Probability constraints: analytical properties and a discussion of dedicated algorithms

W. van Ackooij1

¹OSIRIS Department EDF R&D 7 Boulevard Gaspard Monge; 9120 Palaiseau ; France

EJC Grenoble, 06/07/2016

Continuity	Differentiability		Algorithms	
00 000	000 00000000000000 0000000 00000000000	0000000 000000 0000	00000000 000 00000000	

Outline

- 1 Introduction
 - Motivation

2 Continuity

- Introductory discussion
- Continuity statements
- 3 Differentiability
 - Classics
 - Consideration of non-linear mappings
 - More components
 - A further characterization of Clarke's sub-differential
- 4 Eventual convexity
 - Introduction
 - The tools: special family of copulæ
 - Main Results
- 5 Algorithms
 - Introduction
 - Level bundle methods
 - Dedicated method and results

uction	

Introd

Continui 00 000

Eventual convexity

Algorithms 000000000 000 000000000 Summary

Introduction

Motivation

2 Continuity

- Introductory discussion
- Continuity statements

3 Differentiability

- Classics
- Consideration of non-linear mappings
- More components
- A further characterization of Clarke's sub-differential

4 Eventual convexity

- Introduction
- The tools: special family of copulæ
- Main Results

5 Algorithms

- Introduction
- Level bundle methods
- Dedicated method and results

Introduction ●0000	Continuity 00 000	Differentiability 000 000000000000000000000000 00000000	Eventual convexity 0000000 000000 0000	Algorithms 000000000 000 00000000	
Motivation					
Motivatio	n l				

A Probabilistic constraint is a constraint of the type

$$\varphi(\mathbf{x}) := \mathbb{P}[g(\mathbf{x}, \xi) \ge \mathbf{0}] \ge \mathbf{p},\tag{1}$$

where $g: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^k$ is a map, $\xi \in \mathbb{R}^m$ a (multi-variate) random variable

Such constraints arise in many applications. For instance cascaded Reservoir management.

Introduction O●OOO	Continuity OO OOO	Differentiability 000 000000000000000000000000 00000000	Eventual convexity 0000000 000000 0000	Algorithms 000000000 000 00000000	
Motivation					
Motivatio	n II				

■ When considering *k* constraints of the type

$$\varphi_i(x) := \mathbb{P}[g_i(x,\xi) \ge 0] \ge p, i = 1, \dots, k$$
(2)

we speak of individual probabilistic constraints. The case of (1) is a joint probabilistic constraint.

 Individual PCs offer easier numerical treatment, but obviously lack robustness.

Introduction	Continuity 00 000	Differentiability 000 0000000000000 00000000 0000000000	Eventual convexity 0000000 000000 0000	Algorithms 000000000 000 00000000	
Motivation					
Why PCs	s				

- In many applications, one encounters residual uncertainty, i.e., after making a decision a random outcome is observed.
- Such uncertainty may occur in constraints. In Unit-Commitment problems one encounters the following cases:

$$egin{array}{rcl} V_{min}&\leq&V_0-Ax+\xi\leq V_{max}\ s^d&\leq&D-A'x\leq s^u, \end{array}$$

(日) (四) (日) (日) (日) (日)

6/107

where *x* models the turbining/pumping policy in cascaded reservoir management, unit-commitment schedule respectively.

- Here x is decided upon before observing ξ (inflows) or D (net customer load).
- PCs are a way to give a meaning to (3)

Introduction	Continuity	Differentiability		Algorithms	
00000	00 000	000 0000000000000 0000000 000000000000	0000000 000000 0000	000000000 000 00000000	
Motivation					

What do PCs do

Adding a probabilistic constraint, e.g.,

$$\mathbb{P}[V_{\min} \leq V_0 - Ax + \xi \leq V_{\max}] \geq p$$

$$\mathbb{P}[s^d \leq D - A^l x \leq s^u] \geq p, \qquad (4)$$

restrains the set of feasible solutions. Since x is decided upon before observing uncertainty, a posteriori violated inequalities are not arbitrarily "bad".

- From a programming perspective: φ(x) ≥ p, with φ(x) := P[g(x, ξ) ≥ 0] is "just" a non-linear constraint
- In most cases φ is only known implicitly.
- The mapping φ is (usually) not concave, but could have generalized (e.g., log-concavity) properties.

Introduction	Continuity	Differentiability		Algorithms	
00000	00 000	000 0000000000000 0000000 000000000000	0000000 000000 0000	000000000 000 00000000	
Motivation					

Properties of PCs

- What mathematical properties can φ be expected to have ? Continuity, differentiability ?
- What properties does the set M(p) := {x ∈ ℝⁿ : φ(x) ≥ p} have ? Connectedness, convexity
- What properties could problems of the type

$$\begin{aligned} \min_{x \in \mathbb{R}^n} & f(x) \\ s.t. & x \in X \\ & \varphi(x) \geq p, \end{aligned}$$
 (5)

8/107

have if *f* is a convex mapping, *X* a convex set ? Stability ?

Studying properties of φ, M(p) or problems (5) is important for efficient numerical treatment of problems (5).

Continuity

(日) (图) (문) (문) (문)

9/107

Motivation

2 Continuity

- Classics
- Consideration of non-linear mappings
- More components
- A further characterization of Clarke's sub-differential

- Introduction

	Continuity			Algorithms		
00000	00 0	000 0000000000000 0000000 000000000000	0000000 000000 0000	000000000 000 00000000		
Introductory discussion						

An example

• Let $\xi \sim \mathcal{N}(0, 1)$ be given and consider

$$\varphi(\mathbf{x}) := \mathbb{P}[\mathbf{Q}\mathbf{x} + L\xi \ge \mathbf{b}],\tag{6}$$

with

$$Q = \begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix}, L = \begin{bmatrix} -1 \\ 0 \end{bmatrix}, b = \begin{bmatrix} 0 \\ -\frac{1}{2} \end{bmatrix}$$

Introduction 00000	Continuity ○● ○○○	Differentiability 000 000000000000000000000000 00000000	Eventual convexity 0000000 000000 0000	Algorithms 000000000 000 00000000	
Introductory discuss	ion				
An exam	ple II				

- The reason of this discontinuity is because of the presence of "deterministic" constraints $-1x_1 + x_2 \ge -\frac{1}{2}$ inside the probability constraint.
- Alternatively stated, we have a situation wherein the set $\{z \in \mathbb{R}^m : g(x, z) = 0\}$ is not of zero measure (at some *x*'s).

(=) (

- This shows the need for appropriate conditions (or a better model)
- Still continuity holds in a great many situations

	Continuity	Differentiability		Algorithms	
	00 ●00	000 00000000000000 0000000 00000000000	0000000 000000 0000	000000000 000 000000000	
Continuity stateme	ents				

Lower semi continuity

Lemma (e.g., [Henrion(2010)])

Let $g : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^k$ be (jointly) lower semi-continuous and assume that the sets $N_x = \{z \in \mathbb{R}^m : g(x, z) = 0\}$ are \mathbb{P} -null sets for all $x \in \mathbb{R}^n$. Let $\xi \in \mathbb{R}^m$ be a random variable. Then the mapping $\varphi(x) := \mathbb{P}[g(x, \xi) \ge 0]$ is also lower semi continuous.

	Continuity	Differentiability		Algorithms	
	00 0●0	000 00000000000000 0000000 00000000000	0000000 000000 0000	000000000 000 000000000	
Continuity stateme	ents				

Upper semi continuity

Lemma (e.g., [Henrion(2010)])

Let $g : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^k$ be (jointly) upper semi-continuous and let $\xi \in \mathbb{R}^m$ be a random variable. Then the mapping $\varphi(x) := \mathbb{P}[g(x,\xi) \ge 0]$ is also upper semi continuous.

Introduction 00000	Continuity ○○ ○○●	Differentiability 000 00000000000000 00000000 000000000	Eventual convexity 0000000 000000 0000	Algorithms 000000000 000 00000000	
Continuity statements					
Continuity	,				

Lemma

Let $g : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^k$ be (jointly) continuous and let $\xi \in \mathbb{R}^m$ be a random variable admitting a density with respect to the Lesbesgue measure in \mathbb{R}^m . Assume that the sets $N_x = \{z \in \mathbb{R}^m : g(x, z) = 0\}$ are Lesbesgue-null sets for all $x \in \mathbb{R}^n$. Then the mapping $\varphi(x) := \mathbb{P}[g(x, \xi) \ge 0]$ is continuous.

Continui 00

Differentiability

Eventual convexity

Algorithms 000000000 000 000000000 Summary

Introduction Motivation

2 Continuity

- Introductory discussion
- Continuity statements

3 Differentiability

- Classics
- Consideration of non-linear mappings
- More components
- A further characterization of Clarke's sub-differential

4 Eventual convexity

- Introduction
- The tools: special family of copulæ
- Main Results

5 Algorithms

- Introduction
- Level bundle methods
- Dedicated method and results

Introduction 00000	Continuity 00 000	Differentiability ● 0 0 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	Eventual convexity 0000000 000000 0000	Algorithms 000000000 000 00000000			
Classics							
Some differentiability properties of PCs I							

General differentiability statements exist and represent the gradient as an involved integral over a "surface" and "volume". A key condition is that $\{z \in \mathbb{R}^m : g(x, z) \ge 0\}$ is bounded locally around a point x (e.g., [Uryas'ev(2009)]).

Continuity	Differentiability		Algorithms	
00 000	000 00000000000000 0000000 0000000000	0000000 000000 0000	00000000 000 00000000	

Classics

Some differentiability properties of PCs II

Specific formulas such as the following, allow for efficient computation in practice:

Lemma ([Prékopa(1970), Prékopa(1995)])

Let ξ be an *m*-dimensional Gaussian random vector with mean $\mu \in \mathbb{R}^m$ and positive definite variance-covariance matrix Σ . Then the distribution function $F_{\xi}(z) := \mathbb{P}[\xi \leq z]$ is continuously differentiable and in any fixed $z \in \mathbb{R}^m$ the following holds:

$$\frac{\partial F_{\xi}}{\partial z_{i}}(z) = f_{\xi_{i}}(z_{i})F_{\tilde{\xi}(z_{i})}(z_{1},...,z_{i-1},z_{i+1},...,z_{m}), i = 1,...,m.$$
(7)

Here $\tilde{\xi}(z_i)$ is a Gaussian random variable with mean $\hat{\mu} \in \mathbb{R}^{m-1}$ and $(m-1) \times (m-1)$ positive definite covariance matrix $\hat{\Sigma}$. Let D_m^i denote the *m*-th order identity matrix from which the *i*th row has been deleted. Then $\hat{\mu} = D_m^i(\mu + \Sigma_{ii}^{-1}(z_i - \mu_i)\Sigma_i)$ and $\hat{\Sigma} = D_m^i(\Sigma - \Sigma_{ii}^{-1}\Sigma_i\Sigma_i^{\mathsf{T}})(D_m^i)^{\mathsf{T}}$, where Σ_i is the *i*-th column of Σ .

