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Recoverable robustness

� Method to cope with uncertainty

� Combination of 

� Robust optimization

� Two-phase stochastic programming

� Related to Ajustable Robustness

� Standard reference: 

Liebchen, Lübbecke, Möhring, Stiller

LNCS 5868, 2009

� Much work done within the ARRIVAL project



3

Example: European Soccer Championship 
2016

Scheme of the tournament

1. Group phase.

Six groups: numbers 1 and 2 advance

2. Knock-out phase:

1. Eight finals

2. Quarter finals

3. Semi finals

4. Final
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You want to support your team!

� You want to buy tickets

� Tickets must be bought months in advance

� The schedule for the group is known

� The schedule for the eight finals etc. depends on the results in the 
group phase

� Which tickets should you buy?
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To make it more clear …

� Group A:

� France (17)

� Switzerland (15)

� Albania (42)

� Romania (23)

� Likely scenario: France A1 

� Possible scenario: France A2

� Other scenarios are extremely unlikely to you
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Robust Optimization

� Find the cheapest solution

� You don’t know yet which scenario applies

� It must be feasible for all scenarios (possibly excluding the 
very unlikely ones)

� Recovery actions afterwards are not possible

� Here: buy tickets for all possible matches for A1 and A2

� So for example Lyon July 6 and Marseille July 7

Reference

� Textbook by Ben-Tal Ghaoui and Nemirovski (2009)

� 15.600 publications in years 2010-2015
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2-phase stochastic programming

� Birge and Louveaux (1997)

� Assumption: The probability of each scenario is known

� A solution comprises of first stage and second stage 
decisions; its cost is the expected cost

� The first stage decisions render a solution that can be 
made feasible through the second stage decisions when 
the real scenario gets revealed

For our example:

� First stage: buy only tickets for the group phase

� Second stage: acquire the tickets for the knock-out phase 
in some way (black market???)
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Recoverable robustness

� Robust optimization: too conservative

� 2-Phase stochastic programming: too difficult

� Recoverable robustness: 

� Find an initial solution (first stage decision)

� You must be able to make it feasible using a simple 
recovery algorithm (possibly excluding some very 
unlikely events)

� The cost is a combination of the first and second stage 
decisions



9

Recoverable robustness: example

� Exclude very unlikely events: You `know’ France will 
advance

� Buy tickets for all matches of A1 (or A2 if you want to see 
Switzerland)

� Simple recovery if necessary: exchange tickets with a 
supporter of the other team (make trade, not war).

Cheap and simple

And now back to the real subject …
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Outline

� Introduction and background

� Size robust knapsack problem

� Models

� Decomposition approaches

� Scheduling: minimizing the number of late jobs

� Demand robust shortest path
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INTRODUCTION AND
BACKGROUND
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Recoverable robust optimization: formal
definitio
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Recoverable robust optimization

The function g combines the cost of the recovery variables 
into the objective function.

Possibilities for g:

� All-zero: we just require feasibility

� Maximum: we minimize the worst-case

� Suppose we know probabilities ps for each of the scenarios
s, then we can use expected cost ∑ ���������∈	 .



14

Adjustable robust optimization

� Related concept

� Introduced in Ben-Tal et al. (2004)

� Multi-period decision problem, 2 or more periods.

� Optimization of worst case

� Uncertainty set Z. Time 2 decision vector x2 is a 

function of realised scenario ζ ε Z.
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Column Generation

� Technique based on Linear Programming

� Typical Problem:

� We are looking for a good combination of partial, separated 
solutions, subject to some constraints (covering problems)

� The number of partial solutions is very large, while our final 
solution will combine only a few

� Decomposition approach

� Introduce a Master Problem for combining partial solutions

� Derive dual values (shadow prices) from the MP

� Derive Pricing Problems using these duals to find partial 
solutions that will improve the solution to the MP
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Column Generation

� Examples from research at UU CS department

� Gate assignment at Schiphol Airport

� Scheduling in public transport (trains, buses, ...)

