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Motivation

Motivation I

A Probabilistic constraint is a constraint of the type

ϕ(x) := P[g(x , ξ) ≥ 0] ≥ p, (1)

where g : Rn × Rm → Rk is a map, ξ ∈ Rm a (multi-variate) random
variable

Such constraints arise in many applications. For instance cascaded Reser-
voir management.
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Motivation

Motivation II

When considering k constraints of the type

ϕi (x) := P[gi (x , ξ) ≥ 0] ≥ p, i = 1, ..., k (2)

we speak of individual probabilistic constraints. The case of (1) is a joint
probabilistic constraint.

Individual PCs offer easier numerical treatment, but obviously lack robust-
ness.
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Motivation

Why PCs

In many applications, one encounters residual uncertainty, i.e., after mak-
ing a decision a random outcome is observed.

Such uncertainty may occur in constraints. In Unit-Commitment problems
one encounters the following cases:

Vmin ≤ V0 − Ax + ξ ≤ Vmax

sd ≤ D − Alx ≤ su, (3)

where x models the turbining/pumping policy in cascaded reservoir man-
agement, unit-commitment schedule respectively.

Here x is decided upon before observing ξ (inflows) or D (net customer
load).

PCs are a way to give a meaning to (3)
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Motivation

What do PCs do

Adding a probabilistic constraint, e.g.,

P[Vmin ≤ V0 − Ax + ξ ≤ Vmax ] ≥ p

P[sd ≤ D − Alx ≤ su] ≥ p, (4)

restrains the set of feasible solutions. Since x is decided upon before
observing uncertainty, a posteriori violated inequalities are not arbitrarily
“bad” .

From a programming perspective: ϕ(x) ≥ p, with ϕ(x) := P[g(x , ξ) ≥ 0]
is “just” a non-linear constraint

In most cases ϕ is only known implicitly.

The mapping ϕ is (usually) not concave, but could have generalized (e.g.,
log-concavity) properties.
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Motivation

Properties of PCs

What mathematical properties can ϕ be expected to have ? Continuity,
differentiability ?

What properties does the set M(p) := {x ∈ Rn : ϕ(x) ≥ p} have ? Con-
nectedness, convexity

What properties could problems of the type

minx∈Rn f (x)

s.t . x ∈ X (5)

ϕ(x) ≥ p,

have if f is a convex mapping, X a convex set ? Stability ?

Studying properties of ϕ, M(p) or problems (5) is important for efficient
numerical treatment of problems (5).
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Introductory discussion

An example

Let ξ ∼ N (0, 1) be given and consider

ϕ(x) := P[Qx + Lξ ≥ b], (6)

with

Q =

[
2 1
−1 1

]
, L =

[
−1
0

]
, b =

[
0
− 1

2

]

Then ϕ is not continuous
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Introductory discussion

An example II

The reason of this discontinuity is because of the presence of “determin-
istic” constraints −1x1 + x2 ≥ − 1

2 inside the probability constraint.

Alternatively stated, we have a situation wherein the set {z ∈ Rm : g(x , z) = 0}
is not of zero measure (at some x ’s).

This shows the need for appropriate conditions (or a better model)

Still continuity holds in a great many situations
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Continuity statements

Lower semi continuity

Lemma (e.g., [Henrion(2010)])
Let g : Rn × Rm → Rk be (jointly) lower semi-continuous and assume that the
sets Nx = {z ∈ Rm : g(x , z) = 0} are P-null sets for all x ∈ Rn. Let ξ ∈ Rm

be a random variable. Then the mapping ϕ(x) := P[g(x , ξ) ≥ 0] is also lower
semi continuous.
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Continuity statements

Upper semi continuity

Lemma (e.g., [Henrion(2010)])
Let g : Rn × Rm → Rk be (jointly) upper semi-continuous and let ξ ∈ Rm be a
random variable. Then the mapping ϕ(x) := P[g(x , ξ) ≥ 0] is also upper semi
continuous.
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Continuity statements

Continuity

Lemma

Let g : Rn × Rm → Rk be (jointly) continuous and let ξ ∈ Rm be a random
variable admitting a density with respect to the Lesbesgue measure in Rm.
Assume that the sets Nx = {z ∈ Rm : g(x , z) = 0} are Lesbesgue-null sets
for all x ∈ Rn. Then the mapping ϕ(x) := P[g(x , ξ) ≥ 0] is continuous.
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Classics

Some differentiability properties of PCs I

General differentiability statements exist and represent the gradient as
an involved integral over a “surface” and “volume” . A key condition is
that {z ∈ Rm : g(x , z) ≥ 0} is bounded locally around a point x (e.g.,
[Uryas’ev(2009)]).
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Classics

Some differentiability properties of PCs II

Specific formulas such as the following, allow for efficient computation in
practice:

Lemma ([Prékopa(1970), Prékopa(1995)])
Let ξ be an m-dimensional Gaussian random vector with mean µ ∈ Rm and
positive definite variance-covariance matrix Σ. Then the distribution function
Fξ(z) := P[ξ ≤ z] is continuously differentiable and in any fixed z ∈ Rm the
following holds:

∂Fξ
∂zi

(z) = fξi (zi )Fξ̃(zi )
(z1, ..., zi−1, zi+1, ..., zm), i = 1, ...,m. (7)

Here ξ̃(zi ) is a Gaussian random variable with mean µ̂ ∈ Rm−1 and (m −
1) × (m − 1) positive definite covariance matrix Σ̂. Let Di

m denote the m-
th order identity matrix from which the ith row has been deleted. Then µ̂ =
Di

m(µ+ Σ−1
ii (zi −µi )Σi ) and Σ̂ = Di

m(Σ−Σ−1
ii Σi Σ

T
i )(Di

m)T, where Σi is the i-th
column of Σ.
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Classics