17/107

edf

	Continuity	Differentiability		Algorithms	
	00 000	000 0000000000000 0000000 000000000000	0000000 000000 0000	000000000 000 000000000	
Classics					

Some differentiability properties of PCs III

• $\varphi(x) := \mathbb{P}[\xi \leq x]$ ([Prékopa(1970)]) We have

$$rac{\partial arphi}{\partial \mathbf{x}_i} = f_{\mu_i, \Sigma_{ii}}(\mathbf{x}_i) \mathbb{P}[\tilde{\xi} \leq \tilde{\mathbf{x}}]$$

• $\varphi(x) := \mathbb{P}[A(x)\xi \le \alpha(x)]$ ([van Ackooij et al.(2011)van Ackooij, Henrion, Möller, a

- $\varphi(x) := \mathbb{P}[A\xi \le \alpha(x)]$ ([Henrion and Möller(2012)])
- Other cases involve distribution functions of Dirichlet ([Szántai(1985), Gouda and Szántai(2010)]) and multi-variate Gamma ([Prékopa and Szántai(1979)]) random variables

Introduction 00000	Continuity OO OOO	Differentiability 000 ●00000000000000000000000000000000	Eventual convexity 0000000 000000 0000	Algorithms 000000000 000 000000000	
Consideration of n	on-linear mappings				
Setting					

Consider the probabilistic constraint :

$$\varphi(\mathbf{x}) := \mathbb{P}[g(\mathbf{x},\xi) \le \mathbf{0}] \ge \boldsymbol{\rho},\tag{8}$$

where $g : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^p$ is a continuously differentiable map (convex in the second argument), $\xi \sim \mathcal{N}(\mu, \Sigma)$ a (multi-variate) Gaussian random variable.

Introduction 00000	Continuity 00 000	Differentiability 000 00000000000000000000000000000000	Eventual convexity 0000000 000000 0000	Algorithms 000000000 000 000000000			
Consideration of non-linear mappings							
Motivatic	n						

We would like to dispose of a gradient formulae for the case

 $\varphi(\mathbf{x}) := \mathbb{P}[\langle \mathbf{c}, \eta \rangle \leq h(\mathbf{x})],$

where $c \ge 0, c \in \mathbb{R}^m$, and $\eta \in \mathbb{R}^m$ is a log-normal random variable

We can cast this into the general case by defining the mapping

 $g(x,z) = \langle c, \exp(z) \rangle - h(x).$

• Then $\varphi(x) = \mathbb{P}[g(x,\xi) \leq 0]$ with $\xi \sim \mathcal{N}(\mu, \Sigma)$.

In fact by redefining g we may assume w.l.o.g. that $\xi \sim \mathcal{N}(0, R)$.

・ロ > ・ () > ・ (芝 > ・ 芝 > ・ 芝 = シ のへで 20/107

	Continuity	Differentiability		Algorithms	
	00 000	000 0000000000000000 0000000000000000	0000000 000000 0000	000000000 000 00000000	
Consideration of non-linear mappings					

Inherent non-smoothness

- It is tempting to believe that "nice" properties of g carry forth to φ. For instance, if g is smooth enough, that φ will be at least continuously differentiable.
- Though "nasty laws" for ξ can be expected to have side-effects, nice laws may not.
- Let us first show that such considerations are dangerous.

Continuity	Differentiability		Algorithms	
00 000	000 000000000000000 00000000 000000000	0000000 000000 0000	000000000 000 000000000	

Consideration of non-linear mappings

Inherent non-smoothness: counterexample

Differentiability need not hold:

Proposition

Let $g: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ be defined by

 $g(x_1, x_2, z_1, z_2) := x_1^2 e^{h(z_1)} + x_2 z_2 - 1$, where $h(t) := -1 - 2\log(1 - \Phi(t))$

and Φ is the cumulative distribution function of the one-dimensional standard Gaussian distribution. Let $\xi \sim \mathcal{N}(0, I_2)$ and $\bar{x} = (0, 1)$. Then, the following holds true:

(日) (四) (日) (日) (日) (日)

- g is continuously differentiable.
- 2 g is convex in the second argument.
- 3 $g(\bar{x},0) = g(0,1,0,0) < 0.$
- 4 φ is not differentiable at \bar{x} .

Continuit

Differentiability

Eventual convexity

Algorithms 000000000 000 000000000 Summary

Consideration of non-linear mappings

Inherent non-smoothness: counterexample

Graph of a non-differentiable probability function

ntinuity

Differentiability

Eventual convexity

Algorithms 000000000 000 00000000

Summary

24/107

Consideration of non-linear mappings

Inherent non-smoothness: several components

Things may also go wrong when p > 1, i.e., g has several components:

Example

Let ξ have a one-dimensional standard Gaussian distribution and define

$$g(x_1, x_2, x_3, \xi) := (\xi - x_1, \xi - x_2, -\xi - x_3).$$

Then, with Φ referring to the one-dimensional standard Gaussian distribution function, one has that

$$\varphi(x_1, x_2) = \max\{\min\{\Phi(x_1), \Phi(x_2)\} - \Phi(x_3), 0\}.$$

Clearly φ fails to be differentiable at $\bar{x} := (0, 0, -1)$, while $\{z : g(\bar{x}, z) \le 0\} = [-1, 0]$ is compact and satisfies Slater's condition in the description via g.

	Continuity	Differentiability		Algorithms	
	00 000	000 00000000000000 0000000000000000000	0000000 000000 0000	000000000 000 000000000	
Consideration of n	on-linear mappings				

Inherent non-smoothness: the need for additional conditions

- From these discussion it is clear that some conditions needs to be appended in order to avoid some degeneracy
- Essentially two conditions are needed: bounded growth on $\nabla_x g$, some LICQ type of regularity.

Introduction 00000	Continuity OO OOO	Differentiability 000 00000000000000000000000000000000	Eventual convexity 0000000 000000 0000	Algorithms 000000000 000 000000000	
Consideration of n	on-linear mappings				
Fvaluatir	na ℙ				

- Let $\mathbb{S}^{m-1} := \left\{ z \in \mathbb{R}^m \left| \sum_{i=1}^m z_i^2 = 1 \right. \right\}$ be the euclidian unit-sphere of \mathbb{R}^m .
- Let $\xi \sim \mathcal{N}(0, R)$ be given and *L* be such that $R = LL^{\mathsf{T}}$.
- It is well known that ξ = ηLζ, where η has a chi-distribution with m degrees of freedom and ζ is uniformly distributed over S^{m-1}

Introduction 00000	Continuity OO OOO	Differentiability 000 00000000000000000000000000000000	Eventual convexity 0000000 000000 0000	Algorithms 000000000 000 00000000		
Consideration of non-linear mappings						
Evaluatin	g ℙ II					

• As a consequence if $M \subseteq \mathbb{R}^m$ is Lebesgue measurable

We have

$$\mathbb{P}[\xi \in M] = \int_{v \in \mathbb{S}^{m-1}} \mu_{\eta} \left(\{ r \ge 0 : rLv \cap M \neq \emptyset \} \right) d\mu_{\zeta}$$
(9)

- Efficient sampling schemes for such integrals are provided by [Deák(1986), Deák(2000)]
- In our case M(x) = {z ∈ ℝ^m : g(x, z) ≤ 0} is a convex (hence Lebesgue measurable) set.

Introduction 00000	Continuity 00 000	Differentiability 000 00000000000000000000000000000000	Eventual convexity 0000000 000000 0000	Algorithms 000000000 000 00000000	
Consideration of nor	n-linear mappings				
Growth c	ontrol				

We cannot allow for unbounded growth of the mapping g. We thus define:

Definition

We say that *g* satisfies the **exponential growth condition** at *x* if there exist constants δ_0 , C > 0 and a neighbourhood U(x) such that

$$ig\|
abla_x g\left(x',z
ight) ig\| \leq \delta_0 \exp(\|z\|) \quad orall x' \in U(x) \; orall z: \|z\| \geq C.$$

Introduction	Continuity 00 000	Differentiability 000 00000000000000000000000000000000	Eventual convexity 0000000 000000 0000	Algorithms 000000000 000 00000000	
Consideration of n	on-linear mappings				
The case	e <i>p</i> = 1				

We define the sets of finite and infinite directions:

$$\begin{aligned} F(x) &:= \qquad \left\{ v \in \mathbb{S}^{m-1} | \exists r > 0 : g(x, rLv) = 0 \right\} \\ I(x) &:= \qquad \left\{ v \in \mathbb{S}^{m-1} | \forall r > 0 : g(x, rLv) \neq 0 \right\}. \end{aligned}$$

For each $x \in \mathbb{R}^n$ with g(x, 0) < 0 and $v \in F(x)$ we can find a unique $\rho^{x,v}(x, v) > 0$ such that $g(x, \rho^{x,v}(x, v)Lv) = 0$.

Numerically this value can be computed by a simple application of Newton-Rhapson.

