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Introduction
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Motivation

Motivation |

m A Probabilistic constraint is a constraint of the type

o(x) :=Plg(x,£) = 0] = p, (1)

where g : R" x R™ — R¥ is a map, £ € R™ a (multi-variate) random
variable

m Such constraints arise in many applications. For instance cascaded Reser-
voir management.
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Motivation

Motivation I

m When considering k constraints of the type

(,D,‘(X) = P[g,-(X, E) > 0] > p7I: 17'“>k (2)

we speak of individual probabilistic constraints. The case of (1) is a joint
probabilistic constraint.

m Individual PCs offer easier numerical treatment, but obviously lack robust-
ness.
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Introduction
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Motivation

Why PCs

m In many applications, one encounters residual uncertainty, i.e., after mak-
ing a decision a random outcome is observed.

® Such uncertainty may occur in constraints. In Unit-Commitment problems
one encounters the following cases:

Vmin < Vo —AX+ & < Vinax
s < D-Ax<sY (3)

where x models the turbining/pumping policy in cascaded reservoir man-
agement, unit-commitment schedule respectively.

m Here x is decided upon before observing ¢ (inflows) or D (net customer
load).

m PCs are a way to give a meaning to (3) I~
- < €DF
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Motivation

What do PCs do

m Adding a probabilistic constraint, e.g.,

IP7[\/min <V—-Ax+¢< Vmax]
P[s® < D— A'x < 8"]

p
P, 4)
restrains the set of feasible solutions. Since x is decided upon before

observing uncertainty, a posteriori violated inequalities are not arbitrarily
libad” i

2
2

m From a programming perspective: ¢(x) > p, with p(x) := P[g(x,&) > 0]
is “just” a non-linear constraint

m In most cases v is only known implicitly.

m The mapping ¢ is (usually) not concave, but could have generalized (e.g.,

log-concavity) properties. ¢
g y) prop <'sepF
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Motivation

Properties of PCs

m What mathematical properties can ¢ be expected to have ? Continuity,
differentiability ?

m What properties does the set M(p) := {x € R" : p(x) > p} have ? Con-
nectedness, convexity

m What properties could problems of the type

Minyern  f(X)
s.t. xeX (5)
e(x) = p,

have if f is a convex mapping, X a convex set ? Stability ?

m Studying properties of ¢, M(p) or problems (5) is important for efficient
numerical treatment of problems (5). I~
- <~ €DF

8/107



Continuity

Continuity



Continuity
[ Je]

Introductory discussion

An example

m Let £ ~ N(0, 1) be given and consider
p(x) :=P[Qx + L& > b], (6)

o2 i]e=10] =2

with

‘
> =™
m Then ¢ is not continuous 2~ E€DF
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oe

Introductory discussion

An example I

m The reason of this discontinuity is because of the presence of “determin-
istic” constraints —1x1 + x» > —% inside the probability constraint.

m Alternatively stated, we have a situation wherein the set {z € R” : g(x, z) = 0}
is not of zero measure (at some x’s).

m This shows the need for appropriate conditions (or a better model)

m Still continuity holds in a great many situations



Continuity
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Continuity statements

Lower semi continuity

Lemma (e.g., [Henrion(2010

Letg : R" x R™ — R be (jointly) lower semi-continuous and assume that the
sets Ny = {z e R" : g(x,z) =0} are P-null sets for all x € R". Let¢ € R™
be a random variable. Then the mapping ¢(x) := P[g(x,&) > 0] is also lower
semi continuous.
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Continuity statements

Upper semi continuity

Lemma (e.g., [Henrion(2010

Letg : R" x R™ — R be (jointly) upper semi-continuous and let ¢ € R™ be a
random variable. Then the mapping ¢(x) := P[g(x, &) > 0] is also upper semi
continuous.
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Continuity statements

Continuity

Let g : R" x R™ — Rk be (jointly) continuous and let ¢ € R™ be a random
variable admitting a density with respect to the Lesbesgue measure in R™.
Assume that the sets Ny = {z € R™ : g(x, z) = 0} are Lesbesgue-null sets
for all x € R". Then the mapping ¢(x) := P[g(x, &) > 0] is continuous.
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Differentiability
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Classics

Some differentiability properties of PCs |

m General differentiability statements exist and represent the gradient as
an involved integral over a “surface” and “volume”. A key condition is
that {z € R™ : g(x,z) > 0} is bounded locally around a point x (e.g.,
[Uryas’ev(2009)]).
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Differentiability € e Summar

Classics

Some differentiability properties of PCs |l

m Specific formulas such as the following, allow for efficient computation in
practice:

Lemma ([Prékopa(1970), Prékopa(1995

Let ¢ be an m-dimensional Gaussian random vector with mean p € R™ and
positive definite variance-covariance matrix . Then the distribution function
Fe(z) := P[¢ < Zz] is continuously differentiable and in any fixed z € R™ the
following holds:

OF, :
—8; (2) = fe(2) Feop (215 o Zimty Zigty ooy Zm), i =1, i m. (7)
!

