{n^3}{6} + \frac{3}{2}n^2 \frac{8}{3}n + 2$ steps, Upper Bound: $\frac{n^2}{2} + 2n^2 + \frac{n}{2} + 1$ steps

Analytical Study of Datta et al, 2011

Stabilization time not polynomial in steps:

- Self-stabilizing Leader Election in Optimal Space under an Arbitrary Scheduler:
 - ▶ $\forall \alpha \geq 3$, \exists networks and executions in $\Omega(n^{\alpha+1})$ steps.
- ② An O(n)-time Self-stabilizing Leader Election Algorithm:
 - ▶ $\forall n \geq 5$, \exists networks and executions in $\Omega(2^{\left\lfloor \frac{n-1}{4} \right\rfloor})$ steps.

Design of the Leader Election Algorithm

3 variables per process p

- $p.idR \in \mathbb{N}$: ID of the root
- $p.par \in \mathcal{N}_p \cup \{p\}$: Parent pointer
- $p.level \in \mathbb{N}$: Level

3 variables per process p

- $p.idR \in \mathbb{N}$: ID of the root
- $p.par \in \mathcal{N}_p \cup \{p\}$: Parent pointer
- $p.level \in \mathbb{N}$: Level

- p.idR = p
- p.par = p
- p.level = 0

3 variables per process p

- $p.idR \in \mathbb{N}$: ID of the root
- $p.par \in \mathcal{N}_p \cup \{p\}$: Parent pointer
- $p.level \in \mathbb{N}$: Level

- p.idR = p
- p.par = p
- p.level = 0

3 variables per process p

- $p.idR \in \mathbb{N}$: ID of the root
- $p.par \in \mathcal{N}_p \cup \{p\}$: Parent pointer
- $p.level \in \mathbb{N}$: Level

- p.idR = p
- *p.level* = 0

3 variables per process p

- $p.idR \in \mathbb{N}$: ID of the root
- $p.par \in \mathcal{N}_p \cup \{p\}$: Parent pointer
- $p.level \in \mathbb{N}$: Level

- p.idR = p
- p.par = p
- p.level = 0

Simplified Algorithm (Self-Stabilizing?)

Self-stabilization \Longrightarrow Arbitrary initialization \Longrightarrow Fake ids

Simplified Algorithm (Self-Stabilizing?)

Self-stabilization \Longrightarrow Arbitrary initialization \Longrightarrow Fake ids

OK

- root: p.par = p; p.level = 0; p.idR = p
- non-root: $p > p.idR \ge p.par.idR$; p.level = p.par.level + 1

Reset

• p.idR := p; p.par := p; p.level := 0

OK

- root: p.par = p; p.level = 0; p.idR = p
- non-root: $p > p.idR \ge p.par.idR$; p.level = p.par.level + 1

Reset

• p.idR := p; p.par := p; p.level := 0

OK

- root: p.par = p; p.level = 0; p.idR = p
- non-root: $p > p.idR \ge p.par.idR$; p.level = p.par.level + 1

Reset

• p.idR := p; p.par := p; p.level := 0

Abnormal Trees

Abnormal Trees

Abnormal Trees: Removal

Freeze Before Remove

Add a variable $Status \in \{C, EB, EF\}$

- C means "not involved in a tree removal":
 - Only process of status C can join a tree and
 - ▶ only by choosing a process of status *C* as parent
- *EB*: Error Broadcast
- *EF*: Error Feedback

OK/KO! should be modified to take possible inconsistencies of variables *Status* into account!

Stabilization Time in Rounds

- No alive abnormal tree created
- Height of an abnormal tree: at most n
- Cleaning:
 - ► EB-wave : n► EF-wave : n► R-wave : n
- Building of the Spanning Tree: D
- Stabilization Time: O(3n + D) rounds

n = number of nodes; $\mathcal{D} = \text{diameter}$

Lower Bound on the Worst Case Stabilization Time in Rounds (synchronous execution)

- \bullet + k links from 2
- j = k + 3
- $\mathcal{D} = (n+1-j)+2$ = n-k

Death of an abnormal tree

At most n alive abnormal trees + No alive abnormal tree created

 \longrightarrow At most n+1 segments

Death of an abnormal tree

At most
$$n$$
 alive abnormal trees $+$ No alive abnormal tree created \longrightarrow At most $n+1$ segments

In a segment, in a process

$$\textit{idR}: 7 \xrightarrow{\textit{J-action}} 5 \xrightarrow{\textit{J-action}} 3 \xrightarrow{\textit{J-action}} 2 \xrightarrow{\textit{EB-action}} \xrightarrow{\textit{EF-action}} \xrightarrow{\textit{R-action}} 7 \xrightarrow{\textit{J-action}} 3$$

$$\text{Death of an abnormal tree} = \text{End of the segment}$$

Death of an abnormal tree

At most
$$n$$
 alive abnormal trees $+$ No alive abnormal tree created \longrightarrow At most $n+1$ segments