29/107

Continuity	Differentiability		Algorithms	Summary
00 000	000 000000000000000 00000000 000000000	0000000 000000 0000	000000000 000 000000000	

Consideration of non-linear mappings

The case p = 1: Illustration

Continuity	Differentiability		Algorithms	
00 000	000 0000000000000000 00000000 00000000	0000000 000000 0000	000000000 000 000000000	

Consideration of non-linear mappings

The case p = 1: main result

Theorem ([van Ackooij and Henrion(2014)])

Let $g : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ be a continuously differentiable function which is convex with respect to the second argument. Consider the probability function φ defined as $\varphi(x) = \mathbb{P}[g(x,\xi) \leq 0]$, where $\xi \sim \mathcal{N}(0,R)$ has a standard Gaussian distribution with correlation matrix R. Let the following assumptions be satisfied at some \bar{x} :

1 $g(\bar{x}, 0) < 0.$

2 g satisfies the exponential growth condition at \bar{x}

Then, φ is continuously differentiable on a neighbourhood U of \bar{x} and it holds for all $x \in U$ that:

$$\nabla\varphi(\mathbf{x}) = -\int_{\mathbf{v}\in F(\mathbf{x})} \frac{\chi(\rho^{\mathbf{x},\mathbf{v}}(\mathbf{x},\mathbf{v}))\nabla_{\mathbf{x}}g(\mathbf{x},\rho^{\mathbf{x},\mathbf{v}}(\mathbf{x},\mathbf{v})L\mathbf{v})}{\langle\nabla_{\mathbf{z}}g(\mathbf{x},\rho^{\mathbf{x},\mathbf{v}}(\mathbf{x},\mathbf{v})L\mathbf{v}),L\mathbf{v}\rangle} d\mu_{\zeta}(\mathbf{v}).$$

31/107

《曰》《曰》《曰》《曰》《曰》

	Continuity	Differentiability		Algorithms	Summary
	00 000	000 0000000000000 0000000 000000000000	0000000 000000 0000	000000000 000 000000000	
Consideration of non-linear mappings					

Theorem

The previous Theorem remains true if the growth condition is replaced by the condition that the set $\{z | g(\bar{x}, z) \le 0\}$ is bounded. Then, the formula becomes

$$\nabla\varphi(\mathbf{x}) = -\int_{\mathbf{v}\in\mathbb{S}^{m-1}} \frac{\chi(\rho^{\mathbf{x},\mathbf{v}}(\mathbf{x},\mathbf{v}))\nabla_{\mathbf{x}}g(\mathbf{x},\rho^{\mathbf{x},\mathbf{v}}(\mathbf{x},\mathbf{v})\,\mathbf{L}\mathbf{v})}{\langle\nabla_{\mathbf{z}}g(\mathbf{x},\rho^{\mathbf{x},\mathbf{v}}(\mathbf{x},\mathbf{v})\,\mathbf{L}\mathbf{v}),\mathbf{L}\mathbf{v}\rangle}d\mu_{\zeta}(\mathbf{v})$$

Introduction 00000	Continuity OO OOO	Differentiability ○○○ ●○○○○○○○○○○○○○ ○○○○○○○○○○○○○○○○	Eventual convexity 0000000 000000 0000	Algorithms 000000000 000 000000000	
More components					
The case	e p > 1				

• When p > 1 we can define

$$g^{m}(x,z) = \max_{j=1,...,p} g_{j}(x,z),$$
 (10)

(日) (四) (日) (日) (日) (日)

Evidently, the probability function can be written as $\varphi(x) = \mathbb{P}(g^m(x,\xi) \le 0)$.

For each $x \in \mathbb{R}^n$ with g(x, 0) < 0 and $v \in F(x)$ we can find a unique $\rho^{x,v}(x, v) > 0$ such that $g^m(x, \rho^{x,v}(x, v)Lv) = 0$. However this $\rho^{x,v}$ is no longer smooth!

The sets of finite and infinite directions can be defined with respect to g^m or alternatively as unions (intersections) of their counterparts with respect to each component of g.

Continuity	Differentiability		Algorithms	
00 000	000 00000000000000 0 000000 0000000000	0000000 000000 0000	000000000 000 00000000	

More components

The case p > 1: main result

Theorem ([van Ackooij and Henrion(2016)])

Let the following conditions be satisfied at some fixed $\bar{x} \in \mathbb{R}^n$:

1
$$g^m(\bar{x},0) < 0.$$

2 g_j satisfies the exponential growth condition at \bar{x} for all j = 1, ..., p.

Then, φ is locally Lipschitz continuous on a neighbourhood U of $\bar{\mathbf{x}}$ and it holds that

$$\partial^{c}\varphi(x) \subseteq \int_{v \in F(x)} \operatorname{Co}\left\{-\frac{\chi(\hat{\rho}(x,v)) \nabla_{x} g_{j}(x,\hat{\rho}(x,v) L v)}{\langle \nabla_{z} g_{j}(x,\hat{\rho}(x,v) L v), L v \rangle} \middle| j \in \hat{\mathcal{J}}(x,v)\right\} d\mu_{\zeta}(v)$$
(11)

for all $x \in U$. Here,

$$\hat{\mathcal{J}}(x,v) := \{ j \in \{1, \dots, p\} | g_j(x, \hat{\rho}(x, v) \, Lv) = 0 \} \quad (v \in F(x))$$

34/107

Introduction 00000	Continuity OO OOO	Differentiability 000 00000000000000000000000000000000	Eventual convexity 0000000 000000 0000	Algorithms 00000000 000 00000000		
More components						
The case $n > 1$: A first discussion						

- Note that in the case p > 1, under the same conditions as for the case p = 1, we have a weaker results: local Lipschitz continuity and an outer estimate of the clarke-subdifferential
- The earlier example showed that this is inherent and not a weakness of the analysis.

	Continuity	Differentiability		Algorithms	
	00 000	000 000000000000000 000000000000000000	0000000 000000 0000	000000000 000 00000000	
More components					

The case p > 1: R2CQ

Definition

For any $x \in \mathbb{R}^n$ and $z \in \mathbb{R}^m$ we denote by

$$\mathcal{I}(x,z) := \{ j \in \{1, \dots, p\} | g_j(x,z) = 0 \}$$
(12)

the active index set of *g* at (*x*, *z*). We say that the inequality system $g(x, z) \le 0$ satisfies the *Rank-2-Constraint Qualification* (*R*2*CQ*) at $x \in \mathbb{R}^n$ if

rank {
$$\nabla_z g_j(x,z), \nabla_z g_i(x,z)$$
} = 2 $\forall i, j \in \mathcal{I}(x,z), i \neq j$ (13)

$$\forall z \in \mathbb{R}^m : g(x, z) \le 0.$$
 (14)

Introduction		Differentiability	Eventual convexity	Algorithms	
	000	00000000000000 00000000 00000000000000	000000 0000	000 000000000	
More components					
The case	$n > 1 \cdot R$	200 < 1100			

Note that (R2CQ) is substantially weaker than the usual Linear Independence Constraint Qualification (LICQ) common in nonlinear optimization and requiring the linear independence of all gradients to active constraints.

	Continuity	Differentiability		Algorithms	
	00 000	000 000000000000000 00000000000000000	0000000 000000 0000	000000000 000 00000000	
More components					

The case p > 1: An auxiliary result

Lemma ([van Ackooij and Henrion(2016)])

Let $\bar{x} \in \mathbb{R}^n$ be given such that

1 $g^m(\bar{x},0) < 0.$

2 g satisfies (R2CQ) at \bar{x} .

Then, $\mu_{\zeta}(M') = 0$ for $M' := \{ v \in \mathbb{S}^{m-1} | \exists r > 0 : g(\bar{x}, rLv) \leq 0, \ \#\mathcal{I}(\bar{x}, rLv) \geq 2 \}$, where L is the regular matrix in the decomposition $R = LL^{T}$.

Continuity	Differentiability		Algorithms	
00 000	000 00000000000000 0000000 00000000000	0000000 000000 0000	000000000 000 000000000	

More components

The case p > 1: smoothness

Theorem ([van Ackooij and Henrion(2016)])

Let the following conditions be satisfied at some fixed $\bar{x} \in \mathbb{R}^n$:

1 $g^m(\bar{x},0) < 0.$

2 g_j satisfies the exponential growth condition at \bar{x} for all j = 1, ..., p.

3 (R2CQ) is satisfied

Then, φ is Fréchet differentiable at \bar{x} and the gradient formula:

$$\nabla\varphi(\bar{x}) = -\int_{v\in F(\bar{x}),\#\hat{\mathcal{J}}(\bar{x},v)=1} \frac{\chi\left(\hat{\rho}\left(\bar{x},v\right)\right)\nabla_{x}g_{j(v)}\left(\bar{x},\hat{\rho}\left(\bar{x},v\right)Lv\right)}{\left\langle\nabla_{z}g_{j(v)}\left(\bar{x},\hat{\rho}\left(\bar{x},v\right)Lv\right),Lv\right\rangle}d\mu_{\zeta}(v), \quad (15)$$

holds true.

If (R2CQ) is satisfied locally around \bar{x} , then, φ is continuously differentiable at \bar{x} .

39/107

Introduction 00000	Continuity OO OOO	Differentiability 000 00000000000000000000000000000000	Eventual convexity 0000000 000000 0000	Algorithms 000000000 000 000000000	
More components					
One last r	remark				

The condition g(x, 0) < 0 is not very restrictive as the following result shows:

Lemma

With g and φ as before, let the following assumptions be satisfied at some \bar{x} :

```
1 There exists some \bar{z} such that g(\bar{x}, \bar{z}) < 0.
```

```
2 \varphi(\bar{x}) > 1/2.
```

Then, $g(\bar{x}, 0) < 0$.

Introduction 00000	Continuity OO OOO	Differentiability 000 00000000000000000000000000000000	Eventual convexity 0000000 000000 0000	Algorithms 000000000 000 000000000	
A further character	rization of Clarke's sub-	differential			
Motivatio	on				

 \blacksquare Let us consider the special case wherein φ results from

$$\varphi(\mathbf{x}) := \mathbb{P}[B\xi \le h(\mathbf{x})],\tag{16}$$

41/107

with $\xi \sim \mathcal{N}(\mu, \Sigma), \Sigma \succ 0$.

- When *B* is of full rank then, $B^{\mathsf{T}}\Sigma B \succ 0$ too and differentiability follows from classic results.
- However in many applications B has more rows than columns (for instance when coming from Gale-Hoffmann inequalities): φ is no longer smooth.