Here £(z;) is a Gaussian random variable with mean j € R™" and (m —
1) x (m — 1) positive definite covariance matrix .. Let D}, denote the m-
th order identity matrix from which the ith row has been deleted. Then ji =
Din(p+X; " (zi — pi)Zi) and & = Diy(E — £, '5,57)(DL,)", where ¥ is the i-th
column of . s eDF
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Classics

Some differentiability properties of PCs I

B o(x) :=P[¢ < x] ([Prékopa(1970)]) We have

1o} .
o = (0PI < 5]

B o(x) :=P[A(X)¢ < a(x)] ([van Ackooij et al.(2011)van Ackooij, Henrion, Médller,
B o(x) := P[A¢ < a(x)] ([Henrion and Méller(2012)])
m Other cases involve distribution functions of Dirichlet

([Szantai(1985), Gouda and Szantai(2010)])
and multi-variate Gamma ([Prékopa and Szantai(1979)]) random variables
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Consideration of non-linear mappings

Setting

m Consider the probabilistic constraint :
o(x) :==Plg(x,§) < 0] > p, 8)

where g : R” x R™ — RP is a continuously differentiable map (convex in
the second argument), £ ~ N(u, ) a (multi-variate) Gaussian random
variable.
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O@000000000000

Consideration of non-linear mappings

Motivation

m We would like to dispose of a gradient formulae for the case
e(x) == P[(c,n) < h(x)],
where ¢ > 0,c € R™, and n € R™ is a log-normal random variable
m We can cast this into the general case by defining the mapping
g(x, 2) = (c,exp(2)) — h(x).
m Then p(x) = P[g(x, &) < 0] with & ~ N (i, X).

m In fact by redefining g we may assume w.l.o.g. that £ ~ A/(0, R).
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Consideration of non-linear mappings

Inherent non-smoothness

m |t is tempting to believe that “nice” properties of g carry forth to ¢. For
instance, if g is smooth enough, that ¢ will be at least continuously differ-
entiable.

m Though “nasty laws” for £ can be expected to have side-effects, nice laws
may not.

m Let us first show that such considerations are dangerous.
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000@0000000000

Consideration of non-linear mappings

Inherent non-smoothness: counterexample

Differentiability need not hold:

Proposition
Let g : R? x R? — R be defined by

9 (X1, %, 21, 22) := x2"®) 4 o2, — 1, where h(t) := —1 —2log(1 — &(t))

and & is the cumulative distribution function of the one-dimensional standard
Gaussian distribution. Let ¢ ~ N (0, k) and X = (0,1). Then, the following
holds true:

E g is continuously differentiable.
g is convex in the second argument.
g(x,0)=9(0,1,0,0) < 0.
A o is not differentiable at x.
~ S EeDF
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Consideration of non-linear mappings

Inherent non-smoothness: counterexample

Graph of a non-differentiable probability function
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Consideration of non-linear mappings

Inherent non-smoothness: several components

Things may also go wrong when p > 1, i.e., g has several components:

Example

Let £ have a one-dimensional standard Gaussian distribution and define

g(X1, X2, X3,&) = (§ — X1, — X2, =€ — Xa).

Then, with ® referring to the one-dimensional standard Gaussian distribution
function, one has that

o(x1, x2) = max{min{®(x1), P(x2)} — ®(x3),0}.

Clearly ¢ fails to be differentiable at x := (0,0, —1), while {z : g(X,z) < 0} =
[-1,0] is compact and satisfies Slater’s condition in the description via g.
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Consideration of non-linear mappings

Inherent non-smoothness: the need for additional conditions

m From these discussion it is clear that some conditions needs to be ap-
pended in order to avoid some degeneracy

m Essentially two conditions are needed: bounded growth on Vg, some
LICQ type of regularity.
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Consideration of non-linear mappings

Evaluating P

m LetS™ ' :={zeR"|X, zf =1} be the euclidian unit-sphere of R™.
m Let £ ~ N(0, R) be given and L be such that R = LL".

m |t is well known that £ = nL¢, where n has a chi-distribution with m de-
grees of freedom and ¢ is uniformly distributed over $™~
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Consideration of non-linear mappings

Evaluating P Il

m As a consequence if M C R” is Lebesgue measurable

m We have

PleeM = [ (r=0:mvam 20 duc ©)

vesm—1

m Efficient sampling schemes for such integrals are provided by [Deak(1986),
Dedk(2000)]

m Inourcase M(x) = {z € R" : g(x,z) < 0}is aconvex (hence Lebesgue
measurable) set.
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Consideration of non-linear mappings

Growth control

We cannot allow for unbounded growth of the mapping g. We thus define:

Definition

We say that g satisfies the exponential growth condition at x if there exist
constants do, C > 0 and a neighbourhood U(x) such that

[Vxg (x',2)|| < doexp(llzl]) VX € U(x)Vz:|z| > C.

