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Schneider Electric, the Global Specialist in

Energy Management and Automation

Balanced geographies – FY 2015 revenues

27%
North America

18%
Rest of World

26%
Western Europe

29%
Asia Pacific

€26.6 billion
FY 2015 revenues

160,000+
people in 100+ countries

~5%
of FY revenues devoted to R&D

Four integrated and synergetic businesses 
FY 2015 revenues

45% 21% 20% 14%

IndustryBuildings & Partner Infrastructure IT
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At Schneider Electric,

we combine Energy Management,

Automation and Software

serving 4 markets, i.e. 70% of the

world energy consumption

Energy Automation

Software
and

Analytics

% are calculated on final energy

Industry & 
Infrastructure

> 30%

~2%
Data Centres & 

Networks 

Residential Buildings 

> 30%

Source: IEA Explore 2015
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Energy Efficiency Optimization Problems

High energy costs

Environmental concerns

Search for solutions to:
• New optimization problems
• Problems with new optimization criteria

• Amount of energy used
• Cost of this energy
• Carbon footprint

• Multi-scale optimization problems
• To get consistent optimization
• To reduce losses at all levels

 Physics
 Complex systems design
 Operations management
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Examples

Device Process System Design

Energy • Energy profiling

• Performance evaluation

• Monitoring

• Fault detection and 

diagnostic

• Predictive maintenance

• Energy efficient control

• Energy consumption 

disaggregation

• Energy-aware planning, 

scheduling and control, 

to optimize the use of 

energy (e.g., drying 

time, oven pre-heating)

• More efficient electrical 

installations (reducing 

power losses)

• Energy conservation 

(e.g., braking energy 

recovery, building 

isolation) and storage

Energy Cost / CO2 • Multi-source energy 

allocation

• Tariff sensitive planning, 

scheduling and control 

(including management 

of demand-response 

opportunities)

• Multi-source system

design and sizing

• Energy or goods 

storage enabling to 

differ electricity 

consumption

• Contract optimization
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In production or consumption predictions

• Due to uncertainty in the activity

• Due to imprecision in the model linking activity 

prediction and energy production or 

consumption

• Due to uncertainty in relevant external factors 

(e.g., weather prediction)

Uncertainties

In cost

• In the short term depending on contracts

• In the long term
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• Unwanted event

‒ Safety

‒ Electrical network stability (when supply does not meet demand)

‒ Resource availability (e.g., not enough water left in the water tower, due to unexpectedly high consumption)

‒ …

‒ In most cases, such events can be avoided through short-term reactive actions (e.g., decision to start a 

generator, refill a water tower in urgency, etc.)

 Indicators: number of unwanted events per year, number of days per year on which reactive actions have 

been needed, consequences of non-avoided events, cost of reactive actions, etc.

• Sub-optimality

‒ Optimal plan for the nominal case, but huge costs or reduction of benefits in some cases (e.g., photovoltaic 

farm penalty for not injecting planned power over a given period)

 Indicators: average costs or benefits over a long period

Risks
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• A provider (e.g., Schneider Electric) guarantees a level of performance to its customer (e.g., a water 

distribution company, itself guaranteeing a level of performance to its customer …)

‒ Not more than n issues per year

‒ At least x% of savings per year versus what would have been the costs with business-as-usual 

practices

Requires a good definition of the formula establishing the gains (e.g., taking into account external 

temperature when optimizing building heating or air conditioning)

Requires good management of the risk

– Suppose I augment the yearly price by P+

– But the penalty in case my number of failures exceeds n is P-

– Then I want the probability p of paying the penalty to be smaller than P+ / P-

Performance Contracting
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• Let g(, w) = 1 when there is a problem and 0 otherwise

‒ For each solution (system design, plan, control strategy, combination)  and possible scenario (world) w

• Let J() be my cost function

• No risk version

‒ Minimize J() such that g(, w) = 0 for all possible scenarios w  often impossible or very expensive

‒ Even though “branching plans” can sometimes be implemented

• Expected cost version

‒ Minimize the expected value over all worlds w of [J() + g(, w) * penalties]  often too complex

• Mastered risk version

‒ Minimize J() such that the probability that g(, w) = 1 is smaller than 

‒ With a statistical confidence level 1  

‒ NB: The link between , , and the number of events n per year depends on statistical dependence or 

independence conditions

Event Risk Management: A First Level of Formalization
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• Historical data  Statistical model (taking evolutions into account)  Characterization of the 

possible worlds w

‒ More or less data available

‒ More or less precise models, e.g., does the characterization distinguish days-of-week, seasons, 

weather conditions, football matches, etc.