Continuity	Differentiability		Algorithms	
00 000	000 00000000000000 0000000 0●0000000000	0000000 000000 0000	000000000 000 000000000	

A further characterization of Clarke's sub-differential

Motivation

Example

Let $m = 1, k = 2, \xi \sim \mathcal{N}(0, 1)$ and *B* be given by

$$B = \left(\begin{array}{c} 1\\ 1 \end{array}\right).$$

Then it is readily observed that $\varphi(x) = \mathbb{P}[B\xi \le x] = \mathbb{P}[\xi \le \min\{x_1, x_2\}]$. As a consequence φ fails to be differentiable on the line $x_1 = x_2$ as is readily seen on the figure:

edf

42/107

	Continuity	Differentiability		Algorithms			
	00 000	000 00000000000000 0000000 00●000000000	0000000 000000 0000	000000000 000 00000000			
A further characterization of Clarke's sub-differential							

Setting

- Without loss of generality we concentrate on φ(z) = P[ξ ≤ z], with ξ ~ N(0,Σ) and Σ ≥ 0.
- We may also assume that Σ_{ii} = 1 for all *i* without loss of generality (as otherwise either the system contains a redundant constraint (locally around *z*), or φ fails to be continuous in *z*).

Continuity	Differentiability		Algorithms	
00 000	000 00000000000000 0000000 00000000000	0000000 000000 0000	000000000 000 00000000	

A further characterization of Clarke's sub-differential

Correlation graph

Definition

Let Σ be an $m \times m$ covariance matrix having all diagonal entries equal to 1. Let $G(\Sigma) = (V, E)$ denote the (undirected) graph on the vertex set $V = \{1, ..., m\}$ and with edge set $E = E^+ \cup E^- = \{(i, j) : i \neq j, \Sigma_{ji} = 1\} \cup \{(i, j) : i \neq j, \Sigma_{ji} = -1\}$. The graph $G(\Sigma)$ (which may contain isolated vertices) will be called the correlation graph associated with Σ .

Continuity	Differentiability		Algorithms	
00 000	000 0000000000000 0000000 000000000000	000000 000000 0000	00000000 000 00000000	

A further characterization of Clarke's sub-differential

Correlation graph: Example

Example

Consider the 4 \times 4 covariance matrix Σ defined as follows:

$$\Sigma = \begin{pmatrix} 1 & -1 & 1 & -1 \\ -1 & 1 & -1 & 1 \\ 1 & -1 & 1 & -1 \\ -1 & 1 & -1 & 1 \end{pmatrix},$$

• CDF • ○ < (~ 45/107

<ロ> <回> <回> <回> <回> <回> <回</p>

	Continuity	Differentiability		Algorithms	
	00 000	000 0000000000000 0000000 000000000000	0000000 000000 0000	000000000 000 000000000	
A further character	rization of Clarke's sub-	differential			
Correlati	on graph				

- The correlation graph features Q connected components (each being either an isolated vertex or a complete subgraph (a clique)).
- Each connected component $G^q = (V^q, E^q)$ is bipartite and can be separated into a left and right side L^q, R^q : elements within L^q are positively correlated, elements in L^q are negatively correlated to those in R^q .

	Continuity	Differentiability		Algorithms			
	00 000	000 00000000000000 0000000 000000●000000	0000000 000000 0000	000000000 000 000000000			
A further characterization of Clarke's sub-differential							

Correlation graph and z

Definition

Let $G(\Sigma) = (V, E)$ be a correlation graph:

- Given an arbitrary $z \in \mathbb{R}^m$, we will say that z is *auto-referenced* if there exists an arc $(i, j) \in E$ such that $z_j = \sum_{ji} z_i$ (in other words, such that $z_j = z_i$ if $(i, j) \in E^+$ or such that $z_j = -z_i$ if $(i, j) \in E^-$).
- An auto-referenced point $z \in \mathbb{R}^m$ will be called *changeable* if there exists $(i,j) \in E$ such that $z_k \geq z_i$ for all $(k,i) \in E^+$ and $z_k \geq -z_i$ for all $(k,i) \in E^-$.

The arc $(i,j) \in E$ will occasionally be referred to as an auto-referencing (a changeable) arc with respect to z if z is auto-referenced (changeable).

(日) (四) (日) (日) (日) (日)

47/107

Continuity	Differentiability		Algorithms	
00 000	000 00000000000000 0000000 00000000000	0000000 000000 0000	000000000 000 000000000	

A further characterization of Clarke's sub-differential

Correlation graph: Example

Example

	Differentiability	
00 000	000 00000000000000 0000000	0000000 000000 0000

Algorithms 000000000 000 000000000 Summary

A further characterization of Clarke's sub-differential

Correlation graph: Example 2

Example

	Continuity	Differentiability		Algorithms	
	00 000	000 00000000000000 0000000 00000000000	0000000 000000 0000	000000000 000 000000000	
A further character	rization of Clarke's sub-	differential			

A first result

Theorem ([van Ackooij and Minoux(2015)])

Let ξ be an *m*-dimensional Gaussian random vector with mean $\mu \in \mathbb{R}^m$ and covariance matrix Σ having all diagonal entries equal to 1. Then for arbitrary not-changeable $z - \mu \in \mathbb{R}^m$, the distribution function $F_{\xi}(z) := \mathbb{P}[\xi \leq z]$ is locally Lipschitz at *z* and $\partial^c F_{\xi}(z) = \{v\}$, where for arbitrary *i*=1,...,*m*:

$$v_i = f_{\xi_i}(z_i) F_{\tilde{\xi}(z_i)}(z_1, ..., z_{i-1}, z_{i+1}, ..., z_m).$$
(17)

Here $\partial^{c}F_{\xi}(z)$ denotes the Clarke-subdifferential of F_{ξ} and $\tilde{\xi}(z_{i})$ is an m-1 dimensional Gaussian random vector (familiar from classic results)

	Continuity	Differentiability		Algorithms	
	00 000	000 00000000000000 00000000 0000000000	0000000 000000 0000	000000000 000 000000000	

The familiar associated Gaussian

- f_{ξ_i} is the one dimensional Gaussian density of ξ_i
- Let D_m^i denote the $(m-1) \times m$ matrix deduced from the $m \times m$ identity matrix by deleting the *i*th row.

$$\hat{\mu} = D^i_m(\mu + \Sigma^{-1}_{ii}(z_i - \mu_i)\Sigma_i)$$

$$\hat{\boldsymbol{\Sigma}} = \boldsymbol{D}_m^i (\boldsymbol{\Sigma} - \boldsymbol{\Sigma}_{ii}^{-1} \boldsymbol{\Sigma}_i \boldsymbol{\Sigma}_i^T) (\boldsymbol{D}_m^i)^T,$$

where Σ_i is the *i*-th column of Σ and Σ_{ii} is the *i*-th element of the main diagonal of Σ .

Continuity	Differentiability		Algorithms	Summary
00	000 00000000000000 0000000 00000000000	0000000 000000 0000	00000000 000 00000000	

A further characterization of Clarke's sub-differential

And changeable points?

Proposition ([van Ackooij and Minoux(2015)])

Let $G^q = (V^q, E^q)$, be the connected q = 1, ..., Q components of the correlation graph and (L^q, R^q) be the associated bipartition. Let z be changeable. Define $J \subseteq \{1, ..., Q\}$ as the set of all q for which either $|V^q| = 1$ or no changeable arc exists in V^q . For each remaining $q \in \{1, ..., Q\} \setminus J$, pick $l^q \in L^q$, $r^q \in R^q$ such that $z_{lq} \leq z_p$ for all $p \in L^q$ and $z_{rq} \leq z_p$ for all $p \in R^q$. If R^q is empty, r^q should be interpreted as being "empty". Then the distribution function $F_{\xi}(z) := \mathbb{P}[\xi \leq z]$ is locally Lipschitz at z and $v \in \partial^c F_{\xi}(z)$, where for arbitrary i=1,...,m:

$$v_{i} = \begin{cases} f_{\xi_{i}}(z_{i})F_{\tilde{\xi}(z_{i})}(z_{1},...,z_{i-1},z_{i+1},...,z_{m}) & \text{if} & i \in \bigcup_{j \in J} V^{j} \\ f_{\xi_{i}}(z_{i})F_{\tilde{\xi}(z_{i})}(z_{1},...,z_{i-1},z_{i+1},...,z_{m}) & \text{if} & \exists q \in \{1,...,Q\} \setminus J, i \in \{l^{q}, l^{q}, l^{q}\} \\ 0 & \text{otherwise} \end{cases}$$

$$(18)$$

Moreover $\partial^{c} F_{\xi}(z)$ contains at least two elements.

	Continuity	Differentiability		Algorithms		
	00 000	000 00000000000000 0000000 00000000000	0000000 000000 0000	000000000 000 000000000		

A final definition

Definition

Let $z \in \mathbb{R}^m$ be arbitrary. Define the set $\mathcal{E}(z)$ as the set of all v defined according to previous formula, where we enumerate all possible choices of l^q , r^q for each q. For a specific q if V^q contains a changeable arc with one endpoint in L^q and the other endpoint in R^q we adjoin to this set of choices, $v \in \mathbb{R}^m$, with $v_p = 0$ for $p \in V^q$.

	Continuity	Differentiability		Algorithms	
	00 000	000 0000000000000 0000000 000000000000	0000000 000000 0000	000000000 000 000000000	
A 6					

The main result

Theorem ([van Ackooij and Minoux(2015)])

Let ξ be an m-dimensional Gaussian random vector with mean $\mu \in \mathbb{R}^m$ and covariance matrix Σ having all diagonal entries equal to 1. Then the distribution function $F_{\xi}(z) := \mathbb{P}[\xi \leq z]$ is continuously differentiable if and only if $z - \mu$ is not changeable.

Moreover F_{ξ} is locally Lipschitz at z and

$$\partial^{c} F_{\xi}(z) = \operatorname{co}\left(\mathcal{E}(z)\right),$$
(19)

《曰》《曰》《曰》《曰》《曰》

54/107

where co(B) denotes the convex hull of set $B \subseteq \mathbb{R}^m$.