[
& SeDF

28/107



Differentiability

0000000000 e000

Consideration of non-linear mappings

The case p = 1

m We define the sets of finite and infinite directions:
F(x) = {veSm*‘|3r>0 L g (x, rLv) :o}
I(x) := {v eS™vr>0:g(x,rLv) # 0} .

m For each x € R” with g(x,0) < 0 and v € F(x) we can find a unique
p*Y(x,v) > 0 such that g(x, p*"(x, v)Lv) = 0.

m Numerically this value can be computed by a simple application of Newton-
Rhapson.
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Consideration of non-linear mappings

The case p = 1: lllustration
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Consideration of non-linear mappings

The case p = 1: main result

Letg : R" x R™ — R be a continuously differentiable function which is con-
vex with respect to the second argument. Consider the probability function ¢
defined as p(x) = P[g(x,&) < 0], where ¢ ~ N(0, R) has a standard Gaus-
sian distribution with correlation matrix R. Let the following assumptions be
satisfied at some X :

H g(x,0) <0.

g satisfies the exponential growth condition at x
Then, o is continuously differentiable on a neighbourhood U of x and it holds
for all x € U that:

B (5 (%)) Vg (%, 5 (x, V) L)
Vol = [ X Ty aue(v)

vEF(x)
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Consideration of non-linear mappings

The previous Theorem remains true if the growth condition is replaced by the
condition that the set {z|g(x, z) < 0} is bounded. Then, the formula becomes

~ X (P (%)) Vg (%, 5 (%, V) LV)
Vot == [ R T Ty k()

vesm—1
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More components

The case p > 1

m When p > 1 we can define

9"(x,2) = max_gj(x,2), (10)

m Evidently, the probability function can be written as ¢(x) = P(9"(x, &) <
0).

m For each x € R" with g(x,0) < 0 and v € F(x) we can find a unique
p*Y(x,v) > 0 such that g"(x, p*"(x, v)Lv) = 0. However this p*" is no
longer smooth!

m The sets of finite and infinite directions can be defined with respect to g”
or alternatively as unions (intersections) of their counterparts with respect
to each component of g.
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More components

The case p > 1: main result

Theorem ([van Ackooij and Henrion(2016

Let the following conditions be satisfied at some fixed x € R":
| 9" (x,0) <0.
g; satisfies the exponential growth condition at x forallj =1, ..., p.

Then, ¢ is locally Lipschitz continuous on a neighbourhood U of X and it holds
that

c X(ﬁ(x,v))ng-(x,ﬁ(X,v)Lv)
el / C"{‘ (201 (0 5 (%, () D), v}

€ 300)} dhc(v)

(11)

vEF(x)
for all x € U. Here,
Jxv)={j € {1,....pHgi(x,p(x,v) Lv) =0} (v € F(x))
< SeDF
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More components

The case p > 1: A first discussion

m Note that in the case p > 1, under the same conditions as for the case
p = 1, we have a weaker results: local Lipschitz continuity and an outer
estimate of the clarke-subdifferential

m The earlier example showed that this is inherent and not a weakness of
the analysis.
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More components

The case p > 1: R2CQ

Definition
For any x € R" and z € R” we denote by

Z(x,z):={je{1,...,p}|gi(x,z) =0} (12)

the active index set of g at (x, z). We say that the inequality system g (x, z) <
0 satisfies the Rank-2-Constraint Qualification (R2CQ) at x € R if

rank {V.9;(x,2),V:0i(x,2)} =2 Vi,jeZ(x,2),i#] (13)
vzeR™:g(x,z)<0. (14)
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More components

The case p > 1: R2CQ < LICQ

m Note that (R2CQ) is substantially weaker than the usual Linear Inde-
pendence Constraint Qualification (LICQ) common in nonlinear optimiza-
tion and requiring the linear independence of all gradients to active con-

straints.
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More components

The case p > 1: An auxiliary result

Lemma (J[van Ackooij and Henrion(2016

Letx € R" be given such that
g" (%,0) < 0.
g satisfies (R2CQ) at X.

Then, pc (M) =0 forM' := {v € S "|3r > 0: g(X,rLv) <0, #I(X,rLv) > 2},
where L is the regular matrix in the decomposition R = LLT.
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More components

The case p > 1: smoothness

Theorem ([van Ackooij and Henrion(2016

Let the following conditions be satisfied at some fixed x € R":
H ¢" (x,0) <0.
g; satisfies the exponential growth condition at x forallj =1, ..., p.
(R2CQ) is satisfied

Then, ¢ is Fréchet differentiable at x and the gradient formula:

Vo(X) = — / X (P (X, v)) Vxgjv) (X A (X, v) Lv)

d , (15
(Vg (X,p(X, V) Lv),Lv) pe(v), (15)

holds true.
If (R2CQ) is satisfied locally around X, then, o is continuously differentiable at
X.

\J
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More components

One last remark

The condition g(x, 0) < 0 is not very restrictive as the following result shows:

With g and ¢ as before, let the following assumptions be satisfied at some X :
There exists some z such that g(x,z) < 0.
o(X) > 1/2.