Some differentiability properties of PCs III

ϕ(x) := P[ξ ≤ x ] ([Prékopa(1970)]) We have

∂ϕ

∂xi
= fµi ,Σii (xi )P[ξ̃ ≤ x̃ ]

ϕ(x) := P[A(x)ξ ≤ α(x)] ([van Ackooij et al.(2011)van Ackooij, Henrion, Möller, and Zorgati])

ϕ(x) := P[Aξ ≤ α(x)] ([Henrion and Möller(2012)])

Other cases involve distribution functions of Dirichlet
([Szántai(1985), Gouda and Szántai(2010)])
and multi-variate Gamma ([Prékopa and Szántai(1979)]) random variables
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Consideration of non-linear mappings

Setting

Consider the probabilistic constraint :

ϕ(x) := P[g(x , ξ) ≤ 0] ≥ p, (8)

where g : Rn × Rm → Rp is a continuously differentiable map (convex in
the second argument), ξ ∼ N (µ,Σ) a (multi-variate) Gaussian random
variable.
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Consideration of non-linear mappings

Motivation

We would like to dispose of a gradient formulae for the case

ϕ(x) := P[〈c, η〉 ≤ h(x)],

where c ≥ 0, c ∈ Rm, and η ∈ Rm is a log-normal random variable

We can cast this into the general case by defining the mapping

g(x , z) = 〈c, exp(z)〉 − h(x).

Then ϕ(x) = P[g(x , ξ) ≤ 0] with ξ ∼ N (µ,Σ).

In fact by redefining g we may assume w.l.o.g. that ξ ∼ N (0,R).
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Consideration of non-linear mappings

Inherent non-smoothness

It is tempting to believe that “nice” properties of g carry forth to ϕ. For
instance, if g is smooth enough, that ϕ will be at least continuously differ-
entiable.

Though “nasty laws” for ξ can be expected to have side-effects, nice laws
may not.

Let us first show that such considerations are dangerous.
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Consideration of non-linear mappings

Inherent non-smoothness: counterexample

Differentiability need not hold:

Proposition

Let g : R2 × R2 → R be defined by

g (x1, x2, z1, z2) := x2
1 eh(z1) + x2z2 − 1, where h(t) := −1− 2 log(1−Φ(t))

and Φ is the cumulative distribution function of the one-dimensional standard
Gaussian distribution. Let ξ ∼ N (0, I2) and x̄ = (0, 1). Then, the following
holds true:

1 g is continuously differentiable.

2 g is convex in the second argument.

3 g (x̄ , 0) = g (0, 1, 0, 0) < 0.

4 ϕ is not differentiable at x̄ .
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Consideration of non-linear mappings

Inherent non-smoothness: counterexample

Graph of a non-differentiable probability function
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Consideration of non-linear mappings

Inherent non-smoothness: several components

Things may also go wrong when p > 1, i.e., g has several components:

Example

Let ξ have a one-dimensional standard Gaussian distribution and define

g(x1, x2, x3, ξ) := (ξ − x1, ξ − x2,−ξ − x3).

Then, with Φ referring to the one-dimensional standard Gaussian distribution
function, one has that

ϕ(x1, x2) = max{min{Φ(x1),Φ(x2)} − Φ(x3), 0}.

Clearly ϕ fails to be differentiable at x̄ := (0, 0,−1), while {z : g(x̄ , z) ≤ 0} =
[−1, 0] is compact and satisfies Slater’s condition in the description via g.
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Consideration of non-linear mappings

Inherent non-smoothness: the need for additional conditions

From these discussion it is clear that some conditions needs to be ap-
pended in order to avoid some degeneracy

Essentially two conditions are needed: bounded growth on ∇x g, some
LICQ type of regularity.
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Consideration of non-linear mappings

Evaluating P

Let Sm−1 :=
{

z ∈ Rm
∣∣∑m

i=1 z2
i = 1

}
be the euclidian unit-sphere of Rm.

Let ξ ∼ N (0,R) be given and L be such that R = LLT.

It is well known that ξ = ηLζ, where η has a chi-distribution with m de-
grees of freedom and ζ is uniformly distributed over Sm−1
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Consideration of non-linear mappings

Evaluating P II

As a consequence if M ⊆ Rm is Lebesgue measurable

We have

P[ξ ∈ M] =

∫
v∈Sm−1

µη ({r ≥ 0 : rLv ∩M 6= ∅}) dµζ (9)

Efficient sampling schemes for such integrals are provided by [Deák(1986),
Deák(2000)]

In our case M(x) = {z ∈ Rm : g(x , z) ≤ 0} is a convex (hence Lebesgue
measurable) set.
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Consideration of non-linear mappings

Growth control

We cannot allow for unbounded growth of the mapping g. We thus define:

Definition

We say that g satisfies the exponential growth condition at x if there exist
constants δ0,C > 0 and a neighbourhood U(x) such that∥∥∇x g

(
x ′, z

)∥∥ ≤ δ0 exp(‖z‖) ∀x ′ ∈ U(x) ∀z : ‖z‖ ≥ C.
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Consideration of non-linear mappings

The case p = 1

We define the sets of finite and infinite directions:

F (x) :=
{

v ∈ Sm−1|∃r > 0 : g (x , rLv) = 0
}

I(x) :=
{

v ∈ Sm−1|∀r > 0 : g (x , rLv) 6= 0
}
.