• Temporality of the planning, scheduling and control problem, e.g., planning for one day with 

relevant information on the day available the day before (e.g., weather prediction)

‒ But possibilities to adjust the rate at a much more frequent rate

• Mixing design and planning/control: design is for a long period (the system is designed for 

several years), planning is typically for a day or a week

• Reasoning over multiple customers and more or less long-term profitability  impact on 

Spatiality and Temporality



Agenda

Page 12Confidential Property of Schneider Electric |

1 Energy optimization under uncertainty

2 Managing electric vehicle charging

3 Sizing the energy system of an elevator

4 Other examples

5 Conclusion



Robust EVCS energy management strategy

Peter Pflaum, Mazen Alamir & Mohamed-Yacine Lamoudi

Gipsa-Lab, Schneider Electric

4th July 2016



Introduction

Randomized algorithms

Robust Charging Strategy

Simulation results



1/16

Context

Smart grid scheme:

I Optimal coordination using Model Predictive Control to
I Reduce energy costs
I Respect congestion constraints

I Apply distributed MPC methods for scalability
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Context

A simple example (EUREF-Campus in Berlin):
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EVCS under uncertainties

I Context
I EVCS with M charging points
I No forecasts of EVs’ arrival- and departure times available
I Known statistic model of the EV behavior obtained from

historical data

I Objective
I provide a day-ahead upper bound profile on the EVCS power

consumption
I guarantee the QoS (Quality of Service)
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Motivation for a stochastic optimization approach

I Direct charging strategy (M = 20 charging points):
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Randomized algorithm approach

Given the robust design problem

min
θ∈Θ

J(θ) s.t. g(θ,w) = 0 for all w ∈ W

I W is the uncertainty set

I θ is the design parameter vector

I g(θ,w) is the feasibility indicator:

g(θ,w) :=

{
0 if θ meets feasibility specifications for w
1 otherwise



5/16
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Introduce a probabilistic constraint

min
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Randomized algorithm approach

Add a confidence criterion

min
θ∈Θ

J(θ) s.t. Pr{ PrW{g(θ,w) = 1} ≤ η } ≥ (1− δ)

I W is the uncertainty set

I θ is the design parameter vector

I g(θ,w) is the feasibility indicator:

g(θ,w) :=

{
0 if θ meets feasibility specifications for w
1 otherwise
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Randomized algorithm approach

We transformed min
θ∈Θ

J(θ) s.t. g(θ,w) = 0 to

min
θ∈Θ

J(θ) s.t. Pr{ PrW{g(θ,w) = 1} ≤ η } ≥ (1− δ)

I which can be solved by the m-level randomized strategy

min
θ∈Θ

J(θ) subject to
N∑

k=1

g(θ,wk) ≤ m

I with N respecting the following inequality

N ≥ 1

η
(

e

e − 1
)(ln

nΘ

δ
+ m)

I and the set of design parameter vectors Θ being of finite
dimension nΘ
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Application to the EVCS problem

1. For the nΘ design parameter vectors θ(1), ..., θ(nΘ) , generate
candidate power profiles P̂max(θ(1)), ..., P̂max(θ(nΘ))

2. Draw N scenarios w (1), ...,w (N) from a statistical EVCS
occupancy model

3. For the nΘ × N combinations (θ(i),w (k))
I Simulate a low-level controller that distributes the available

power profile P̂max(θ(i)) to the EVs of scenario w (k)

I Check if the QoS is achieved (g (i,k) = 0) or not (g (i,k) = 1)

4. Determine the set A of feasible θ(i) that guarantee the QoS

A :=

{
i ∈ {1, ..., nΘ} |

N∑

i=1

g (i ,k) ≤ m

}



7/16

Design parameter vector θ

I θ allows to modulate the profile P̂max(θ) with sufficient
degree of freedom
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Statistic EVCS occupancy model

I An EVCS occupancy scenario w is defined as

w = {tarr,v , tdep,v ,Ereq,v}v∈V

I We can draw realizations w from a statistical model which
was learned from historical data

Three random charging
point schedules
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Binary feasibility indicator g(θ,w)

I Feasibility indicator in the context of the EVCS

g(θ,w) :=

{
0 if the QoS (Quality of Service) is provided
1 otherwise

I QoS metric:
Echarged

Ereq
≥ 0.9
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Validation of the approach

I An EVCS with M = 20 charging points located at a company

I nΘ = 256, η = 0.05, δ = 0.05, m = 5, resulting in

N =
1

η
(

e

e − 1
)(ln

nΘ

δ
+ m) = 429 scenarios

I Computation time ' 10min (nΘ × N low-level controller
simulations)
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Comparison: Stochastic approach vs. direct charging

I Stochastic approach
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Comparison: Stochastic approach vs. direct charging

What about the guaranteed QoS ?

I Stochastic approach
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I Direct charging
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Conclusion & Outlook

I Day-ahead computation of an upper bound power profile for
an EVCS

I Implementation of a simple real-time controller that respects
the upper bound profile

I Probabilistic guarantee of the QoS through randomized
algorithms

Outlook

I Application to a real EVCS or at least to real data

I Extension by an additional lower bound power profile
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The multisource elevator system
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Model-based Predictive Control coupled with rule-based control

Runs every hour

Runs every second

Strategic
Optimizer

Local
Controller

Multisource
system

strategy for the
next hour

Power set-point
for all prosumers

Current state
and flexibilities

Current
state

forecast f (15 mn
timestep, 24 h horizon)
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The sourcing problem Proposed control method Results Conclusion Backup slides

Model-based Predictive Control

Computes set-points with mathematical programming, depending on
predictions, in closed-loop.