Then, g(x,0) < 0.
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A further characterization of Clarke’s sub-differential

Motivation

m Let us consider the special case wherein ¢ results from
p(x) :=P[B¢ < h(x)], (16)
with ¢ ~ N (g, X), X - 0.

m When Bis of full rank then, B"SB > 0 too and differentiability follows from
classic results.

m However in many applications B has more rows than columns (for in-

stance when coming from Gale-Hoffmann inequalities): ¢ is no longer
smooth.
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A further characterization of Clarke’s sub-differential

Motivation

Example
Letm=1,k=2,¢~ N(0,1) and B be given by

Then it is readily observed that ¢(x) = P[B¢ < x] = P[¢ < min{xq, Xx2}]. As a
consequence ¢ fails to be differentiable on the line x; = x> as is readily seen
on the figure:

_ T€eDF
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A further characterization of Clarke’s sub-differential

Setting

m Without loss of generality we concentrate on p(z) = P[¢ < Zz], with € ~
N(0,%¥)and ¥ > 0.

m We may also assume that X; = 1 for all / without loss of generality (as oth-

erwise either the system contains a redundant constraint (locally around
z), or ¢ fails to be continuous in z).
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A further characterization of Clarke’s sub-differential

Correlation graph

Definition
Let X be an m x m covariance matrix having all diagonal entries equal to 1. Let
G(X) = (V, E) denote the (undirected) graph on the vertex set V = {1, ..., m}
andwithedgeset E = ETUE™ = {(i,)) :i#j,Si=1}0{(i,j) :i#}j,%i=—1}.
The graph G(X) (which may contain isolated vertices) will be called the corre-
lation graph associated with X.
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A further characterization of Clarke’s sub-differential

Correlation graph: Example

Consider the 4 x 4 covariance matrix ¥ defined as follows:

then the correlation graph: is obtained

L ~€DF
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A further characterization of Clarke’s sub-differential

Correlation graph

m The correlation graph features Q connected components (each being ei-
ther an isolated vertex or a complete subgraph (a clique)).

m Each connected component G = (V9, E9) is bipartite and can be sep-

arated into a left and right side L9, R9: elements within L7 are positively
correlated, elements in L9 are negatively correlated to those in RY.
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A further characterization of Clarke’s sub-differential

Correlation graph and z

Definition
Let G(X) = (V, E) be a correlation graph:

m Given an arbitrary z € R™, we will say that z is auto-referenced if there
exists an arc (i,j) € E such that z; = ¥z (in other words, such that
zi=z;if (i,f) € E* or such that z; = —z if (i,j) € E7).

m An auto-referenced point z € R™ will be called changeable if there exists
(i,j) € E such that zx > z for all (k,i) € Et and zx > —z for all
(k,i) € E~.

The arc (i,j) € E will occasionally be referred to as an auto-referencing (a
changeable) arc with respect to z if z is auto-referenced (changeable).
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A further characterization of Clarke’s sub-differential

Correlation graph: Example

Example

Consider again z = (1,-2,1,—1) and

Then z is auto-referenced (blue), but not changeable (—2 > —1 is false).
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A further characterization of Clarke’s sub-differential

Correlation graph: Example 2

Example

Consider again z = (2,—2,3,—1) and

Then z is changeable (green) (argmins among the partitions L9, R9).
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A further characterization of Clarke’s sub-differential

A first result

Theorem ([van Ackooij and Minoux(2015

Let ¢ be an m-dimensional Gaussian random vector with mean . € R™ and
covariance matrix ¥ having all diagonal entries equal to 1. Then for arbitrary
not-changeable z — . € R™, the distribution function F¢(z) := P[¢ < Z] is
locally Lipschitz at z and 0°F¢(z) = {v}, where for arbitrary i=1,...,m:

Vi = fii(zf)Ff(z,-)(z1 5 coog A=) g AR g ooog Zm). (17)

Here 8°F;(z) denotes the Clarke-subdifferential of F: and &(z;) is an m — 1
dimensional Gaussian random vector (familiar from classic results)
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A further characterization of Clarke’s sub-differential

The familiar associated Gaussian

m f, is the one dimensional Gaussian density of ¢;

£(z) ~ N (p, %)

m Let D}, denote the (m — 1) x m matrix deduced from the m x m identity
matrix by deleting the ith row.

B = Dp(p+ %, (2 — p)E0)
S = Dip(T - % 55T )(D),

where %, is the i-th column of X and X; is the i-th element of the main
diagonal of X.
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Summary

A further characterization of Clarke’s sub-differential

And changeable points?

Proposition (Jvan Ackooij and Minoux(2015

Let G = (V9, EY), be the connected g = 1, ..., Q components of the correla-
tion graph and (L9, R9) be the associated bipatrtition. Let z be changeable.
Define J C {1, ..., Q} as the set of all g for which either | V9| = 1 or no change-
able arc exists in V9. For each remaining q € {1,...,Q} \ J, pick 19 € L9,
r? € R9 such that ziq < z, forallp € LY and z,a < z, forallp € R9. If R is
empty, r? should be interpreted as being “empty".