� Scheduling of classes in high school or universities

� The list goes on…

� Example in this talk: Shawarma (©Paul Bouman)

� We need 3 ingredients: meat, bread and sauce

� For 200 people, so we want a lot

� We consider package deals, but don’t know all possible deals 
(bargaining is possible)

� We want to find the cheapest combination of package deals
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Column Generation


 50�
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…

…

…

Minimize Total: € …
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…

…
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current
amount

price
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Column Generation


 50�


 400


 20�

0.75�

8

0�

10

€5,00

0

0,625

6

1,5�

8

0,5�

40

€8,00
Minimize Total: € 370



19

Column Generation


 50�


 400


 20�

0.75�

8

0�

10

€5,00

0

0,625

6

1,5�

8

0,5�

40

€8,00
Minimize Total: € 370

� �

� � 0,625	�� � 6	�

Can we find a new deal with 
price � such that, if �� is the 

amount of bread and �� is the 
amount of sauce, we have � � 0,625	�� � 6	�� ?

0,625 ⋅ 2 � 6 ⋅ 0,5  4
I can sell you packages of 2 

breads and 0,5 l sauce for €4
(And 0,625 ⋅ 2 � 6 ⋅ 0,5  4 is valid)

OK !
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Column Generation


 50�


 400


 20�

0.75�

8

0�

24 

€5,00

0,266

0,6

5,6

1,5�

8

0,5�

21 1/3

€8,00

0

2

0,5�

18 2/3

€4,00
Minimize Total: € 365
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Column Generation


 50�


 400


 20�

0.75�

8

0�

24 

€5,00

0,266

0,6

5,6

1,5�

8

0,5�

21 1/3

€8,00

0

2

0,5�

18 2/3

€4,00
Minimize Total: € 365

�

� � 0,266 �0,6	�� � 5,6	��

Can we find a new deal 
with costs �, amount of 

meat �!, amount of bread �� and amount of sauce ��, 
such that � � 0,266	�! �0,6	�� � 5,6	��?

0, 0,25 � 0,6 ⋅ 7  3
I can sell you packages of 0,25 kg of 

meat and 7 breads for € 3 (and 0,266 ⋅ 0,25 � 0,6 ⋅ 7  3 is valid)

OK !
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Column Generation


 50�


 400


 20�

0.75�

8

0�

0 

€5,00

1,11

0,38

6,44

1,5�

8

0,5�

30

€8,00

0

2

0,5�

10

€4,00

0,25�

7

0

20

€3,00
Minimize Total: € 340
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Column generation for LP

1. Start with Restricted Master Problem: a small set of 

partial solution (deals)

2. Solve LP-relaxation.

3. Find out if there is a new partial solutions (deals) that can

improve the solution= 

Pricing: Find partial solution (deal) with minimal 

reduced cost

• If minimum < 0, add column to model and go to 2.

• Otherwise stop ⇒ optimum found

Description based on minimization (for maximization we maximize the reduced cost
and add column with positive reduced cost)
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SIZE ROBUST KNAPSACK
PROBLEM
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Size Robust Knapsack Problems

� Example: you must select projects, but the budget may 
become lower than originally anticipated.

� Standard knapsack items with deterministic weight and 
value

� The volume of the knapsack is b, but this value may be 
smaller than originally assumed

� Set of scenarios: scenario s has volume bs with probability 
ps (scenario 0 is the original case)
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Size Robust Knapsack (2)

� Possible objectives: 

� Optimize for initial situation and require feasibility in scenarios

� Worst-case profit

� Expected profit

� Some possible recovery rules

� Recovery by removal

� Greedy recovery (remove items with largest weight, remove 
items with minimal value, or minimal value per unit weight)

� Recovery by swapping

� Recovery can be cardinality constrained
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Size Robust Knapsack (3)

� Dynamic programming for different variants

� Then focus on expected profit and recovery by removal

� Decomposition framework

� Other algorithms
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Size Robust Knapsack Problems: Dynamic 
programming

Objective Recovery Runtime

Feasibility Removal, Cardinality 
constrained (≤k)

0(nbk)

Expected 
profit

Greedy Recovery O(nb|S| + n log n)

Expected 
profit

Swapping O(nb(n+|S|))

Expected 
profit

Removal O(nb|S|)
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Expected profit, greedy recovery

� Order the items on recovery criterion, e.g increasing
weight, 

� Hence you will always remove the item with largest index.