For each x ∈ Rn with g(x , 0) < 0 and v ∈ F (x) we can find a unique
ρx,v (x , v) > 0 such that g(x , ρx,v (x , v)Lv) = 0.

Numerically this value can be computed by a simple application of Newton-
Rhapson.
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Consideration of non-linear mappings

The case p = 1: Illustration

30 / 107



Introduction Continuity Differentiability Eventual convexity Algorithms Summary

Consideration of non-linear mappings

The case p = 1: main result

Theorem ([van Ackooij and Henrion(2014)])
Let g : Rn × Rm → R be a continuously differentiable function which is con-
vex with respect to the second argument. Consider the probability function ϕ
defined as ϕ(x) = P[g(x , ξ) ≤ 0], where ξ ∼ N (0,R) has a standard Gaus-
sian distribution with correlation matrix R. Let the following assumptions be
satisfied at some x̄:

1 g (x̄ , 0) < 0.

2 g satisfies the exponential growth condition at x̄

Then, ϕ is continuously differentiable on a neighbourhood U of x̄ and it holds
for all x ∈ U that:

∇ϕ (x) = −
∫

v∈F (x)

χ (ρx,v (x , v))∇x g (x , ρx,v (x , v) Lv)

〈∇zg (x , ρx,v (x , v) Lv) , Lv〉 dµζ(v).
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Consideration of non-linear mappings

Theorem

The previous Theorem remains true if the growth condition is replaced by the
condition that the set {z|g(x̄ , z) ≤ 0} is bounded. Then, the formula becomes

∇ϕ (x) = −
∫

v∈Sm−1

χ (ρx,v (x , v))∇x g (x , ρx,v (x , v) Lv)

〈∇zg (x , ρx,v (x , v) Lv) , Lv〉 dµζ(v)
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More components

The case p > 1

When p > 1 we can define

gm(x , z) = max
j=1,...,p

gj (x , z), (10)

Evidently, the probability function can be written as ϕ(x) = P(gm(x , ξ) ≤
0).

For each x ∈ Rn with g(x , 0) < 0 and v ∈ F (x) we can find a unique
ρx,v (x , v) > 0 such that gm(x , ρx,v (x , v)Lv) = 0. However this ρx,v is no
longer smooth!

The sets of finite and infinite directions can be defined with respect to gm

or alternatively as unions (intersections) of their counterparts with respect
to each component of g.
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More components

The case p > 1: main result

Theorem ([van Ackooij and Henrion(2016)])
Let the following conditions be satisfied at some fixed x̄ ∈ Rn:

1 gm (x̄ , 0) < 0.

2 gj satisfies the exponential growth condition at x̄ for all j = 1, ..., p.

Then, ϕ is locally Lipschitz continuous on a neighbourhood U of x̄ and it holds
that

∂cϕ (x) ⊆
∫

v∈F (x)

Co
{
−χ (ρ̂ (x , v))∇x gj (x , ρ̂ (x , v) Lv)

〈∇zgj (x , ρ̂ (x , v) Lv) , Lv〉

∣∣∣∣ j ∈ Ĵ (x , v)

}
dµζ(v)

(11)
for all x ∈ U. Here,

Ĵ (x , v) := {j ∈ {1, . . . , p}|gj (x , ρ̂ (x , v) Lv) = 0} (v ∈ F (x))
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More components

The case p > 1: A first discussion

Note that in the case p > 1, under the same conditions as for the case
p = 1, we have a weaker results: local Lipschitz continuity and an outer
estimate of the clarke-subdifferential

The earlier example showed that this is inherent and not a weakness of
the analysis.
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More components

The case p > 1: R2CQ

Definition

For any x ∈ Rn and z ∈ Rm we denote by

I (x , z) := {j ∈ {1, . . . , p} |gj (x , z) = 0} (12)

the active index set of g at (x , z). We say that the inequality system g (x , z) ≤
0 satisfies the Rank-2-Constraint Qualification (R2CQ) at x ∈ Rn if

rank {∇zgj (x , z) ,∇zgi (x , z)} = 2 ∀i, j ∈ I (x , z) , i 6= j (13)

∀z ∈ Rm : g (x , z) ≤ 0. (14)
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More components

The case p > 1: R2CQ < LICQ

Note that (R2CQ) is substantially weaker than the usual Linear Inde-
pendence Constraint Qualification (LICQ) common in nonlinear optimiza-
tion and requiring the linear independence of all gradients to active con-
straints.
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More components

The case p > 1: An auxiliary result

Lemma ([van Ackooij and Henrion(2016)])
Let x̄ ∈ Rn be given such that

1 gm (x̄ , 0) < 0.

2 g satisfies (R2CQ) at x̄ .

Then, µζ (M ′) = 0 for M ′ :=
{

v ∈ Sm−1|∃r > 0 : g (x̄ , rLv) ≤ 0, #I (x̄ , rLv) ≥ 2
}

,
where L is the regular matrix in the decomposition R = LLT .
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More components

The case p > 1: smoothness

Theorem ([van Ackooij and Henrion(2016)])
Let the following conditions be satisfied at some fixed x̄ ∈ Rn:

1 gm (x̄ , 0) < 0.

2 gj satisfies the exponential growth condition at x̄ for all j = 1, ..., p.