Then the distribution function F¢(z) := P[¢ < Z] is locally Lipschitz at z and
v € 8°F¢(z), where for arbitrary i=1,...,m:

fgi(Z,‘)Fg(z,,)(Zh...,Z,',1 s Zit1y ey Zm) if i € Ujey %
Vi= 4 fe(2)Fe(215 s Zint, Zit,s oony Zm) if dge{1,...,QF\ J,ie {l%
0 otherwise
(18)

Moreover 0°F¢(z) contains at least two elements.
~ T EeDF
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A further characterization of Clarke’s sub-differential

A final definition

Definition
Let z € R™ be arbitrary. Define the set £(z) as the set of all v defined accord-
ing to previous formula, where we enumerate all possible choices of /9, r? for
each q. For a specific g if V7 contains a changeable arc with one endpoint in

L9 and the other endpoint in R we adjoin to this set of choices, v € R”, with
Vo =0 forp e V9.
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A further characterization of Clarke’s sub-differential

The main result

Theorem ([van Ackooij and Minoux(2015

Let ¢ be an m-dimensional Gaussian random vector with mean i € R™ and
covariance matrix ¥ having all diagonal entries equal to 1. Then the distribu-
tion function F¢(z) := P[¢ < Z] is continuously differentiable if and only if z—
is not changeable.

Moreover F¢ is locally Lipschitz at z and

0°Fe(2) = co (E(2)), (19)

where co (B) denotes the convex hull of set B C R™.
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Eventual convexity
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Eventual convexity
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Introduction

Definition of Generalized Concavity |

m The following mapping plays a key role in the definition of generalized
concavity:

Let a € [0, 00] and m,, : R4 x Ry x [0, 1] — R be defined as follows

ma(a, b, \) =0if ab= 0, (20)
fora>0,b>0,\€[0,1]:

2! it a=0
max {a, b} if o =00
A 1220 = min {a, b} it a=—oo =)

(A& + (1 - \)b™)s  else
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Introduction

Definition of Generalized Concavity Il

m We can now define generalized concavity of a mapping f:

A non-negative function f defined on some convex set C C R” is called a-
concave (a € [—o0, 00]) if and only if for all x,y € C, X\ € [0, 1]:

fAx + (1 = A)y) = ma(f(x), £(y), A). (22)

m For o = 1 this is just the definition of concavity. For « = 0, f is log-
concave and satisfies f(Ax + (1 — A)y) > f(x)*f(y)' .
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Some Properties of PCs |

m Convexity of M(p) can be asserted under general conditions on g, & re-
gardless of p

Theorem ([Prékopa(1972), Prékopa(1973), Tamm(1977), Borell(1975),

Letg : R" x R™ — RX be a (jointly) quasi-concave function and let ¢ € R™ be
a random variable inducing an a.-concave probability distribution P. Then the
mapping x € R" — G(x) := P[g(x, &) > 0] is an a-concave function on the
setD={x eR" : 3z € R" with g(x, z) > 0}.
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An example of another type of convexity

Let us consider the following example, wherein g : R” x R™ — R is defined as
follows:

n
g(x,2) :=2"W(x)z+2>  xwiz+b, (23)
-

where W : R" — R™ x R™ a positive semi-definite matrix valued mapping.

W(x) = xq Wy + xo Wy, where

1 09 1 o7
W1:(0.9 1 )a"dWZZ(_oJ 1 )

Moreover the correlation matrix R is taken to be:

1 0.5
Rf( 0.5 1 )

Finally we take wy = (—1,1),wp = (2,3)and b = —3
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Introduction

Some Properties of PCs Il

m Eventual convexity is defined as convexity of M(p) for all p > p*. A classic
result:

Lemma ([Kataoka(1963

Consider the constraint of the form ¢(x) > p where k =1, g(x,z) =z'x — b
and ¢ € R" is a multivariate Gaussian random variable. Then the feasible set
M(p) is convex for all p > .

m Recent important eventual convexity results for M(p) involving specially
structured probabilistic constraints have been derived by
[Henrion and Strugarek(2008)], [Henrion and Strugarek(2011)].
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Setting

m In practice, an important question concerns convexity of the set
M(p) := {x € R" : P[¢ < h(x)] > p}. (24)

m When h has weaker concavity properties (e.g., only log-concave), the
classic results can’t be applied (directly).

m We are interested in identifying a computable threshold p* such that M(p)
can be shown to be convex provided p > p*: eventual convexity
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Structure

m We assume that ¢(x) := P[¢ < h(x)] can be cast into the following form:
e(x) := C(F1(hi(x)), ..., Fm(hm(X))), (25)
where C : [0,1]" — [0, 1] is a Copula.

m The component &; is assumed to have one dimensional distribution func-
tonzeRw— F(2) =P <z, i=1,..,m.

m A copula is the distribution function of a multi-variate random variable with
uniformly distributed marginals.

m According to Sklar's Theorem, every joint probability distribution can be
associated with a Copula
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Definition

m We introduce a family of copulae:

Definition
m Let v € R be given, and let the set X(v) be defined as X(v) = [0, 1]™ for
v >0, X(0) = (—00,0]™ and X () = [1,00)™ for v < 0.
B Letd € [—o0, 00] be equally given.
We call a Copula C : [0,1]™ — [0, 1] §-y-concave if the mapping u € X(vy) —

C(u™) is 6-concave, whenever 7 # 0 and u € X(0) ~ C(e") is 6-concave
whenever v = 0.
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The tools: special family of copulee

Relation

m A logexp-concave copulae C ([Henrion and Strugarek(2011)]) is 0-0-concave.
The concept of §-y-concavity is a direct extension.

m A quasi-concave copula is —oo-1-concave.

m |t is sufficient for 6-y-concavity to hold locally (Not shown here for nota-
tional convenience).
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Structure |

m The v parameter has an ascending effect:

Lemma

Let C:[0,1]" — [0, 1] be a §-3-concave Copula and let o. € R be given such
that B < «. Then C is also 6-a-concave.
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Structure Il

m The ¢ parameter has a descending effect as is well-known.