� State variable: E(i,w): best solution value using items from
{1,…,i} and knapsack weight w.

� # $, % & max*# $ + 1,% , # $ + 1, % + �, � ∑ 	���,�∈	:�./0 }
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Expected profit and swapping

� Use state variable 1 $, , % the best value of a knapsack
with item from ,1,2,⋯ , $ cardinality  and weight %.

� 1�$, . %� & max	*1 $ + 1, , % , 1 $ + 1,  + 1,% + �, � �,}
� Observation: if we do recovery by swapping, then the

knapsack has the same cardinality in each scenario.

� Algorithm:

� Compute the table of 1 $, , %
� For each ,	determine the total expected value if we take for

each scenario the best feasible knapsack of cardinality 
� The optimum is the maximum over 
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Expected profit and recovery by removal

2 scenarios

� State variable 34 $, %5, %6 best value of a knapsack with item from,1,2,⋯ , $ where the intial knapsak has weight %5 and the
recovery knapsack has weight %6

� 34 $, %5, %6 &max	*34 $ + 1, %5, %6 , 34 $ + 1, %5 + �, , %6 �	�5�, ,	34 $, %5 + �, , %6 + �, � ��5��6��,}
� Generalize to 3 	 �$, %5, %6, %4, ⋯% 	 76�
� Complexity 8 9: 	 .

Scales poorly in the number 
of scenarios!
(Is this the best DP we can 
think off?)
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Column generation framework

� Two variants:

� Separate recovery decomposition

� Combined recovery decomposition

� This framework can be applied to many problems

� Size robust knapsack

� Maximize number of on-time jobs

� Shortest path with unknown destination

� Maximum weighted independent set with an expanding graph

� Max flow with decreasing capacities

� …

� Now explained for size robust knapsack with objective 
expected profit and recovery by removal
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Decomposition Framework

� Lets consider this structure for our size-robust Knapsack 
Problem with recovery by removal

Recovery 
Knapsack
Recovery 
Knapsack

Recovery 
Knapsack
Recovery 
Knapsack

Recovery
Knapsack
Recovery
Knapsack

Initial 
Knapsack

Initial 
Knapsack

…….

…….

Contains all 
items in each

Does not exceed 
capacity of

(Problem)

(Solution)
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Separate recovery decomposition

What we want:
1. A single initial solution

2. A single solution for each scenario

3. Items selected in the scenario solution must form a subset 
of the items selected in the original solution (recovery by 
removal)

ILP-formulation

Given all possible knapsack fillings, use indicator variables 
+ constraints to enforce (1)-(3). 

Use branch-and-price to solve it.
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Separate Recovery Decomposition: 
Master problem formulation

� ; : set of feasible knapsack fillings of size :

� Decision variables <= & >1, $?		 ∈ ; : $@	@A�A�BAC0, 																									DBEAF%$@A

� Decision variables �G� & H1, $?		 ∈ ; :G $@	@A�A�BAC0, 																										DBEAF%$@A
� Choose a single initial solution

� Choose a single recovery solution for each scenario @ ∈ I
� Linear recovery constraints demand that each recovery 

solution is recoverable from the initial solution 
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λ

μs

πis

Duals
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Separate recovery decomposition

� The Separate Recovery decomposition considers initial 
solutions and recovery solutions separately

Recovery 
Solution
Recovery 
Solution

Recovery 
Solution
Recovery 
Solution

Recovery
Solution
Recovery
Solution

Initial 
Solution
Initial 

Solution

…….

…….

recoverable to

feasible for

(Problem)

(Solution)
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Column generation for LP (maximization)

1. Start with Restricted Master Problem: a small set of 

partial solutions

2. Solve LP-relaxation.

3. Find out if there is a new partial solutions that can

improve the solution= 

Pricing: Find partial solution (deal) with maximal

reduced cost

• If minimum > 0, add column to model and go to 2.