3 (R2CQ) is satisfied

Then, ϕ is Fréchet differentiable at x̄ and the gradient formula:

∇ϕ(x̄) = −
∫

v∈F (x̄),#Ĵ (x̄,v)=1

χ (ρ̂ (x̄ , v))∇x gj(v) (x̄ , ρ̂ (x̄ , v) Lv)〈
∇zgj(v) (x̄ , ρ̂ (x̄ , v) Lv) , Lv

〉 dµζ(v), (15)

holds true.
If (R2CQ) is satisfied locally around x̄, then, ϕ is continuously differentiable at
x̄ .
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More components

One last remark

The condition g(x , 0) < 0 is not very restrictive as the following result shows:

Lemma

With g and ϕ as before, let the following assumptions be satisfied at some x̄:

1 There exists some z̄ such that g(x̄ , z̄) < 0.

2 ϕ(x̄) > 1/2.

Then, g(x̄ , 0) < 0.
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A further characterization of Clarke’s sub-differential

Motivation

Let us consider the special case wherein ϕ results from

ϕ(x) := P[Bξ ≤ h(x)], (16)

with ξ ∼ N (µ,Σ), Σ � 0.

When B is of full rank then, BTΣB � 0 too and differentiability follows from
classic results.

However in many applications B has more rows than columns (for in-
stance when coming from Gale-Hoffmann inequalities): ϕ is no longer
smooth.
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A further characterization of Clarke’s sub-differential

Motivation

Example

Let m = 1, k = 2, ξ ∼ N (0, 1) and B be given by

B =

(
1
1

)
.

Then it is readily observed that ϕ(x) = P[Bξ ≤ x ] = P[ξ ≤ min {x1, x2}]. As a
consequence ϕ fails to be differentiable on the line x1 = x2 as is readily seen
on the figure:
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A further characterization of Clarke’s sub-differential

Setting

Without loss of generality we concentrate on ϕ(z) = P[ξ ≤ z], with ξ ∼
N (0,Σ) and Σ � 0.

We may also assume that Σii = 1 for all i without loss of generality (as oth-
erwise either the system contains a redundant constraint (locally around
z), or ϕ fails to be continuous in z).
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A further characterization of Clarke’s sub-differential

Correlation graph

Definition

Let Σ be an m×m covariance matrix having all diagonal entries equal to 1. Let
G(Σ) = (V ,E) denote the (undirected) graph on the vertex set V = {1, ...,m}
and with edge set E = E+∪E− = {(i, j) : i 6= j,Σji = 1}∪{(i, j) : i 6= j,Σji = −1}.
The graph G(Σ) (which may contain isolated vertices) will be called the corre-
lation graph associated with Σ.
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A further characterization of Clarke’s sub-differential

Correlation graph: Example

Example

Consider the 4× 4 covariance matrix Σ defined as follows:

Σ =


1 −1 1 −1
−1 1 −1 1
1 −1 1 −1
−1 1 −1 1

 ,

then the correlation graph:
1

2

3

4

-
+

--
+

-

is obtained
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A further characterization of Clarke’s sub-differential

Correlation graph

The correlation graph features Q connected components (each being ei-
ther an isolated vertex or a complete subgraph (a clique)).

Each connected component Gq = (V q ,Eq) is bipartite and can be sep-
arated into a left and right side Lq ,Rq : elements within Lq are positively
correlated, elements in Lq are negatively correlated to those in Rq .
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A further characterization of Clarke’s sub-differential

Correlation graph and z

Definition

Let G(Σ) = (V ,E) be a correlation graph:

Given an arbitrary z ∈ Rm, we will say that z is auto-referenced if there
exists an arc (i, j) ∈ E such that zj = Σjizi (in other words, such that
zj = zi if (i, j) ∈ E+ or such that zj = −zi if (i, j) ∈ E−).

An auto-referenced point z ∈ Rm will be called changeable if there exists
(i, j) ∈ E such that zk ≥ zi for all (k , i) ∈ E+ and zk ≥ −zi for all
(k , i) ∈ E−.

The arc (i, j) ∈ E will occasionally be referred to as an auto-referencing (a
changeable) arc with respect to z if z is auto-referenced (changeable).
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A further characterization of Clarke’s sub-differential

Correlation graph: Example

Example

Consider again z = (1,−2, 1,−1) and

Σ =


1 −1 1 −1
−1 1 −1 1
1 −1 1 −1
−1 1 −1 1

 ,

z1 = 1

z2 = −2

z3 = 1

z4 = −1

-

+

--

+

-

Then z is auto-referenced (blue), but not changeable (−2 ≥ −1 is false).
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A further characterization of Clarke’s sub-differential

Correlation graph: Example 2

Example

Consider again z = (2,−2, 3,−1) and

Σ =


1 −1 1 −1
−1 1 −1 1
1 −1 1 −1
−1 1 −1 1

 ,

z1 = 2

z2 = −2

z3 = 3

z4 = −1

-

+

--

+

-

Then z is changeable (green) (argmins among the partitions Lq ,Rq).
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A further characterization of Clarke’s sub-differential

A first result

Theorem ([van Ackooij and Minoux(2015)])
Let ξ be an m-dimensional Gaussian random vector with mean µ ∈ Rm and
covariance matrix Σ having all diagonal entries equal to 1. Then for arbitrary
not-changeable z − µ ∈ Rm, the distribution function Fξ(z) := P[ξ ≤ z] is
locally Lipschitz at z and ∂cFξ(z) = {v}, where for arbitrary i=1,...,m:

vi = fξi (zi )Fξ̃(zi )
(z1, ..., zi−1, zi+1, ..., zm). (17)

Here ∂cFξ(z) denotes the Clarke-subdifferential of Fξ and ξ̃(zi ) is an m − 1
dimensional Gaussian random vector (familiar from classic results)
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A further characterization of Clarke’s sub-differential

The familiar associated Gaussian

fξi is the one dimensional Gaussian density of ξi

ξ̃(zi ) ∼ N (µ̂, Σ̂)

Let Di
m denote the (m − 1) × m matrix deduced from the m × m identity

matrix by deleting the i th row.