Continui 00 000

Eventual convexity

0000000 000000 0000 Algorithms 000000000 000 000000000 Summary

Introduction Motivation

2 Continuity

- Introductory discussion
- Continuity statements

3 Differentiability

- Classics
- Consideration of non-linear mappings
- More components
- A further characterization of Clarke's sub-differential

4 Eventual convexity

- Introduction
- The tools: special family of copulæ
- Main Results

5 Algorithms

- Introduction
- Level bundle methods
- Dedicated method and results

	Continuity	Differentiability	Eventual convexity	Algorithms	Summary
	00 000	000 0000000000000 0000000 000000000000	•000000 000000 0000	000000000 000 000000000	
later desettere					

Definition of Generalized Concavity I

The following mapping plays a key role in the definition of generalized concavity:

Definition

Let $\alpha \in [-\infty, \infty]$ and $m_{\alpha} : \mathbb{R}_+ \times \mathbb{R}_+ \times [0, 1] \to \mathbb{R}$ be defined as follows

$$m_{\alpha}(a,b,\lambda) = 0 \text{ if } ab = 0, \tag{20}$$

for $a > 0, b > 0, \lambda \in [0, 1]$:

$$m_{\alpha}(a,b,\lambda) = \begin{cases} a^{\lambda}b^{1-\lambda} & \text{if } \alpha = 0\\ \max\{a,b\} & \text{if } \alpha = \infty\\ \min\{a,b\} & \text{if } \alpha = -\infty\\ (\lambda a^{\alpha} + (1-\lambda)b^{\alpha})^{\frac{1}{\alpha}} & \text{else} \end{cases}$$
(21)

56/107

< □ > <四 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction 00000	Continuity OO OOO	Differentiability 000 0000000000000 00000000 0000000000	Eventual convexity ○●○○○○○ ○○○○○○ ○○○○○	Algorithms 000000000 000 00000000	
Introduction					

Definition of Generalized Concavity II

■ We can now define generalized concavity of a mapping *f*:

Definition

A non-negative function *f* defined on some convex set $C \subseteq \mathbb{R}^n$ is called α -concave ($\alpha \in [-\infty, \infty]$) if and only if for all $x, y \in C, \lambda \in [0, 1]$:

$$f(\lambda x + (1 - \lambda)y) \ge m_{\alpha}(f(x), f(y), \lambda).$$
(22)

For $\alpha = 1$ this is just the definition of concavity. For $\alpha = 0$, f is log-concave and satisfies $f(\lambda x + (1 - \lambda)y) \ge f(x)^{\lambda} f(y)^{1-\lambda}$.

Continuity	Differentiability	Eventual convexity	Algorithms	
00	000 00000000000000 00000000 0000000000	000000 000000 0000	00000000 000 000000000	

Some Properties of PCs I

Convexity of *M*(*p*) can be asserted under general conditions on *g*, *ξ* regardless of *p*

Theorem ([Prékopa(1972), Prékopa(1973), Tamm(1977), Borell(1975), Brascamp and Lieb(1976)])

Let $g : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^k$ be a (jointly) quasi-concave function and let $\xi \in \mathbb{R}^m$ be a random variable inducing an α -concave probability distribution \mathbb{P} . Then the mapping $x \in \mathbb{R}^n \mapsto G(x) := \mathbb{P}[g(x,\xi) \ge 0]$ is an α -concave function on the set $D = \{x \in \mathbb{R}^n : \exists z \in \mathbb{R}^m \text{ with } g(x,z) \ge 0\}.$

Continuity	Differentiability	Eventual convexity	Algorithms	
00 000	000 0000000000000 0000000 000000000000	000000 000000 0000	000000000 000 000000000	

An example of another type of convexity

Let us consider the following example, wherein $g : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ is defined as follows:

$$g(x,z) := z^{\mathsf{T}} W(x) z + 2 \sum_{i=1}^{n} x_i w_i^{\mathsf{T}} z + b, \qquad (23)$$

where $W : \mathbb{R}^n \to \mathbb{R}^m \times \mathbb{R}^m$ a positive semi-definite matrix valued mapping.

 $W(x) = x_1 W_1 + x_2 W_2$, where $W_1 = \begin{pmatrix} 1 & 0.9 \\ 0.9 & 1 \end{pmatrix} \text{ and } W_2 = \begin{pmatrix} 1 & -0.7 \\ -0.7 & 1 \end{pmatrix}.$

Moreover the correlation matrix R is taken to be:

$$\label{eq:relation} \textit{R} = \left(\begin{array}{cc} 1 & 0.5 \\ 0.5 & 1 \end{array} \right) \, .$$

Finally we take $w_1 = (-1, 1), w_2 = (2, 3)$ and b = -3

Continuity	Differentiability	Eventual convexity	Algorithms	Summary
00 000	000 00000000000000 0000000 00000000000	0000000 000000 0000	000000000 000 000000000	

Some Properties of PCs II

Eventual convexity is defined as convexity of M(p) for all p > p*. A classic result:

Lemma ([Kataoka(1963)])

Consider the constraint of the form $\varphi(x) \ge p$ where k = 1, $g(x, z) = z^{\mathsf{T}}x - b$ and $\xi \in \mathbb{R}^m$ is a multivariate Gaussian random variable. Then the feasible set M(p) is convex for all $p > \frac{1}{2}$.

Recent important eventual convexity results for *M*(*p*) involving specially structured probabilistic constraints have been derived by [Henrion and Strugarek(2008)], [Henrion and Strugarek(2011)].

Introduction 00000	Continuity OO OOO	Differentiability 000 000000000000 00000000 0000000000	Eventual convexity 0000000 000000 00000	Algorithms 000000000 000 000000000	
Introduction					
Setting					

In practice, an important question concerns convexity of the set

$$M(\rho) := \left\{ x \in \mathbb{R}^n : \mathbb{P}[\xi \le h(x)] \ge \rho \right\}.$$
(24)

- When h has weaker concavity properties (e.g., only log-concave), the classic results can't be applied (directly).
- We are interested in identifying a computable threshold p^* such that M(p) can be shown to be convex provided $p \ge p^*$: eventual convexity

Introduction 00000	Continuity OO OOO	Differentiability 000 000000000000 00000000 0000000000	Eventual convexity 000000● 000000 0000	Algorithms 000000000 000 000000000	
Introduction					
Structure					

• We assume that $\varphi(x) := \mathbb{P}[\xi \le h(x)]$ can be cast into the following form:

$$\varphi(x) := C(F_1(h_1(x)), ..., F_m(h_m(x))),$$
(25)

where $C : [0, 1]^m \rightarrow [0, 1]$ is a Copula.

- The component ξ_i is assumed to have one dimensional distribution function $z \in \mathbb{R} \mapsto F_i(z) := \mathbb{P}[\xi_i \leq z], i = 1, ..., m$.
- A copula is the distribution function of a multi-variate random variable with uniformly distributed marginals.
- According to Sklar's Theorem, every joint probability distribution can be associated with a Copula

Introduction 00000	Continuity 00 000	Differentiability 000 0000000000000 00000000 0000000000	Eventual convexity ○○○○○○○ ○○○○○ ○○○○	Algorithms 000000000 000 00000000	
The tools: special fa	amily of copulæ				
Definitior	า				

We introduce a family of copulae:

Definition

Let $\gamma \in \mathbb{R}$ be given, and let the set $X(\gamma)$ be defined as $X(\gamma) = [0, 1]^m$ for $\gamma > 0$, $X(0) = (-\infty, 0]^m$ and $X(\gamma) = [1, \infty)^m$ for $\gamma < 0$.

Let $\delta \in [-\infty, \infty]$ be equally given.

We call a Copula $C : [0, 1]^m \to [0, 1] \delta$ - γ -concave if the mapping $u \in X(\gamma) \mapsto C(u^{\frac{1}{\gamma}})$ is δ -concave, whenever $\gamma \neq 0$ and $u \in X(0) \mapsto C(e^u)$ is δ -concave whenever $\gamma = 0$.

(日) (四) (문) (문) (문) (문)

Introduction 00000	Continuity 00 000	Differentiability 000 0000000000000 00000000 0000000000	Eventual convexity ○○○○○○○ ○○○○○○ ○○○○	Algorithms 000000000 000 00000000	
The tools: special	family of copulæ				
Relation					

- A logexp-concave copulae *C* ([Henrion and Strugarek(2011)]) is 0-0-concave. The concept of δ - γ -concavity is a direct extension.
- A quasi-concave copula is $-\infty$ -1-concave.
- It is sufficient for δ-γ-concavity to hold locally (Not shown here for notational convenience).

Introduction 00000	Continuity 00 000	Differentiability 000 00000000000000000000000000000000	Eventual convexity	Algorithms 000000000 000 00000000	
The tools: special f	family of copulæ				
Structure	e l				

The γ parameter has an ascending effect:

Lemma

Let $C : [0,1]^m \to [0,1]$ be a δ - β -concave Copula and let $\alpha \in \mathbb{R}$ be given such that $\beta \leq \alpha$. Then C is also δ - α -concave.

Introduction 00000	Continuity 00 000	Differentiability 000 00000000000000000000000000000000	Eventual convexity	Algorithms 000000000 000 00000000					
The tools: special fa	The tools: special family of copulæ								
Structure	: II								

The δ parameter has a descending effect as is well-known.

Corollary

Let $C : [0,1]^m \to [0,1]$ be a $\delta \gamma$ -concave Copula and let $\alpha \ge \gamma$ and $\beta \le \delta$ be given. Then C is also β - α -concave.

This shows that the strongest characterization is obtained when γ is smallest and δ highest.

	Continuity	Differentiability	Eventual convexity	Algorithms	
	00 000	000 0000000000000 0000000 000000000000	0000000 000000 0000	000000000 000 000000000	
The tools: special f	amily of copulæ				

General observation

The family contains all Archimedian copulae

Proposition ([van Ackooij and de Oliveira(2016)])

Let $C : [0,1]^m \to [0,1]$ be an Archimedian copula, and $\psi : (0,1] \to [0,\infty)$ be its generator. Then C is a $-\infty$ -1-concave copula.

	Continuity	Differentiability	Eventual convexity	Algorithms	
	00 000	000 0000000000000 0000000 000000000000	000000 00000● 0000	000000000 000 000000000	
The tools: special f	family of copulæ				

Stronger characterizations

- The independent, maximum and Gumbel Copula are 0-0-concave ([Henrion and Strugarek(2011)])
- The Clayton copula can also be characterized in a stronger way:

Lemma ([van Ackooij(2015)])

Let $\theta > 0$ be the parameter of the strict generator $\psi : [0,1] \to \mathbb{R}_+$, $\psi(t) = \theta^{-1}(t^{-\theta} - 1)$ of the Clayton Copula. This Copula is $\delta - \gamma$ -concave for all $\gamma > 0$ provided that $\delta \leq -\theta < 0$.