Corollary

Let C: [0,1]™ — [0, 1] be a 6-y-concave Copula and let o« > v and 3 < ¢ be
given. Then C is also 3-a-concave.

m This shows that the strongest characterization is obtained when ~ is small-
est and § highest.
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The tools: special family of copulee

General observation

m The family contains all Archimedian copulae

Proposition (J[van Ackooij and de Oliveira(2016

Let C : [0,1]™ — [0, 1] be an Archimedian copula, and ) : (0,1] — [0, c0) be
its generator. Then C is a —oo-1-concave copula.
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Stronger characterizations

m The independent, maximum and Gumbel Copula are 0-0-concave
([Henrion and Strugarek(2011)])

m The Clayton copula can also be characterized in a stronger way:

Lemma ([van Ackooij(2015

Let & > 0 be the parameter of the strict generator ¢ : [0,1] — Ry, ¥(t) =
6~"(t=% — 1) of the Clayton Copula. This Copula is §-y-concave for all y > 0
provided that § < —6 < 0.
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Main result |

Theorem ([van Ackooij(2015

Assume that we can find a; € R, such that the functions h; are a;j-concave and a second
set of parameters ~; € (—oo, o0], bj > 0 such that either one of the following conditions
holds:

a1 )
E o <0andzw— Fi(z=i) isyj-concave on (0, b;"/]
aj = 0 and z — Fj(exp z) is ~j-concave on [log b;, oo)

1 ‘
aj > 0andz — Fi(z*1) is~j-concave on [b]", c0),

where i € {1,...,m} is arbitrary. If the Copula is 6-y-concave for v < ~; < oo, i =
1,..., m, then the set

M(p) :== {x e R" : P[¢ < h(x)] > p}

is convex for all p > p* := max;—y, .. m Fi(b;). Convexity can moreover be derived for all
p > p* if each individual distribution function F;, i = 1, ..., m is strictly increasing. In the
specific case that a; > 0, ~yj-concavity of the distribution functions holding everywhere,
foralli € {1, ..., m} and C being a §-y-concave Copula, the set M(p) is convex for all p.

_—€DF
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Some comments

m An “unfortunate” effect in the previous result is that p* depends some-
how on the "worst" distribution function F;, but is only needed for a single
inequality.

m Generalized concavity of the mappings h; need only hold on specific level
sets {x € R" : hi(x) > bi}.
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Main result Il

m These concerns are addressed in the following result:

Define the set D := {x € R" : hi(x) > b;, Vi=1,...,m}, where b; is as de-
fined in the previous Theorem and we make the same assumptions on &, F;
and the Copula. Then the set D is convex and D N M(p) is convex for all
p>p* = C(Fi(b1), ..., Fn(bn))-
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Main Results

Discussion

The conditions of the theorem can be shown to hold in many situations:

m Generalized concavity properties of mappings h; are known from data;
Implicit from some underlying nominal “deterministic” problem involving
constraints h;(x) > b;.

m The requests on the marginal distribution functions follow from results in
[Henrion and Strugarek(2008)] for nearly all choices

m The class of §-y-concave copula cover at least all Archimedian copula.
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Cutting plane models

m Consider the problem of minimizing a convex mapping f : R” — R

m f is only known partially through a “black box” called oracle. Given an
entry Xx;, it returns f(x;) and g; € 9f(x;).

m With a set of points xi, ..., Xk, we can build the cutting plane model for f:

() = max. {7(0xg) + (g x — x)} (26)

=1,

m Convexity yields: f(x) < f(x) for all x (and k > 1).
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Cutting plane methods

m So instead of minimizing f over a “simple” set X, we solve

Xk11 = argmin f(x). (27)
xeX

m when X is polyhedral this is a linear program.
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Cutting-plane method: illustration
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Cutting-plane method: illustration
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Cutting-plane method: illustration
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Cutting-plane method: illustration
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Cutting-plane method: illustration
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Cutting-plane method: illustration

6 iterations
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Convex constrained problems

m Consider the problem
min {f(x) : st p(x) := Plg(x,€) < 0] = p} (28)

m Then under appropriate assumptions, x — ¢(x) has convex level sets,
e.g., ¢ could be log-concave

m Now, c(x) = log(p) — log(¢(x)) is a convex map.

m the problem is a convex constrained problem (under the appropriate as-
sumptions)
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Supporting hyperplane method

m A classic method in chance constrained programming.

m We suppose available a slater point x°, i.e., such that p(x°) > p.

m At iteration k we solve minycx {?k(x) Dek(x) < 0} to find Xx1.