µ̂ = Di
m(µ+ Σ−1

ii (zi − µi )Σi )

Σ̂ = Di
m(Σ− Σ−1

ii Σi Σ
T
i )(Di

m)T,

where Σi is the i-th column of Σ and Σii is the i-th element of the main
diagonal of Σ.
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A further characterization of Clarke’s sub-differential

And changeable points?

Proposition ([van Ackooij and Minoux(2015)])
Let Gq = (V q ,Eq), be the connected q = 1, ...,Q components of the correla-
tion graph and (Lq ,Rq) be the associated bipartition. Let z be changeable.
Define J ⊆ {1, ...,Q} as the set of all q for which either |V q | = 1 or no change-
able arc exists in V q . For each remaining q ∈ {1, ...,Q} \ J, pick lq ∈ Lq ,
r q ∈ Rq such that zlq ≤ zp for all p ∈ Lq and zrq ≤ zp for all p ∈ Rq . If Rq is
empty, r q should be interpreted as being “empty".
Then the distribution function Fξ(z) := P[ξ ≤ z] is locally Lipschitz at z and
v ∈ ∂cFξ(z), where for arbitrary i=1,...,m:

vi =


fξi (zi )Fξ̃(zi )

(z1, ..., zi−1, zi+1, ..., zm) if i ∈ ∪j∈JV j

fξi (zi )Fξ̃(zi )
(z1, ..., zi−1, zi+1, ..., zm) if ∃q ∈ {1, ...,Q} \ J, i ∈ {lq , r q}

0 otherwise
(18)

Moreover ∂cFξ(z) contains at least two elements.
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A further characterization of Clarke’s sub-differential

A final definition

Definition

Let z ∈ Rm be arbitrary. Define the set E(z) as the set of all v defined accord-
ing to previous formula, where we enumerate all possible choices of lq , r q for
each q. For a specific q if V q contains a changeable arc with one endpoint in
Lq and the other endpoint in Rq we adjoin to this set of choices, v ∈ Rm, with
vp = 0 for p ∈ V q .
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A further characterization of Clarke’s sub-differential

The main result

Theorem ([van Ackooij and Minoux(2015)])
Let ξ be an m-dimensional Gaussian random vector with mean µ ∈ Rm and
covariance matrix Σ having all diagonal entries equal to 1. Then the distribu-
tion function Fξ(z) := P[ξ ≤ z] is continuously differentiable if and only if z−µ
is not changeable.
Moreover Fξ is locally Lipschitz at z and

∂cFξ(z) = co (E(z)), (19)

where co (B) denotes the convex hull of set B ⊆ Rm.
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Introduction

Definition of Generalized Concavity I

The following mapping plays a key role in the definition of generalized
concavity:

Definition

Let α ∈ [−∞,∞] and mα : R+ × R+ × [0, 1]→ R be defined as follows

mα(a, b, λ) = 0 if ab = 0, (20)

for a > 0, b > 0, λ ∈ [0, 1]:

mα(a, b, λ) =


aλb1−λ if α = 0

max {a, b} if α =∞
min {a, b} if α = −∞

(λaα + (1− λ)bα)
1
α else

(21)
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Introduction

Definition of Generalized Concavity II

We can now define generalized concavity of a mapping f :

Definition

A non-negative function f defined on some convex set C ⊆ Rn is called α-
concave (α ∈ [−∞,∞]) if and only if for all x , y ∈ C, λ ∈ [0, 1]:

f (λx + (1− λ)y) ≥ mα(f (x), f (y), λ). (22)

For α = 1 this is just the definition of concavity. For α = 0, f is log-
concave and satisfies f (λx + (1− λ)y) ≥ f (x)λf (y)1−λ.
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Introduction

Some Properties of PCs I

Convexity of M(p) can be asserted under general conditions on g, ξ re-
gardless of p

Theorem ([Prékopa(1972), Prékopa(1973), Tamm(1977), Borell(1975),
Brascamp and Lieb(1976)])
Let g : Rn × Rm → Rk be a (jointly) quasi-concave function and let ξ ∈ Rm be
a random variable inducing an α-concave probability distribution P. Then the
mapping x ∈ Rn 7→ G(x) := P[g(x , ξ) ≥ 0] is an α-concave function on the
set D = {x ∈ Rn : ∃z ∈ Rm with g(x , z) ≥ 0}.
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Introduction

An example of another type of convexity

Let us consider the following example, wherein g : Rn ×Rm → R is defined as
follows:

g(x , z) := zTW (x)z + 2
n∑

i=1

xiwT
i z + b, (23)

where W : Rn → Rm × Rm a positive semi-definite matrix valued mapping.

W (x) = x1W1 + x2W2, where

W1 =

(
1 0.9

0.9 1

)
and W2 =

(
1 −0.7
−0.7 1

)
.

Moreover the correlation matrix R is taken to be:

R =

(
1 0.5

0.5 1

)
.

Finally we take w1 = (−1, 1), w2 = (2, 3) and b = −3
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Introduction

Some Properties of PCs II

Eventual convexity is defined as convexity of M(p) for all p > p∗. A classic
result:

Lemma ([Kataoka(1963)])
Consider the constraint of the form ϕ(x) ≥ p where k = 1, g(x , z) = zTx − b
and ξ ∈ Rm is a multivariate Gaussian random variable. Then the feasible set
M(p) is convex for all p > 1

2 .