	Continuity	Differentiability	Eventual convexity	Algorithms	Summary
	00 000	000 0000000000000 0000000 000000000000	000000 000000 •000	000000000 000 000000000	
Main Results					

Main result I

Theorem ([van Ackooij(2015)])

Assume that we can find $\alpha_i \in \mathbb{R}$, such that the functions h_i are α_i -concave and a second set of parameters $\gamma_i \in (-\infty, \infty]$, $b_i > 0$ such that either one of the following conditions holds:

1
$$\alpha_i < 0$$
 and $z \mapsto F_i(z^{\frac{1}{\alpha_i}})$ is γ_i -concave on $(0, b_i^{\alpha_i}]$

2 $\alpha_i = 0$ and $z \mapsto F_i(\exp z)$ is γ_i -concave on $[\log b_i, \infty)$

3
$$\alpha_i > 0$$
 and $z \mapsto F_i(z^{\frac{1}{\alpha_i}})$ is γ_i -concave on $[b_i^{\alpha_i}, \infty)$,

where $i \in \{1, ..., m\}$ is arbitrary. If the Copula is δ - γ -concave for $\gamma \leq \gamma_i \leq \infty$, i = 1, ..., m, then the set

$$M(p) := \left\{ x \in \mathbb{R}^n : \mathbb{P}[\xi \le h(x)] \ge p \right\}$$

is convex for all $p > p^* := \max_{i=1,...,m} F_i(b_i)$. Convexity can moreover be derived for all $p \ge p^*$ if each individual distribution function F_i , i = 1, ..., m is strictly increasing. In the specific case that $\alpha_i \ge 0$, γ_i -concavity of the distribution functions holding everywhere, for all $i \in \{1, ..., m\}$ and C being a $\delta \gamma$ -concave Copula, the set M(p) is convex for all p.

	Continuity	Differentiability	Eventual convexity	Algorithms	
	00 000	000 0000000000000 0000000 000000000000	000000 000000 0000	000000000 000 000000000	
Main Results					
Some co	omments				

- An "unfortunate" effect in the previous result is that *p*^{*} depends somehow on the "worst" distribution function *F_i*, but is only needed for a single inequality.
- Generalized concavity of the mappings *h_i* need only hold on specific level sets {*x* ∈ ℝⁿ : *h_i*(*x*) ≥ *b_i*}.

Introduction 00000	Continuity 00 000	Differentiability 000 0000000000000 00000000 0000000000	Eventual convexity ○○○○○○ ○○○○○ ○○●○	Algorithms 000000000 000 00000000	
Main Results					
Main res	ult II				

These concerns are addressed in the following result:

Theorem ([van Ackooij(2015)])

Define the set $D := \{x \in \mathbb{R}^n : h_i(x) \ge b_i, \forall i = 1, ..., m\}$, where b_i is as defined in the previous Theorem and we make the same assumptions on ξ , F_i and the Copula. Then the set D is convex and $D \cap M(p)$ is convex for all $p \ge p^* = C(F_1(b_1), ..., F_n(b_n))$.

Introduction Continuity 00000 00 000	Differentiability 000 0000000000000 0000000 0000000000	Eventual convexity	Algorithms 000000000 000 00000000	Summary
Main Results				
Discussion				

The conditions of the theorem can be shown to hold in many situations:

- Generalized concavity properties of mappings h_i are known from data; Implicit from some underlying nominal "deterministic" problem involving constraints $h_i(x) \ge b_i$.
- The requests on the marginal distribution functions follow from results in [Henrion and Strugarek(2008)] for nearly all choices
- **The class of** δ - γ -concave copula cover at least all Archimedian copula.

Continuity

Eventual convexity

Algorithms

Summary

Introduction Motivation

2 Continuity

- Introductory discussion
- Continuity statements

3 Differentiability

- Classics
- Consideration of non-linear mappings
- More components
- A further characterization of Clarke's sub-differential

4 Eventual convexity

- Introduction
- The tools: special family of copulæ
- Main Results

5 Algorithms

- Introduction
- Level bundle methods
- Dedicated method and results

	Continuity	Differentiability		Algorithms	
	00 000	000 0000000000000 0000000 000000000000	0000000 000000 0000	•••••• ••• ••••	
Introduction					

Cutting plane models

- Consider the problem of minimizing a convex mapping $f : \mathbb{R}^n \to \mathbb{R}$
- *f* is only known partially through a "black box" called oracle. Given an entry x_i , it returns $f(x_i)$ and $g_i \in \partial f(x_i)$.
- With a set of points $x_1, ..., x_k$, we can build the cutting plane model for *f*:

$$\check{f}_k(x) := \max_{j=1,\ldots,k} \{f(x_j) + \langle g_j, x - x_j \rangle\}$$
(26)

・ロト ・西 ・ ・田 ・ ・日 ・

74/107

Convexity yields: $\check{f}_k(x) \le f(x)$ for all x (and $k \ge 1$).

	Continuity	Differentiability		Algorithms	
	00 000	000 0000000000000 0000000 000000000000	0000000 000000 0000	00000000 000 00000000	
Introduction					

Cutting plane methods

■ So instead of minimizing *f* over a "simple" set *X*, we solve

$$x_{k+1} = \operatorname*{argmin}_{x \in X} \check{f}_k(x). \tag{27}$$

■ when *X* is polyhedral this is a linear program.

Continuity	Differentiability		Algorithms	
00 000	000 00000000000000 0000000 00000000000	0000000 000000 0000	00000000 000 00000000	

Continuity	Differentiability		Algorithms	
00	000 0000000000000 0000000 000000000000	0000000 000000 0000	000000000 000 000000000	

Introduction	Continuity	Differentiability		Algorithms	
	00	000 0000000000000 0000000 000000000000	0000000 000000 0000	00000000 000 00000000	

Continuity	Differentiability		Algorithms	
00	000 00000000000000 0000000 00000000000	0000000 000000 0000	000000000 000 000000000	

Continuity	Differentiability		Algorithms	
00	000 00000000000000 0000000 00000000000	0000000 000000 0000	000000000 000 000000000	

Continuity	Differentiability		Algorithms	
00 000	000 00000000000000 0000000 00000000000	000000 000000 0000	00000000 000 00000000	

	Continuity	Differentiability		Algorithms	
	00	000 00000000000000 0000000 00000000000	0000000 000000 0000	00000000 000 000000000	
Introduction					

Convex constrained problems

Consider the problem

$$\min_{x \in X} \{f(x) : \text{s.t. } \varphi(x) := \mathbb{P}[g(x,\xi) \le 0] \ge p\}$$
(28)

- Then under appropriate assumptions, $x \mapsto \varphi(x)$ has convex level sets, e.g., φ could be log-concave
- Now, $c(x) = \log(p) \log(\varphi(x))$ is a convex map.
- the problem is a convex constrained problem (under the appropriate assumptions)

	Continuity	Differentiability		Algorithms	
	00 000	000 0000000000000 0000000 000000000000	0000000 000000 0000	000000000 000 000000000	
Introduction					

Supporting hyperplane method

- A classic method in chance constrained programming.
- We suppose available a slater point x^s , i.e., such that $\varphi(x^s) > p$.
- At iteration k we solve $\min_{x \in X} \left\{ \check{f}_k(x) : \check{c}_k(x) \le 0 \right\}$ to find \tilde{x}_{k+1} .
- Typically \tilde{x}_{k+1} is not feasible, so we compute the largest $\lambda \in [0, 1]$ such that $x_{k+1} = \lambda x^s + (1 \lambda)\tilde{x}_{k+1}$ satisfies $\varphi(x_{k+1}) = p$.
- We have upper and lower bounds on the optimal value and stop whenever these are close enough.

Introduction 00000	Continuity OO OOO	Differentiability 000 00000000000000000000000000000000	Eventual convexity 0000000 000000 00000	Algorithms 0000000000 000 00000000	
Introduction					

Are chance constraints just plain non-linear constraints?

In a way yes, but the mapping φ (*c*) is not known up to arbitrary precision (or would be unreasonably costly). A (sub-)gradient of φ (*c*) also suffers from numerical imprecision. Here we make use of the earlier derived formula allowing for efficient and precise computations. Again with a trade-off cost/Efficiency

So then is č a true cutting plane model for c underestimating it ?

	Continuity	Differentiability		Algorithms	
	00 000	000 0000000000000 0000000 000000000000	0000000 000000 0000	000000000 000 00000000	
Introduction					

Special methods for chance constraints

An example shows that cutting planes may locally over-estimate the map (or set):

Introduction 00000	Continuity 00 000	Differentiability 000 0000000000000 00000000 0000000000	Eventual convexity 0000000 000000 0000	Algorithms 0000000€0 000 00000000	
Introduction					
Upper-or	racle				

We can set up an "upper"-oracle for constraints of type c and specially structured probability constraints. These may provide a cutting planes model with cutting planes:

$$egin{array}{rcl} c_x &=& c(x) - \eta^x_c \ c(y) &\geq& c_x + \left< g^x_c, y - x \right> - arepsilon^x_c, \end{array}$$

having $\varepsilon_c^x > 0$.

■ ε_c^x can be shown to have a link with the precision used in evaluating probabilities $\mathbb{P}[g(x,\xi) \ge 0]$.

(日)、(四)、(日)、(日)、(日)、

Introduction 00000	Continuity 00 000	Differentiability 000 0000000000000 00000000 0000000000	Eventual convexity 0000000 000000 0000	Algorithms 00000000● 000 00000000	
Introduction					
Special r	nothode				

- So we need a method capable of handling inaccuracy of φ (c) explicitly
- A method able to account for the flaws of cutting plane methods: (oscillation, slow convergence (for high accuracy solutions))
- Lets look at special bundle methods

Introduction 00000	Continuity OO OOO	Differentiability 000 0000000000000 00000000 0000000000	Eventual convexity 0000000 000000 0000	Algorithms ○○○○○○○○○ ●○○ ○○○○○○○○○	
Level bundle metho	ds				

Level bundle method: main ideas

What characterizes a level bundle method are essentially:

- [(i)] a convex model $\check{f}_k(x) \leq f(x)$;
- **[**(ii)] a stability center \hat{x}_k ;
- [(iii)] a parameter f_k^{lev} to be updated at each iteration k.