In a segment, in a process

$$idR: 7 \xrightarrow{J\text{-action}} 5 \xrightarrow{J\text{-action}} 3 \xrightarrow{J\text{-action}} 2 \xrightarrow{EB\text{-action}} \xrightarrow{EF\text{-action}} \xrightarrow{R\text{-action}} 7 \xrightarrow{J\text{-action}} 3 \xrightarrow{D\text{-action}} 3 \xrightarrow{D\text{-action}} 7 \xrightarrow{D\text{-action}} 7 \xrightarrow{D\text{-action}} 3 \xrightarrow{R\text{-action}} 7 \xrightarrow{R\text{-action}} 7 \xrightarrow{R\text{-action}} 7 \xrightarrow{R\text{-action}} 7 \xrightarrow{R\text{-action}} 3 \xrightarrow{R\text{-action}} 3 \xrightarrow{R\text{-action}} 7 \xrightarrow{R\text{-action}} 7 \xrightarrow{R\text{-action}} 7 \xrightarrow{R\text{-action}} 3 \xrightarrow{R\text{-action}} 3 \xrightarrow{R\text{-action}} 7 \xrightarrow{R\text{-action}} 7 \xrightarrow{R\text{-action}} 7 \xrightarrow{R\text{-action}} 7 \xrightarrow{R\text{-action}} 3 \xrightarrow{R\text{-action}} 7 \xrightarrow{R\text{-action}} 7$$

- n-1 *J*-actions
- 1 FB-action 1 FF-action
- 1 R-action
- $\Rightarrow O(n)$ actions per process

Death of an abnormal tree

At most n alive abnormal trees + No alive abnormal tree created \longrightarrow At most n+1 segments

In a segment, in a process

$$\textit{idR}: 7 \xrightarrow{\textit{J-action}} 5 \xrightarrow{\textit{J-action}} 3 \xrightarrow{\textit{J-action}} 2 \xrightarrow{\textit{EB-action}} \cancel{\textit{EF-action}} \xrightarrow{\textit{R-action}} 7 \xrightarrow{\textit{J-action}} 3$$

$$\text{Death of an abnormal tree} = \text{End of the segment}$$

- n-1 *J*-actions 1 *EB*-action 1 *EF*-action 1 *R*-action $\Rightarrow O(n)$ actions per process
 - $O(n^3)$ steps

Lower Bound: $\frac{n^3}{6} + \frac{3}{2}n^2 - \frac{8}{3}n + 2$ steps Upper Bound: $\frac{n^3}{2} + 2n^2 + \frac{n}{2} + 1$ steps

Case of the building on 2n-4

Case of the building on 2n-4

Case of the building on 2n - 4

Case of the building on 2n-4

Case of the building on 2n-4

Case of the building on 2n - 4

Case of the building on 2n - 4

Case of the building on 2n-4

$$\Theta(n)$$
 reset $\Rightarrow \sum_{j=1}^{n} \sum_{i=1}^{j} i \Rightarrow \Theta(n^3)$ steps

Analytical Study of Datta *et al*, Self-stabilizing Leader Election in Optimal Space under an Arbitrary Scheduler. 2011

Join a tree

Key: $\langle idR, level \rangle$ Can be joined Cannot be joined

Join a tree

Key:

Change of color

Change of color

Color Waves Absorption

Color Waves Absorption

Color Waves Absorption

Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Layer 1 resets

 β

Key:

$$(i,j).ID = (i-1)\beta + j$$

 $(i,j).idR = 0$
 \bigcirc Can be joined
 \bigcirc Cannot be joined

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Layer 1 joins (7,2)

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Abnormal tree rooted at (7,2) resets

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Repeat until root $(7,\beta)$

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Layer 1 joins $(7,\beta)$

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Abnormal tree rooted at $(7,\beta)$ resets

 eta^2

Key: $(i,j).ID = (i-1)\beta + j$ (i,j).idR = 0 Can be joined Cannot be joined

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Layers 1 and 2 join (5,2)

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Abnormal tree rooted at (5,2) resets

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Layers 1 and 2 join $(5,\beta)$

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Abnormal tree rooted at $(5,\beta)$ resets

 eta^3

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Layers 1,2 and 3 join (1,2)

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Abnormal tree rooted at (1,2) resets

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

$$\beta = \Omega(n) \Rightarrow \Omega(n^4)$$

Key:

$$(i,j).ID = (i-1)\beta + j$$

- Arr (i,j).idR = 0
- Can be joined
- Cannot be joined

Network for $\Omega(n^5)$ steps

 $\forall \alpha \geq$ 3, \exists networks and executions in $\Omega(n^{\alpha+1})$ steps.

Worst Case:

$$\Omega\left((2n)^{\frac{1}{4}\log_2(2n)}\right)$$
 steps

Analytical Study of Datta *et al*, An O(n)-time Self-stabilizing Leader Election Algorithm. 2011

Execution for n = 11

Network for n > 5

Perspectives

Goal

Design a self-stabilizing leader election algorithm that stabilizes in $\mathcal{O}(\mathcal{D})$ rounds.

Hypotheses

- Unfair daemon
- Memory requirement of $\Theta(\log n)$ bits/process
- With the knowledge of $D \geq \mathcal{D}$, $(D = O(\mathcal{D}))$: \checkmark
- Without any global knowledge: ??

Thank you for your attention.

Do you have any questions?

Self-Stabilizing Leader Election in Polynomial Steps. Karine Altisen, Alain Cournier, Stéphane Devismes, Anaïs Durand, Franck Petit