Recent important eventual convexity results for M(p) involving specially
structured probabilistic constraints have been derived by
[Henrion and Strugarek(2008)], [Henrion and Strugarek(2011)].
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Introduction

Setting

In practice, an important question concerns convexity of the set

M(p) :=
{

x ∈ Rn : P[ξ ≤ h(x)] ≥ p
}
. (24)

When h has weaker concavity properties (e.g., only log-concave), the
classic results can’t be applied (directly).

We are interested in identifying a computable threshold p∗ such that M(p)
can be shown to be convex provided p ≥ p∗: eventual convexity
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Introduction

Structure

We assume that ϕ(x) := P[ξ ≤ h(x)] can be cast into the following form:

ϕ(x) := C(F1(h1(x)), ...,Fm(hm(x))), (25)

where C : [0, 1]m → [0, 1] is a Copula.

The component ξi is assumed to have one dimensional distribution func-
tion z ∈ R 7→ Fi (z) := P[ξi ≤ z], i = 1, ...,m.

A copula is the distribution function of a multi-variate random variable with
uniformly distributed marginals.

According to Sklar’s Theorem, every joint probability distribution can be
associated with a Copula
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The tools: special family of copulæ

Definition

We introduce a family of copulae:

Definition

Let γ ∈ R be given, and let the set X (γ) be defined as X (γ) = [0, 1]m for
γ > 0, X (0) = (−∞, 0]m and X (γ) = [1,∞)m for γ < 0.

Let δ ∈ [−∞,∞] be equally given.

We call a Copula C : [0, 1]m → [0, 1] δ-γ-concave if the mapping u ∈ X (γ) 7→
C(u

1
γ ) is δ-concave, whenever γ 6= 0 and u ∈ X (0) 7→ C(eu) is δ-concave

whenever γ = 0.
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The tools: special family of copulæ

Relation

A logexp-concave copulae C ([Henrion and Strugarek(2011)]) is 0-0-concave.
The concept of δ-γ-concavity is a direct extension.

A quasi-concave copula is −∞-1-concave.

It is sufficient for δ-γ-concavity to hold locally (Not shown here for nota-
tional convenience).
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The tools: special family of copulæ

Structure I

The γ parameter has an ascending effect:

Lemma

Let C : [0, 1]m → [0, 1] be a δ-β-concave Copula and let α ∈ R be given such
that β ≤ α. Then C is also δ-α-concave.
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The tools: special family of copulæ

Structure II

The δ parameter has a descending effect as is well-known.

Corollary

Let C : [0, 1]m → [0, 1] be a δ-γ-concave Copula and let α ≥ γ and β ≤ δ be
given. Then C is also β-α-concave.

This shows that the strongest characterization is obtained when γ is small-
est and δ highest.
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The tools: special family of copulæ

General observation

The family contains all Archimedian copulae

Proposition ([van Ackooij and de Oliveira(2016)])
Let C : [0, 1]m → [0, 1] be an Archimedian copula, and ψ : (0, 1] → [0,∞) be
its generator. Then C is a −∞-1-concave copula.
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The tools: special family of copulæ

Stronger characterizations

The independent, maximum and Gumbel Copula are 0-0-concave
([Henrion and Strugarek(2011)])

The Clayton copula can also be characterized in a stronger way:

Lemma ([van Ackooij(2015)])
Let θ > 0 be the parameter of the strict generator ψ : [0, 1] → R+, ψ(t) =
θ−1(t−θ − 1) of the Clayton Copula. This Copula is δ-γ-concave for all γ > 0
provided that δ ≤ −θ < 0.
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Main Results

Main result I

Theorem ([van Ackooij(2015)])
Assume that we can find αi ∈ R, such that the functions hi are αi -concave and a second
set of parameters γi ∈ (−∞,∞], bi > 0 such that either one of the following conditions
holds:

1 αi < 0 and z 7→ Fi (z
1
αi ) is γi -concave on (0, bαi

i ]

2 αi = 0 and z 7→ Fi (exp z) is γi -concave on [log bi ,∞)

3 αi > 0 and z 7→ Fi (z
1
αi ) is γi -concave on [bαi

i ,∞),
where i ∈ {1, ...,m} is arbitrary. If the Copula is δ-γ-concave for γ ≤ γi ≤ ∞, i =
1, ...,m, then the set

M(p) :=
{

x ∈ Rn : P[ξ ≤ h(x)] ≥ p
}

is convex for all p > p∗ := maxi=1,...,m Fi (bi ). Convexity can moreover be derived for all
p ≥ p∗ if each individual distribution function Fi , i = 1, ...,m is strictly increasing. In the
specific case that αi ≥ 0, γi -concavity of the distribution functions holding everywhere,
for all i ∈ {1, ...,m} and C being a δ-γ-concave Copula, the set M(p) is convex for all p.
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Main Results

Some comments

An “unfortunate” effect in the previous result is that p∗ depends some-
how on the "worst" distribution function Fi , but is only needed for a single
inequality.

Generalized concavity of the mappings hi need only hold on specific level
sets {x ∈ Rn : hi (x) ≥ bi}.
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Main Results

Main result II

These concerns are addressed in the following result:

Theorem ([van Ackooij(2015)])
Define the set D := {x ∈ Rn : hi (x) ≥ bi , ∀i = 1, ...,m}, where bi is as de-
fined in the previous Theorem and we make the same assumptions on ξ, Fi

and the Copula. Then the set D is convex and D ∩ M(p) is convex for all
p ≥ p∗ = C(F1(b1), ...,Fn(bn)).
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Main Results

Discussion

The conditions of the theorem can be shown to hold in many situations:

Generalized concavity properties of mappings hi are known from data;
Implicit from some underlying nominal “deterministic” problem involving
constraints hi (x) ≥ bi .