The new iterate x_{k+1} is obtained by solving a projection problem

$$x_{k+1} := \operatorname{argmin} \left\{ \frac{1}{2} \left\| x - \hat{x}_k \right\|^2 : \check{f}_k(x) \le f_k^{\text{lev}}, \ x \in X \right\}$$

	Continuity	Differentiability		Algorithms	
	00 000	000 0000000000000 0000000 000000000000	0000000 000000 0000	00000000 000 00000000	
Level bundle metho	ds				

Level bundle method: some elements

Definitions

$$\begin{array}{ll} f_k^{\text{up}} & := \min_{1 \leq j \leq k} f(x_j) \\ f_k^{\text{low}} & := \min_{x \in X} \check{f}_k(x) \\ f_k^{\text{lev}} & := \lambda f_k^{\text{up}} + (1 - \lambda) f_k^{\text{low}} \\ \mathbb{X}_k & := \{x \in X : \check{f}_k(x) \leq f_k^{\text{lev}}\} \\ \Delta_k & := f_k^{\text{up}} - f_k^{\text{low}} \end{array}$$

is an upper bound for f_* is a lower bound for f_* is the level parameter, for $\lambda \in (0, 1)$ is the level set of \check{f}_k is an optimality gap

■ Solving the LP defining *f*^{low} is optional

Continuity	Differentiability		Algorithms	
00 000	000 0000000000000 0000000 000000000000	0000000 000000 0000	00000000 00 000000000	

Continuity	Differentiability		Algorithms	
00 000	000 0000000000000 0000000 000000000000	0000000 000000 0000	00000000 00 000000000	

Continuity	Differentiability		Algorithms	
00	000 0000000000000 0000000 000000000000	0000000 000000 0000	00000000 00 000000000	

Continuity	Differentiability		Algorithms	
00 000	000 0000000000000 0000000 000000000000	0000000 000000 0000	00000000 00 000000000	

Introduction 00000	Continuity 00 000	Differentiability 000 00000000000000000000000000000000	Eventual convexity 0000000 000000 00000	Algorithms ○○○○○○○○○ ○○● ○○○○○○○○○	
		00000000000000000			

Introduction 00000	Continuity 00 000	Differentiability 000 00000000000000000000000000000000	Eventual convexity 0000000 000000 00000	Algorithms ○○○○○○○○○ ○○● ○○○○○○○○○	
		00000000000000			

00000 00 0000 000000 00000 00000 00000 0000	Continuity	Differentiability		Algorithms	
	00 000	000 00000000000000 0000000 00000000000	0000000 000000 0000	00000000 00 000000000	

Introduction	Continuity	Differentiability	Eventual convexity	Algorithms	
00000	000	000 00000000000000 00000000 0000000000	0000000	000000000	

	Continuity	Differentiability		Algorithms			
	00 000	000 0000000000000 0000000 000000000000	0000000 000000 0000	00000000 000 00000000			
Dedicated method and results							

Measure of optimality

• We define the improvement function $h(x; f_k^{low}) := \max \{ f(x) - f_k^{low}, c(x) \}.$

The optimality measure is

$$h_{k}^{\text{rec}} := \begin{cases} h(x_{0}, f_{0}^{\text{low}}) & \text{if } k = 0\\ \min\left\{ (\min_{j} h(x_{j}, f_{k}^{\text{low}})), h_{k-1}^{\text{rec}} \right\} & \text{if } k > 0 \end{cases}$$
(29)

• x_k^{rec} is the past iterate such that $h(x_k^{\text{rec}}; f_k^{\text{low}}) = h_k^{\text{rec}}$. It is the sequence of best solutions.

				Algorithms				
	00 000	000 0000000000000 0000000 000000000000	0000000 000000 0000	00000000 000 00000000				
Dedicated method and results								
The algo	rithm							

After initialization, the algorithm moves through the following steps

- (Best minimizer) Update x_k^{rec} and h_k^{rec}
- (Stopping test) If $h_k^{rec} < \delta$ is sufficiently small, then stop
- (Level update): Compute f_k^{lev}
- (Projection problem): Compute x_{k+1}
- (Oracle): call the oracle to update the models
- (Bundle Management): Optionally remove old linearizations

Introduction 00000	pduction Continuity Differentiability IOO OO OOO OOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO		Eventual convexity 0000000 000000 0000	Algorithms ○○○○○○○○○ ○○●○○○○○○	
Dedicated method	and results				

The algorithm: convergence, optimality certificate

Lemma ([van Ackooij and de Oliveira(2014)])

If $\lim_k h_k^{\text{rec}} \leq 0$, then any cluster point of the sequence x_k^{rec} is an η -optimal solution to the problem, with $\eta := \max \{\eta_f + \varepsilon_f, \eta_c\}$. In particular if $h_k^{\text{rec}} \leq 0$ for some (finite) k, x_k^{rec} is an η -optimal solution.

	Continuity	Differentiability		Algorithms	Summary
	00 000	000 0000000000000 0000000 000000000000	0000000 000000 0000	00000000 000 00000000	
Dodicated mothed	and results				

The algorithm: convergence

Theorem ([van Ackooij and de Oliveira(2014)])

The algorithm with an upper oracle (and with $\delta = 0$) will either stop or generate a sequence of points such that $\lim_k h_k^{\text{rec}} \leq 0$.

Continuity

Eventual convexity

Algorithms

Summary

Dedicated method and results

Numerical example : cascaded reservoir management

- A network flow problem when the valley acts on a price signal, the latter typically comes from a Lagrangian dual.
- Water values, i.e., costs are assumed pre-computed and can be volume dependent
- Constraints imply:
 - Production level bounds
 - Reservoir bounds have to be satisfied
- When Inflows are deterministic, the above problem is linear. Inflows are however stochastic

Introduction 00000	on Continuity Differentiability 00 000 000 0000000000000000000000000		Eventual convexity 0000000 000000 0000	Algorithms ○○○○○○○○○ ○○○○○○○○○○○○				
Dedicated method	and results							
Problem Structure								

Reservoir bound constraints need to be interpreted "somehow" in a stochastic setting. We will use (joint-)chance constrained programming in order to do so. This gives the problem:

$$\begin{split} \min_{x \in \mathbb{R}_{+}^{n}} & c^{\mathsf{T}}x \\ s.t. & Ax \leq b \\ p \leq \mathbb{P}[a^{r} + A^{r}x \leq \xi \leq b^{r} + A^{r}x], \end{split}$$
 (30)

(日) (四) (日) (日) (日) (日)

If Inflows follow a Causal time series model with Gaussian innovations, then ξ above is Gaussian as well. In particular problem (30) has a convex feasible set.

Continuity	Differentiability		Algorithms
00 000	000 00000000000000 00000000 0000000000	000000 000000 0000	000000000 000 0000000000

Dedicated method and results

Numerical example: benchmark I

Table: In all computations: precision of oracle $\varepsilon^g = 5e^{-4}$

Instance	method	Obj. Value	P	Nb. Iter.	CPU time	parameters
				[InfeasQP]	(mins)	
Isr48	Alg.[Prékopa(2003)]	-175031	0.799975	35	10.5	$\delta_{\text{Tol}} = 1e^{-4}$
Isr48	Alg.[Kiwiel(2008)]	-175042	0.799885	49	7.5	$K = 1e^4, \delta_{\text{Tol}} = 1e^{-5}$
Isr48	Alg.PB	-175043	0.799145	88	11.2	$K = 1e^5, \mu_0 = 1e^{-5}, \delta_{\text{Tol}} = \frac{1}{2}$
Isr48	Alg.PB	-175042	0.799536	69	8.3	$K = 1e^5, \mu_0 = 1e^{-6}, \delta_{\text{Tol}} = \frac{1}{2}$
Isr48	Alg.PB	-175042	0.799588	31	4.5	$K = 1e^5, \mu_0 = 1e^{-8}, \delta_{\text{Tol}} = \frac{1}{2}$
Isr48	Alg.LB	-175039	0.800041	66	10.0	$\mathcal{K}=1e^5,\gamma=0.8,\delta_{ ext{Tol}}=5$
Isr48	Alg.LB	-175040	0.799755	38	5.4	$\mathcal{K}=1e^4,\gamma=$ 0.8, $\delta_{ t Tol}=$ 5
Isr48	Alg.LB	-175040	0.799855	63 [3]	8.6	$\mathcal{K}=1e^5,\gamma=0.8,\delta_{ ext{Tol}}=5,[\neg ext{LP}]$
Isr48	Alg.LB	-175037	0.79966	38 [4]	5.2	$K = 1e^4, \gamma = 0.8, \delta_{\text{Tol}} = 5, [\neg \text{LP}]$

Introduction 00000	Continuity OO OOO	Differentiability 000 0000000000000 000000000000000000	Eventual convexity 0000000 000000 0000	Algorithms ○○○○○○○○○ ○○○○○○○○○○○○	
Dedicated method	and results				

Numerical example: benchmark II

- Bundle Methods offer computational advantages over Cutting Planes methods, mainly if the instance is hard (e.g., case of Ain48, Isr96, Isr168). It does not show much for Isr48.
- The Level Method has an easier parameter setup "globally" .
- The Proximal Method (see [van Ackooij and Sagastizábal(2014)]) produces feasible solutions quickly