• Otherwise stop ⇒ optimum found
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Separate Recovery Decomposition

� Components in the implementation

Master Problem Solver

Initial 
Pool

Initial
Pricing Problem

…

…

duals

Initial
solution

duals duals
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Separate Recovery Decomposition: 
Pricing Problem initial solution

Reduced cost

hence we have to find column k for which reduced cost is 
maximal

Column k represented by feasible �1, 0, … 0, �6= , �4=⋯�J=�
Knapsack problem!
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Separate Recovery Decomposition: 
Pricing Problem recovery solution

� Reduced cost

For each scenario s

we have to find column q for which reduced cost is maximal

Column q represented by feasible �	0, … 0,1,0, …0, +�6G� 	⋯+�JG� �
� Knapsack problem for knapsack with size bs!
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Combined recovery decomposition

Alternative approach:

Consider combinations of an initial solution with a scenario 
solution

� Enumerate all possible combinations per scenario

� Select one combination per scenario

� See to it that the initial solution is the same in each 
selected combination.

Use branch-and-price to solve this ILP.
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Knapsack – Combined Recovery 
Decomposition

�

An item is selected in the 
initial solution, if and only if 
it is selected in the initial 
solution of any scenario
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Combined Recovery 
Decomposition

�
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Combined Recovery 
Decomposition

� Components in the implementation

Combined Master Problem

….

….

duals duals
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Computational experiments

� Separate recovery decomposition: branch-and-price

� Combined recovery decomposition: branch-and-price

� Branch-and-bound:

� Upper bound from standard LP-formulation

� Lower boud based on DP for initial knapsack

� Branching on inclusion of items in initial knapsack

� Dynamic programming

� Hill-climbing

� Search on initial solutions

� Optimal recovery applied for each initial solutions

� Instances up to 100 items based on classes of difficult
knapsack instances from Pisinger (2005)
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Computational experiments 

� Dynamic programming performed worst

� Separate recovery outperformed branch-and-bound by 
completing more instances within the time limit.

� Separate decomposition: very quick, solves problems with 
100 items and 20 scenarios in seconds, but it can be slow 
on bad instances. Increasing the number of scenarios does 
not increase the running times.

� Combined decomposition: much slower. Presumably due to 
the more difficult pricing problem (quadratic in b).

� Hill-climbing: quick but might find only 85% of optimal 
value
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MINIMIZE NUMBER OF 
TARDY JOBS
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Minimize number of tardy jobs

� 1 machine

� n jobs become available at time 0

� Known processing time pj

� Known due date dj

� Known reward wj for timely completion 
(currently 1)

Decision to make at time 0: accept or reject 
job j
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Moore-Hodgson (MH)

1. Number the jobs in EDD order

2. Let S denote the EDD schedule

3. Find the first job not on time in S (suppose this is job j)

4. Remove from S the largest available job from jobs 1,…,j

5. Continue with Step 3 for this new schedule S until all 
jobs are on time 
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Stochastic processing times

� If the jobs follow some nice distribution, then use chance 
constraints:

Job j is on time if P(Cj ≤ dj) ≥ yj

for a given threshold yj

� The problem can then be solved by adjusting the due 
dates and processing times through Moore – Hodgson 
(vdA, H) 
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Disturbed processing times

� Different situation: processing times do not follow some 
nice probability distribution, but may get disturbed by 
some event

� We model these disturbances as scenarios

� Each scenario has a given probability

� In each scenario the processing times are given, 
deterministic values. 
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Situation under consideration

� The basic processing times and all possible scenarios are 
known

� At time zero you must decide which jobs to accept/reject

� Then the actual scenario gets revealed

� How to deal with these disturbances, i.e. which jobs are 
removed?

� Maximize then expected number of on-time job (i.e. 
minimize the expected number of late jobs)
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Observations

� Given the initial solution, you can solve each scenario to 
optimality by applying MH to the set of accepted jobs

� Applying MH to find the initial solution is not always 
optimal (not even if there is only one scenario)
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Computational complexity

� The problem is NP-hard in the ordinary sense, even in case 
of one scenario (which has probability p) and a common 
due date

� Reduction from Partition with equal cardinality: 2n 
nonnegative integers aj with total sum 2A. Does there exist 
a subset S of cardinality n such that ∑ �KK & A.
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Some details

� Each aj leads to a job j with pj =4A- aj and    p’j =4A + aj; job 
0 has p0 =2A and p’0 =40A.