The requests on the marginal distribution functions follow from results in
[Henrion and Strugarek(2008)] for nearly all choices

The class of δ-γ-concave copula cover at least all Archimedian copula.
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Introduction

Cutting plane models

Consider the problem of minimizing a convex mapping f : Rn → R

f is only known partially through a “black box” called oracle. Given an
entry xi , it returns f (xi ) and gi ∈ ∂f (xi ).

With a set of points x1, ..., xk , we can build the cutting plane model for f :

f̌k (x) := max
j=1,...,k

{f (xj ) + 〈gj , x − xj〉} (26)

Convexity yields: f̌k (x) ≤ f (x) for all x (and k ≥ 1).
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Introduction

Cutting plane methods

So instead of minimizing f over a “simple” set X , we solve

xk+1 = argmin
x∈X

f̌k (x). (27)

when X is polyhedral this is a linear program.
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Introduction

Cutting-plane method: illustration
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Introduction

Cutting-plane method: illustration
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Introduction

Convex constrained problems

Consider the problem

min
x∈X
{f (x) : s.t. ϕ(x) := P[g(x , ξ) ≤ 0] ≥ p} (28)

Then under appropriate assumptions, x 7→ ϕ(x) has convex level sets,
e.g., ϕ could be log-concave

Now, c(x) = log(p)− log(ϕ(x)) is a convex map.

the problem is a convex constrained problem (under the appropriate as-
sumptions)
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Introduction

Supporting hyperplane method

A classic method in chance constrained programming.

We suppose available a slater point xs, i.e., such that ϕ(xs) > p.

At iteration k we solve minx∈X

{
f̌k (x) : čk (x) ≤ 0

}
to find x̃k+1.

Typically x̃k+1 is not feasible, so we compute the largest λ ∈ [0, 1] such
that xk+1 = λxs + (1− λ)x̃k+1 satisfies ϕ(xk+1) = p.

We have upper and lower bounds on the optimal value and stop whenever
these are close enough.
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Introduction

Are chance constraints just plain non-linear constraints?

In a way yes, but the mapping ϕ (c) is not known up to arbitrary preci-
sion (or would be unreasonably costly). A (sub-)gradient of ϕ (c) also
suffers from numerical imprecision. Here we make use of the earlier de-
rived formula allowing for efficient and precise computations. Again with
a trade-off cost/Efficiency

So then is č a true cutting plane model for c underestimating it ?
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Introduction

Special methods for chance constraints

An example shows that cutting planes may locally over-estimate the map
(or set):
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Introduction

Upper-oracle

We can set up an “upper"-oracle for constraints of type c and specially
structured probability constraints. These may provide a cutting planes
model with cutting planes:

cx = c(x)− ηx
c

c(y) ≥ cx +
〈
gx

c , y − x
〉
− εx

c ,

having εx
c > 0.

εx
c can be shown to have a link with the precision used in evaluating prob-

abilities P[g(x , ξ) ≥ 0].
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Introduction

Special methods

So we need a method capable of handling inaccuracy of ϕ (c) explicitly

A method able to account for the flaws of cutting plane methods: (oscilla-
tion, slow convergence (for high accuracy solutions))

Lets look at special bundle methods
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Level bundle methods

Level bundle method: main ideas

What characterizes a level bundle method are essentially:

[(i)] a convex model f̌k (x) ≤ f (x);

[(ii)] a stability center x̂k ;

[(iii)] a parameter f levk to be updated at each iteration k .

The new iterate xk+1 is obtained by solving a projection problem

xk+1 := argmin
{

1
2
‖x − x̂k‖2

: f̌k (x) ≤ f levk , x ∈ X
}
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Level bundle methods

Level bundle method: some elements

Definitions

f upk := min1≤j≤k f (xj ) is an upper bound for f∗
f lowk := minx∈X f̌k (x) is a lower bound for f∗
f levk := λf upk + (1− λ)f lowk is the level parameter, for λ ∈ (0, 1)

Xk := {x ∈ X : f̌k (x) ≤ f levk } is the level set of f̌k
∆k := f upk − f lowk is an optimality gap

Solving the LP defining f low is optional
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Level bundle methods

Level bundle method: illustration
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Level bundle methods

Level bundle method: illustration
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Dedicated method and results

Measure of optimality

We define the improvement function h(x ; f lowk ) := max
{

f (x)− f lowk , c(x)
}

.

The optimality measure is

hrec
k :=

{
h(x0, f low0 ) if k = 0
min

{(
minj h(xj , f lowk )

)
, hrec

k−1

}
if k > 0 (29)

xrec
k is the past iterate such that h(xrec

k ; f lowk ) = hrec
k . It is the sequence

of best solutions.
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Dedicated method and results

The algorithm

After initialization, the algorithm moves through the following steps

(Best minimizer) Update xrec
k and hrec

k

(Stopping test) If hrec
k < δ is sufficiently small, then stop

(Level update): Compute f levk

(Projection problem): Compute xk+1

(Oracle): call the oracle to update the models

(Bundle Management): Optionally remove old linearizations
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Dedicated method and results

The algorithm: convergence, optimality certificate

Lemma ([van Ackooij and de Oliveira(2014)])
If limk hrec

k ≤ 0, then any cluster point of the sequence xrec
k is an η-optimal

solution to the problem, with η := max {ηf + εf , ηc}. In particular if hrec
k ≤ 0

for some (finite) k, xrec
k is an η-optimal solution.
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Dedicated method and results

The algorithm: convergence

Theorem ([van Ackooij and de Oliveira(2014)])
The algorithm with an upper oracle (and with δ = 0) will either stop or generate
a sequence of points such that limk hrec

k ≤ 0.
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Dedicated method and results

Numerical example : cascaded reservoir management

A network flow problem when the
valley acts on a price signal, the
latter typically comes from a La-
grangian dual.