Typically X«+1 is not feasible, so we compute the largest A € [0, 1] such
that X1 = Ax® + (1 — X)Xk1 satisfies p(Xk+1) = p.

m We have upper and lower bounds on the optimal value and stop whenever
these are close enough.
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Are chance constraints just plain non-linear constraints?

m In a way yes, but the mapping ¢ (c) is not known up to arbitrary preci-
sion (or would be unreasonably costly). A (sub-)gradient of ¢ (c) also
suffers from numerical imprecision. Here we make use of the earlier de-
rived formula allowing for efficient and precise computations. Again with
a trade-off cost/Efficiency

m So then is ¢ a true cutting plane model for ¢ underestimating it ?
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Special methods for chance constraints

m An example shows that cutting planes may locally over-estimate the map
(or set):
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Introduction

Upper-oracle

m We can set up an “upper"-oracle for constraints of type ¢ and specially
structured probability constraints. These may provide a cutting planes
model with cutting planes:

c(x) — s
Cx + <gg,y_x> _627

Cx
c(y)

%

having 5 > 0.

m ¢} can be shown to have a link with the precision used in evaluating prob-
abilities P[g(x, &) > 0].
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Special methods

m So we need a method capable of handling inaccuracy of ¢ (c) explicitly

m A method able to account for the flaws of cutting plane methods: (oscilla-
tion, slow convergence (for high accuracy solutions))

m Lets look at special bundle methods
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Level bundle method: main ideas

What characterizes a level bundle method are essentially:

m [(i)] a convex model f(x) < f(x);

m [(ii)] a stability center X;

m [(iii)] a parameter ;" to be updated at each iteration k.
The new iterate xx1 is obtained by solving a projection problem
Xk+1 1= argmin{% ||X - 5\(;(H2 : ?k(X) < fklev, X € X}
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Level bundle methods

Level bundle method: some elements

f2 = mini<j<k f(X)) is an upper bound for f.

o0 = minyex f(X) is a lower bound for .

S = AR A4 (1= N is the level parameter, for A € (0, 1)
Xy ={xeX: k(x)<f*'} isthe level set of

A A is an optimality gap

m Solving the LP defining f*°" is optional
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Level bundle method: illustration
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Level bundle method: illustration
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Level bundle method: illustration
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Level bundle method: illustration
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Level bundle method: illustration
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Level bundle method: illustration
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Level bundle method: illustration
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Level bundle method: illustration
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Dedicated method and results

Measure of optimality

m We define the improvement function h(x; f°") := max { f(x) — f,°", c(x) }.
m The optimality measure is

e | h(x0,6°) it k=0
i '—{ min { (min; hGg, £)) ,hisy it k>0 (29

B x;°° is the past iterate such that h(x;°%; f;°") = h;°°. Itis the sequence
of best solutions.
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The algorithm

After initialization, the algorithm moves through the following steps
m (Best minimizer) Update xz°° and hg®°

m (Stopping test) If hg*° < ¢ is sufficiently small, then stop
m (Level update): Compute f;<¥

m (Projection problem): Compute Xk 1

m (Oracle): call the oracle to update the models

m (Bundle Management): Optionally remove old linearizations
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The algorithm: convergence, optimality certificate

Lemma (J[van Ackooij and de Oliveira(2014

Iflimg his¢ < 0, then any cluster point of the sequence x;<¢ is an n-optimal
solution to the problem, with n := max {ns + ¢, nc}. In particular if hi= < 0
for some (finite) k, x;=° is an n-optimal solution.
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Dedicated method and results

The algorithm: convergence

Theorem ([van Ackooij and de Oliveira(2014

The algorithm with an upper oracle (and with § = 0) will either stop or generate
a sequence of points such that lim, h;*c < 0.
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Dedicated method and results

Numerical example : cascaded reservoir management

m A network flow problem when the
valley acts on a price signal, the
latter typically comes from a La-
grangian dual.

m Water values, i.e., costs are as-
sumed pre-computed and can be
volume dependent

m Constraints imply:
m Production level bounds
m Reservoir bounds have to be sat-
isfied

m When Inflows are deterministic,

the above problem is linear.  dn-

L)
flows are however stochastic o~ €DF
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Dedicated method and results

Problem Structure

m Reservoir bound constraints need to be interpreted “somehow” in a stochas-
tic setting. We will use (joint-)chance constrained programming in order

to do so. This gives the problem:
Min,epn c'x
s.t. Ax<b (30)
p<Pla@+AXx<ELSDH +AX,

m If Inflows follow a Causal time series model with Gaussian innovations,
then ¢ above is Gaussian as well. In particular problem (30) has a convex

feasible set.
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Numerical example: benchmark |

Table: In all computations: precision of oracle €9 = 5e

4

Algorithms
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Instance method Obj. Value P Nb. lter. CPU time parameters
[InfeasQP] (mins)