� Common due date D=4nA+A.

� Yes in partition iff expected number of on-time jobs= 

9 � 1 + � 	in scheduling problem

» initial

scenario

S 0

S

4nA
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Further investigations

� Apply MH both to the initial instance and the scenario 
instance. 

� If job j gets selected in both, will it be in any optimal 
solution?

� If job j gets selected in none, can you discard it without 
losing optimality?

� Answer is NO in both cases!
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Dominance rule

� Define H’ as the jobs that are on time when  MH is applied to the 
initial instance and the scenarios (there can be more than 1 
scenario).

� Define H as the subset of H’ that contains all jobs j with

� pj ≤ pi for all jobs i outside H for 

� Pjs ≤ pis for all jobs i outside H and for all scenarios s
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Dominance rule

� There exists an optimal solution in which all jobs from H are 
selected in the initial solution (and hence in each scenario 
solution)

� If processing time are non-decreasing in the scenarios, then 
there exists an optimal solution in which all jobs from H’ are 
selected in the initial solution.
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Solution algorithms: B&B

� Remark: we only need to know the best choice for the 
initial instance (scenario solution follows by applying MH)

� Branch on whether job j is on time or late in the initial 
solution

� Lower bound: Solve the initial and scenario instances 
independently
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Dynamic programming

� Add jobs in earliest-due-date order

� Use state-variables fj (t0, t1 , …, tk), where tj indicates the 
total length of the accepted jobs for scenario j (scenario 0 
is initial).

� Running time becomes problematic if the number of 
scenarios becomes big
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Branch-and-price

� Apply Separate Recovery Decomposition 

� Use binary variables to decide whether a schedule is chosen as 
initial or scenario solution

� Use constraints to enforce that the chosen initial and scenario 
solutions are compatible.

� The LP-relaxation is solved using column generation.

� New schedules are selected by solving the pricing problem, which 
can be solved efficiently using DP. 
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Experiments

� Basic ILP (not shown here) performs worst 

� DP becomes very slow in case of many scenarios 

� Branch-and-bound performs quite well; current 
implementation can be improved

� Branch-and-price does well if the LP-relaxation is integral 
(20% of the instances with 120 jobs and 10 scenarios). It 
is much slower otherwise, but comparable to B&B.
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Column generation framework

� Two variants:

� Separate recovery decomposition

� Combined recovery decomposition

� This framework can be applied to many problems

� Size robust knapsack

� Shortest path with unknown destination

� Maximum weighted independent set with an expanding graph

� Max flow with decreasing capacities

� …
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DEMAND ROBUST
SHORTEST PATH
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Demand Robust Shortest Path

� Shortest path problem 

� Single source scr, scenarios define sinks

� Buy edges during a cheaper initial phase

� When sink is known, edges are more expensive
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Demand Robust Shortest Path

� Separate recovery decomposition: hard to express the 
connection between the original solution and the scenario 
(original edge set + scenario edge set = path)

� Combined Recovery Decomposition?
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Demand Robust Shortest Path: Combined 
Recovery Decomposition

� find an original + scenario edge set that is a path : simple 
problem. Use it!

� Pricing problem becomes:

� Two options for each edge – just take the cheapest

� Only initial prices can be negative due to duals. We take these 
no matter what and consider their costs to be 0

� Find the shortest path in a graph with non-negative edge 
weights

Solve using Dijkstra’s
Shortest Path Algorithm!
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Column generation framework

� Two variants:

� Separate recovery decomposition

� Combined recovery decomposition

� Theoretical general result: the LP-relaxation of Combined 
Recovery Decomposition is stronger

� The computation time of Combinatorial Recovery 
Decomposition can be reduced by clever column 
generation strategies
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Conclusions

� The type of recovery has a lot of impact on finding an 
algorithm to the problem

� The column generation framework is a great way to reduce 
recoverable robustness problems into regular problems 
(while customization remains possible)

� We believe that it can be applied to many different 
problems