INPUT: predictions on 15 minutes periods:
• electricity price,
• solar panel energy production,
• elevator energy consumption.

OUTPUT: set-points on 15 minutes periods:
• Target state of charge for the storage units.
• Target energy amount purchased from the grid.

Advantages:
• Takes into account complex
constraints/objective

Drawbacks:
• Sensitive to prediction errors
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A typical strategy
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Recall: Randomized algorithm approach

Given the robust design problem
min
θ∈Θ

J(θ) s.t. g(θ,w) = 0 ∀w ∈ W

Rewrite the deterministic constraints in probabilistic terms
min
θ∈Θ

J(θ) s.t. Pr{ PrW{g(θ,w) = 1} ≤ η } ≥ (1− δ)

which can be solved by the m-level randomized strategy

min
θ∈Θ

J(θ) subject to
N∑

k=1

g(θ,wk ) ≤ m

Θ : the set of design parameters of cardinality nΘ
W : the set of uncertainties
η : the probability of constraint violation
δ : the confidence probability

N : the minimum number of i.i.d. samples to generate

N ≥ 1
η

( e
e − 1)(ln nΘ

δ
+ m)
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Design to Avoid Power Peaks
B : a set of possible battery energy capacities (in Wh)
S : a set of possible supercapacitor energy capacities (in Wh)
F : a set of minimal net daily gains to be certified (in e)
Θ : the resulting set of design parameters

Θ = B × S × F

f (θ,w , u∗) : a function that gives the net daily gain gnet obtained by the
local controller at the end of the day

D : the set of design constraints
u∗ : the applied control strategy

max
t∈{0,...,H}

(|p4(t)|) ≤ pmax

f (θ,w , u∗) ≥ θ3

J(θ) : the objective function

J(θ) = −θ3
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Which Storage Units to Avoid Power Peaks?

Given:
• the maximum power peak allowed is pmax = 6000 W
• the set of possible battery energy capacities (in Wh) is B = {3000, 6000}
• the set of possible supercapacitor energy capacities (in Wh) is
S = {60, 120, 180}

• η = 0.05, δ = 0.05, and N = d 1
η

( e
e−1 )(ln nC

δ
)e = 152

• a French peak / off-peak tariff

Design result
The 3 kWh battery, and the 120Wh supercapacitor are the best choice.

Certification
Avoiding purchasing peaks above 6 kW will cost at most 0.16 e per day in this
context.
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Design to Achieve Savings

T : a set of possible electricity tariffs
C : a set of possible controllers
M : a set of possible maximum power values from and to the grid
F : a set of minimal net daily gains that could be certified to the

customer (in e)
Θ : the resulting set of design parameters

Θ = T × C ×M×F

D : the set of design constraints

f (θ,w , u∗) ≥ θ4

J(θ) : the objective function

J(θ) = −θ4
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Which Tactic and Tariff to Get Savings?
Given:

• The set of possible electricity tariffs T = {flat (0.00013), peak/off-peak
(0.00015 / 0.00010), spot-like (between 0.0002991 and 0.0009386)}
(e/Wh).

• The set of possible controllers C = {MinPeaks LC following strategy,
Opportunistic LC alone, Secure LC}.

• The set of possible maximum power values from and to the grid
M = {[−50000, 0], [−50000, 20000]} (W).

• Two probabilities η = 0.05, δ = 0.05, and N = d 1
η

( e
e−1 )(ln nC

δ
)e = 187.

Design result
The considered customer should subscribe to the spot tariff, and install the
MinPeak LC coupled with SO.

Certification
The corresponding certified net daily gain is 1.18 e per day. Moreover the
mean net daily gain obtained on those samples is 1.52 e.
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Conclusion

What has been done:
• formalization of the sourcing
problem

• implementation of several
controllers

• trade-off between minimizing
peaks and minimizing electricity
bill

Outlooks:
• a real-life experiment
• robustness to uncertainties
• how does tariff influence savings
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• Photovoltaic farm

• Save money against uncertainty in photo-voltaic production forecast (with a guarantee crafted with 

respect to the contract between the photo-voltaic farm and the utility)

• Water pumping

• Save money against uncertainty in water consumption forecast (with a guarantee that only 3 days in 

a year there is a need to react in urgency)

• Manufacturing

• Save a combination of multiple costs (tardiness + storage + electricity) against uncertainty either in 

demand or in product quality tests (some percentage of the products have to be discarded) with a 

guarantee that less than x% of the customer orders are delivered late

• …

Other examples
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• Robust optimization is more and more an important issue in Industry
• Customers asking for “guarantees”

• Performance contracting either with respect to such guarantees or engagement on gains

• Different formulation of the needs depending on the use case
• Absolute guarantee

• Bound on the probability (e.g., number of days) that a problem occurs, more or less shared between the service 

provider and customer

• With a notion of confidence level for the service provider, essential for the profitability of its business

• Practical methodologies emerge

• Difficulties
• Historical data

• Statistical model reflecting these data (and enabling to design relevant sets of scenarios for the future if the 

methodology requires them)

• Computational time, especially when complex simulation is required

Conclusion