Isr48 Alg.[Prékopa(2003)] -175031 0.799975 35 10.5 101 = 16— %
Isr48 Alg.[Kiwiel(2008)] -175042 0.799885 49 7.5 K =16é%, S101 = 165
Isr48 Alg.PB -175043 0.799145 88 11.2 K=16%ug = 172,610, = &
Isr48 Alg.PB 175042 0.799536 69 8.3 K=16%ug =167 6,650, = 7
Isr48 Alg.PB -175042 0.799588 31 45 = 195,#0 =1e78, 8101 = i
Isr48 Alg.LB -175039 0.800041 66 10.0 K= 165, ~v=0.887,1 =5
Isr48 Alg.LB -175040 0.799755 38 5.4 K=16*~ =088, =5
Isr48 Alg.LB 175040 0.799855 63[3] 8.6 K =16°,~ = 0.8, 570, = 5,[~Lp]
Isr48 Alg.LB 175037 0.79966 38 [4] 5.2 K=1e* v =08 8751 =5[]
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Dedicated method and results

Numerical example: benchmark Il

m Bundle Methods offer computational advantages over Cutting Planes meth-
ods, mainly if the instance is hard (e.g., case of Ain48, Isr96, Isr168). It
does not show much for Isr48.

m The Level Method has an easier parameter setup “globally” .

m The Proximal Method (see [van Ackooij and Sagastizabal(2014)]) produces
feasible solutions quickly
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Dedicated method and results

Numerical example: benchmark Il

Instance method Obj. Value P Nb. Iter. CPU time parameters
[InfeasQP] (mins)

sr96 Alg.[Prékopa(2003)] 175708 0.799492 143 217.4 Spoy =167

Isr96 Alg.[Kiwiel(2008)] 175713 0.799541 127 86.8 K =16% 670, = 1675

15196 Alg.PB 175715 0.799413 159 1109 K =16 ug =167, 6101 = »
Isr96 Alg.PB 175715 0.799406 177 1235 K=165up = 1678, 61,) = i
1sr96 Alg.PB 75718 0.799346 95 66.5 K=16% g =178 6751 = §
sr96 Alg.LB 175713 0.799874 122 825 K =1€% ~v = 0.8, 5701 =5

Isr96 Alg.LB 175713 0.799599 9 48.4 K=16*~=08357, =5

sr96 Alg.LB 175710 0.799809 115[3] 75.3 K =1€° ~ = 0.8, 610, = 5, [~LP]
Isr96 Alg.LB 175697 0.799866 76 [4] 443 K =16e% v = 0.8, 5751 = 5,[~LE]
Isr168 Alg.[Prékopa(2003)] 175222 0.799511 190 1504.7 Spop = 16—

Isr168 Alg.[Kiwiel(2008)] 175237 0.799394 204 627.3 K =1e* 670, =175

Isr168 Alg.PB 175237 0.799408 219 687.4 K=16%ug = 1675, 6001 = 3
Isr168 Alg.PB 175237 0.799418 188 5735 K=165ug = 1678, 670, = g
Isr168 Alg.PB 175236 0.799503 133 343.4 K =160 =1e78,675, = J
Isr168 Alg.LB 175235 0.799854 161 529.6 K=16% ~ =0.8,61,, =5

Isr168 Alg.LB 175232 0.799717 110 352.3 K=1e* v =087, =5

Isr168 Alg.LB 175235 0.799604 165[3] 423.2 K =165 ~ = 0.8, 610, = 5,[~1p]
Isr168 Alg.LB 175220 0.799423 127[5) 353.5 K =16* ~ = 0.8, 67, = 5,[~1p]
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Summary

In this talk we have discussed several aspects of chance constraints
m Differentiability

m Convexity
m Algorithms
m Time for questions

m Special thanks to Welington de Oliveira for the cutting-plane / bundle il-
lustrations.
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Some references

Obviously the main reference is

m A. Prékopa. Stochastic Programming.
Kluwer, Dordrecht, 1995
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Some further references |

The works cited are:

m W. van Ackooij and R. Henrion. Gradient formulae for nonlinear proba-
bilistic constraints with Gaussian and Gaussian-like distributions.
SIAM Journal on Optimization, 24(4):1864—1889, 2014

m W. van Ackooij and R. Henrion. (sub-) gradient formulae for probability
functions of random inequality systems under gaussian distribution.
Submitted, WIAS preprint 2230, pages 1-24, 2016

m W. van Ackooij and M. Minoux. A characterization of the subdifferential of
singular Gaussian distribution functions.
Set Valued and Variational Analysis, 23(3):465—483, 2015.
doi: 10.1007/s11228-015-0317-8
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m W. van Ackooij. Eventual convexity of chance constrained feasible sets.
Optimization (A Journal of Math. Programming and Operations Research),
64(5):1263-1284, 2015.
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m W. van Ackooij and W. de Oliveira. Level bundle methods for constrained
convex optimization with various oracles.
Computation Optimization and Applications, 57(3):555-597, 2014

m W. van Ackooij and C. Sagastizabal. Constrained bundle methods for up-
per inexact oracles with application to joint chance constrained energy
problems.
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