Water values, i.e., costs are as-
sumed pre-computed and can be
volume dependent

Constraints imply:
Production level bounds
Reservoir bounds have to be sat-
isfied

When Inflows are deterministic,
the above problem is linear. In-
flows are however stochastic
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Dedicated method and results

Problem Structure

Reservoir bound constraints need to be interpreted “somehow” in a stochas-
tic setting. We will use (joint-)chance constrained programming in order
to do so. This gives the problem:

minx∈Rn
+

cTx

s.t . Ax ≤ b (30)

p ≤ P[ar + Ar x ≤ ξ ≤ br + Ar x ],

If Inflows follow a Causal time series model with Gaussian innovations,
then ξ above is Gaussian as well. In particular problem (30) has a convex
feasible set.
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Dedicated method and results

Numerical example: benchmark I

Table: In all computations: precision of oracle εg = 5e−4

Instance method Obj. Value P Nb. Iter. CPU time parameters
[InfeasQP] (mins)

Isr48 Alg.[Prékopa(2003)] -175031 0.799975 35 10.5 δTol = 1e−4

Isr48 Alg.[Kiwiel(2008)] -175042 0.799885 49 7.5 K = 1e4, δTol = 1e−5

Isr48 Alg.PB -175043 0.799145 88 11.2 K = 1e5,µ0 = 1e−5, δTol = 1
2

Isr48 Alg.PB -175042 0.799536 69 8.3 K = 1e5,µ0 = 1e−6, δTol = 1
2

Isr48 Alg.PB -175042 0.799588 31 4.5 K = 1e5,µ0 = 1e−8, δTol = 1
2

Isr48 Alg.LB -175039 0.800041 66 10.0 K = 1e5, γ = 0.8, δTol = 5
Isr48 Alg.LB -175040 0.799755 38 5.4 K = 1e4, γ = 0.8, δTol = 5
Isr48 Alg.LB -175040 0.799855 63 [3] 8.6 K = 1e5, γ = 0.8, δTol = 5, [¬LP]
Isr48 Alg.LB -175037 0.79966 38 [4] 5.2 K = 1e4, γ = 0.8, δTol = 5, [¬LP]
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Dedicated method and results

Numerical example: benchmark II

Bundle Methods offer computational advantages over Cutting Planes meth-
ods, mainly if the instance is hard (e.g., case of Ain48, Isr96, Isr168). It
does not show much for Isr48.

The Level Method has an easier parameter setup “globally” .

The Proximal Method (see [van Ackooij and Sagastizábal(2014)]) produces
feasible solutions quickly
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Dedicated method and results

Numerical example: benchmark III

Instance method Obj. Value P Nb. Iter. CPU time parameters
[InfeasQP] (mins)

Isr96 Alg.[Prékopa(2003)] -175708 0.799492 143 217.4 δTol = 1e−4

Isr96 Alg.[Kiwiel(2008)] -175713 0.799541 127 86.8 K = 1e4, δTol = 1e−5

Isr96 Alg.PB -175715 0.799413 159 110.9 K = 1e5,µ0 = 1e−5, δTol = 1
2

Isr96 Alg.PB -175715 0.799406 177 123.5 K = 1e5,µ0 = 1e−6, δTol = 1
2

Isr96 Alg.PB -175713 0.799346 95 66.5 K = 1e5,µ0 = 1e−8, δTol = 1
2

Isr96 Alg.LB -175713 0.799874 122 82.5 K = 1e5, γ = 0.8, δTol = 5
Isr96 Alg.LB -175713 0.799599 94 48.4 K = 1e4, γ = 0.8, δTol = 5
Isr96 Alg.LB -175710 0.799809 115 [3] 75.3 K = 1e5, γ = 0.8, δTol = 5, [¬LP]
Isr96 Alg.LB -175697 0.799866 76 [4] 44.3 K = 1e4, γ = 0.8, δTol = 5, [¬LP]
Isr168 Alg.[Prékopa(2003)] -175222 0.799511 190 1504.7 δTol = 1e−4

Isr168 Alg.[Kiwiel(2008)] -175237 0.799394 204 627.3 K = 1e4, δTol = 1e−5

Isr168 Alg.PB -175237 0.799408 219 687.4 K = 1e5,µ0 = 1e−5, δTol = 1
2

Isr168 Alg.PB -175237 0.799418 188 573.5 K = 1e5,µ0 = 1e−6, δTol = 1
2

Isr168 Alg.PB -175236 0.799503 133 343.4 K = 1e5,µ0 = 1e−8, δTol = 1
2

Isr168 Alg.LB -175235 0.799854 161 529.6 K = 1e5, γ = 0.8, δTol = 5
Isr168 Alg.LB -175232 0.799717 110 352.3 K = 1e4, γ = 0.8, δTol = 5
Isr168 Alg.LB -175235 0.799604 165 [3] 423.2 K = 1e5, γ = 0.8, δTol = 5, [¬LP]
Isr168 Alg.LB -175220 0.799423 127 [5] 353.5 K = 1e4, γ = 0.8, δTol = 5, [¬LP]
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Summary

In this talk we have discussed several aspects of chance constraints

Differentiability

Convexity

Algorithms

Thank you for your attention!

Time for questions

Special thanks to Welington de Oliveira for the cutting-plane / bundle il-
lustrations.
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