Continuit

Eventual convexity

Algorithms

Summary

Dedicated method and results

Numerical example: benchmark III

Instance	method	Obj. Value	P	Nb. Iter.	CPU time	parameters
				[InfeasQP]	(mins)	
Isr96	Alg.[Prékopa(2003)]	-175708	0.799492	143	217.4	$\delta_{\text{Tol}} = 1e^{-4}$
Isr96	Alg.[Kiwiel(2008)]	-175713	0.799541	127	86.8	$K = 1e^4$, $\delta_{\text{Tol}} = 1e^{-5}$
Isr96	Alg.PB	-175715	0.799413	159	110.9	$K = 1e^5, \mu_0 = 1e^{-5}, \delta_{\text{Tol}} = \frac{1}{2}$
lsr96	Alg.PB	-175715	0.799406	177	123.5	$K = 1e^5, \mu_0 = 1e^{-6}, \delta_{\text{Tol}} = \frac{1}{2}$
lsr96	Alg.PB	-175713	0.799346	95	66.5	$K = 1e^5, \mu_0 = 1e^{-8}, \delta_{\text{Tol}} = \frac{1}{2}$
Isr96	Alg.LB	-175713	0.799874	122	82.5	$K = 1e^5, \gamma = 0.8, \delta_{\text{Tol}} = 5$
Isr96	Alg.LB	-175713	0.799599	94	48.4	${\it K}=1e^4,\gamma=$ 0.8, $\delta_{ m Tol}=$ 5
Isr96	Alg.LB	-175710	0.799809	115 [3]	75.3	$K=1e^5, \gamma=0.8, \delta_{\text{Tol}}=5, [\neg \text{LP}]$
Isr96	Alg.LB	-175697	0.799866	76 [4]	44.3	$K=1e^4,\gamma=0.8,\delta_{ ext{Tol}}=5,[egreen LP]$
lsr168	Alg.[Prékopa(2003)]	-175222	0.799511	190	1504.7	$\delta_{\text{Tol}} = 1e^{-4}$
lsr168	Alg.[Kiwiel(2008)]	-175237	0.799394	204	627.3	$K = 1e^4, \delta_{\text{Tol}} = 1e^{-5}$
lsr168	Alg.PB	-175237	0.799408	219	687.4	$K = 1e^5, \mu_0 = 1e^{-5}, \delta_{\text{Tol}} = \frac{1}{2}$
lsr168	Alg.PB	-175237	0.799418	188	573.5	$K = 1e^5, \mu_0 = 1e^{-6}, \delta_{\text{Tol}} = \frac{1}{2}$
lsr168	Alg.PB	-175236	0.799503	133	343.4	$K = 1e^5, \mu_0 = 1e^{-8}, \delta_{\text{Tol}} = \frac{1}{2}$
lsr168	Alg.LB	-175235	0.799854	161	529.6	$K = 1e^5, \gamma = 0.8, \delta_{\text{Tol}} = 5$
lsr168	Alg.LB	-175232	0.799717	110	352.3	${\it K}=1e^4,\gamma=$ 0.8, $\delta_{ m Tol}=$ 5
lsr168	Alg.LB	-175235	0.799604	165 [3]	423.2	$K = 1e^5$, $\gamma = 0.8$, $\delta_{\text{Tol}} = 5$, $[\neg \text{LP}]$
lsr168	Alg.LB	-175220	0.799423	127 [5]	353.5	$K = 1e^4, \gamma = 0.8, \delta_{\text{Tol}} = 5, [\neg_{\text{LP}}]$

Sedf

Continuity	Differentiability		Algorithms	Summary
00 000	000 00000000000000 0000000 00000000000	0000000 000000 0000	000000000 000 000000000	

Summary

In this talk we have discussed several aspects of chance constraints

- Differentiability
- Convexity
- Algorithms

Thank you for your attention!

- Time for questions
- Special thanks to Welington de Oliveira for the cutting-plane / bundle illustrations.

Continuity	Differentiability		Algorithms	Summary
00 000	000 0000000000000 0000000 000000000000	0000000 000000 0000	000000000 000 000000000	

Some references

Obviously the main reference is

 A. Prékopa. Stochastic Programming. Kluwer, Dordrecht, 1995

Continuity	Differentiability		Algorithms	Summary
00 000	000 00000000000000 00000000 0000000000	000000 00000 0000	000000000 000 00000000	

Some further references I

The works cited are:

- W. van Ackooij and R. Henrion. Gradient formulae for nonlinear probabilistic constraints with Gaussian and Gaussian-like distributions. SIAM Journal on Optimization, 24(4):1864–1889, 2014
- W. van Ackooij and R. Henrion. (sub-) gradient formulae for probability functions of random inequality systems under gaussian distribution. Submitted, WIAS preprint 2230, pages 1–24, 2016

 W. van Ackooij and M. Minoux. A characterization of the subdifferential of singular Gaussian distribution functions. Set Valued and Variational Analysis, 23(3):465–483, 2015. doi: 10.1007/s11228-015-0317-8

Continuity	Differentiability		Algorithms	Summary
00 000	000 0000000000000 0000000 000000000000	000000 00000 0000	00000000 000 00000000	

Some further references II

The works cited are:

- W. van Ackooij. Eventual convexity of chance constrained feasible sets. *Optimization (A Journal of Math. Programming and Operations Research)*, 64(5):1263–1284, 2015. doi: 10.1080/02331934.2013.855211
- W. van Ackooij and W. de Oliveira. Level bundle methods for constrained convex optimization with various oracles.
 Computation Optimization and Applications, 57(3):555–597, 2014
- W. van Ackooij and C. Sagastizábal. Constrained bundle methods for upper inexact oracles with application to joint chance constrained energy problems. SIAM Journal on Optimization, 24(2):733–765, 2014

Bibliography I

[[Borell(1975)] Convex set functions in *d*-space. C. Borell.

Periodica Mathematica Hungarica, 6:111-136, 1975.

[[Brascamp and Lieb(1976)]]H.J. Brascamp and E.H. Lieb.

On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log-concave functions and with an application to the diffusion equations.

Journal of Functional Analysis, 22:366–389, 1976.

]I. Deák.

Computing probabilities of rectangles in case of multinormal distribution. *Journal of Statistical Computation and Simulation*, 26(1-2):101–114, 1986.

Bibliography II

]I. Deák.

Subroutines for computing normal probabilities of sets - computer experiences.

Annals of Operations Research, 100:103–122, 2000.

[Gouda and Szántai(2010)]
 [A. Gouda and T. Szántai.
 On numerical calculation of probabilities according to dirichlet distribution.

Annals of Operations Research, 177:185–200, 2010.

[[Henrion(2010)]

]R. Henrion.

Optimierungsprobleme mit wahrscheinlichkeitsrestriktionen: Modelle, struktur, numerik.

Lecture Notes, page 43, 2010.

Bibliography III

[[Henrion and Möller(2012)]
 [R. Henrion and A. Möller.
 A gradient formula for linear chance constraints under Gaussian distribution.

Mathematics of Operations Research, 37:475–488, 2012.

[[Henrion and Strugarek(2008)]
 [R. Henrion and C. Strugarek.
 Convexity of chance constraints with independent random variables.
 Computational Optimization and Applications, 41:263–276, 2008.

[[Henrion and Strugarek(2011)]]R. Henrion and C. Strugarek. Convexity of chance constraints with dependent random variables: the use of copulae.

In M. Bertocchi, G. Consigli, and M.A.H. Dempster, editors, *Stochastic Optimization Methods in Finance and Energy: New Financial Products and Energy Market Strategies*, International Series in Operations Research and Management Science, pages 427–439. Springer-Verlag New York, 2011.

Bibliography IV

[[Kataoka(1963)]

S. Kataoka.

A stochastic programming model. Econometrica, 31:181–196, 1963.

K.C. Kiwiel.

A method of centers with approximate subgradient linearizations for nonsmooth convex optimization.

SIAM Journal on Optimization, 18(4):1467–1489, 2008.

[[Prékopa(1970)]

On probabilistic constrained programming.

In H.W. Kuhn, editor, Proceedings of the Princeton Symposium on Math. Prog., volume 28, pages 113-138, 1970.

[[Prékopa(1972)]

A. Prékopa.

A. Prékopa.

A class of stochastic programming decision problems.

Matematische Operations forschung und Statistik, 3:349–354, 1972.

Bibliography V

[[Prékopa(1973)]

On logarithmic concave measures and functions.

Acta Scientiarium Mathematicarum (Szeged), 34:335–343, 1973.

[[Prékopa(1995)]

Stochastic Programming. Kluwer, Dordrecht, 1995.

[[Prékopa(2003)]

Probabilistic programming.

In A. Ruszczyński and A. Shapiro, editors, Stochastic Programming, volume 10 of Handbooks in Operations Research and Management Science, pages 267-351. Elsevier, Amsterdam, 2003.

[[Prékopa and Szántai(1979)]

A. Prékopa and T. Szántai. On optimal regulation of a storage level with application to the water level regulation of a lake.

European Journal of Operations Research, 3:175–189, 1979.

1A. Prékopa.

A. Prékopa.

A. Prékopa.

Bibliography VI

[[Szántai(1985)] T. Szántai. Numerical evaluation of probabilities concerning multi-dimensional probability distributions.

PhD thesis, Hungarian Academy of Sciences, 1985.

[[Tamm(1977)]

IE. Tamm.

On *q*-concave functions and probability measures (russian). Eesti NSV Teaduste Akademia Toimetised. Füüsika-Matemaatika. 28:17-24. 1977.

[[Uryas'ev(2009)]

S. Urvas'ev.

Derivatives of probability and integral functions: General theory and examples.

In C. A. Floudas and P. M. Pardalos, editors, *Encyclopedia of Optimiza*tion, pages 658-663. Springer - Verlag, 2nd edition, 2009.

Bibliography VII

doi: 10.1080/02331934.2016.1179302.

Bibliography VIII

[[van Ackooij and Henrion(2014)]]W. van Ackooij and R. Henrion. Gradient formulae for nonlinear probabilistic constraints with Gaussian and Gaussian-like distributions.

SIAM Journal on Optimization, 24(4):1864–1889, 2014.

[[van Ackooij and Henrion(2016)]
[W. van Ackooij and R. Henrion. (sub-) gradient formulae for probability functions of random inequality systems under gaussian distribution.

Submitted, WIAS preprint 2230, pages 1-24, 2016.

[[van Ackooij and Minoux(2015)]]W. van Ackooij and M. Minoux. A characterization of the subdifferential of singular Gaussian distribution functions

Set Valued and Variational Analysis, 23(3):465–483, 2015. doi: 10 1007/s11228-015-0317-8

Bibliography IX

[[van Ackooij and Sagastizábal(2014)]]W. van Ackooij and C. Sagastizábal.

Constrained bundle methods for upper inexact oracles with application to joint chance constrained energy problems.

SIAM Journal on Optimization, 24(2):733-765, 2014.

[[van Ackooij et al.(2011)van Ackooij, Henrion, Möller, and Zorgati]]W. van Ackooij, R. Henrion, A. Möller, and R. Zorgati. On joint probabilistic constraints with Gaussian Coefficient Matrix. *Operations Research Letters*, 39:99–102, 2011.

