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Introduction

Cooperative games on a finite set N of players assign to any coalition
S ⊆ N its benefit v(S) due to the cooperation of its members.
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Introduction

Cooperative games on a finite set N of players assign to any coalition
S ⊆ N its benefit v(S) due to the cooperation of its members.

Supposing all players cooperate, generating a benefit v(N), the
question is how to share this benefit among the players in a rational
way.

The core is the set of sharings such that no coalition S receives less
than v(S). It can be empty.

The Bondareva-Shapley theorem characterizes the class of games
with a nonempty core. Such games are called balanced.

A question arise:
What is the shape of the set of balanced games?

We show that it is a polyhedron, and find its vertices and extremal
rays.
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N = {1, . . . , n} set of players. Subsets of N are called coalitions.
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∑

i∈S

xi

3/18 P. Garcia-Segador, M. Grabisch and P. Miranda c©2023 The geometry of balanced games



TU-games

N = {1, . . . , n} set of players. Subsets of N are called coalitions.

A game with transferable utility in characteristic form (abbreviated
by TU-game or simply game) is a mapping v : 2N → R s.t.
v(∅) = 0.

x ∈ R
N is a payoff vector. Notation: for every S ⊆ N,

x(S) =
∑

i∈S

xi

Aim of (cooperative) game theory: find a (set of) rational,
satisfactory payoff vector(s) x , called the solution of the game.
Usually, one impose x(N) = v(N) (efficiency: share the whole cake).
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N = {1, . . . , n} set of players. Subsets of N are called coalitions.

A game with transferable utility in characteristic form (abbreviated
by TU-game or simply game) is a mapping v : 2N → R s.t.
v(∅) = 0.

x ∈ R
N is a payoff vector. Notation: for every S ⊆ N,

x(S) =
∑

i∈S

xi

Aim of (cooperative) game theory: find a (set of) rational,
satisfactory payoff vector(s) x , called the solution of the game.
Usually, one impose x(N) = v(N) (efficiency: share the whole cake).

One of the best known solution: the core (Gillies, 1953)

C (v) = {x ∈ R
N : x(S) ≥ v(S)∀S , x(N) = v(N)}

(coalitional rationality, or stability of the grand coalition N)

3/18 P. Garcia-Segador, M. Grabisch and P. Miranda c©2023 The geometry of balanced games



TU-games in other domains

In decision theory, one considers capacities, which are monotone
games: v is a capacity if S ⊆ T implies v(S) 6 v(T ) and v(N) = 1.
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v(A ∪ B) = v(A) + v(B) for disjoint A,B

The core of a capacity v is:

C (v) = {x ∈ R
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i.e., x ∈ C (v) can be interpreted as a probability measure
dominating (compatible with) v .
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TU-games in other domains

In decision theory, one considers capacities, which are monotone
games: v is a capacity if S ⊆ T implies v(S) 6 v(T ) and v(N) = 1.

Probability measures are additive capacities:
v(A ∪ B) = v(A) + v(B) for disjoint A,B

The core of a capacity v is:

C (v) = {x ∈ R
N : x(S) ≥ v(S)∀S , x(N) = 1}

i.e., x ∈ C (v) can be interpreted as a probability measure
dominating (compatible with) v .

In combinatorial optimization, when v is submodular, it can be seen
as the rank function of a matroid. Then the (anti-)core of v is the
base polyhedron of v (Edmonds, 1970).
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Balanced collections

(Shapley, 1967) A collection B ⊆ 2N of nonempty coalitions is called
balanced if there exist positive numbers λS for all S ∈ B s.t.

∑

S∈B

λS1
S = 1N

(i.e., for every i ∈ N,
∑

S∋i ,S∈B λS = 1)(1N is in the relative interior

of the cone generated by the 1S , S ∈ B).
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Balanced collections

(Shapley, 1967) A collection B ⊆ 2N of nonempty coalitions is called
balanced if there exist positive numbers λS for all S ∈ B s.t.

∑

S∈B

λS1
S = 1N

(i.e., for every i ∈ N,
∑

S∋i ,S∈B λS = 1)(1N is in the relative interior

of the cone generated by the 1S , S ∈ B).
(λS )S∈B are the balancing weights.
Examples:

Every partition (balancing weights: 1)
n = 3:
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}

with λ =
(

1

2
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2
, 1

2

)
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Examples:

Every partition (balancing weights: 1)
n = 3:

{

12, 13, 23
}

with λ =
(

1

2
, 1
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2

)

n = 4:
{

12, 13, 14, 234
}

with λ =
(

1

3
, 1

3
, 1

3
, 2
3
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n = 4:
{
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with λ =
(

1

3
, 1
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.

A balanced collection is minimal if no proper subcollection is
balanced (equivalently, the balancing weights are unique).
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balanced (equivalently, the balancing weights are unique).
So far, the number of minimal balanced collections (m.b.c.) is
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Balanced collections

(Shapley, 1967) A collection B ⊆ 2N of nonempty coalitions is called
balanced if there exist positive numbers λS for all S ∈ B s.t.

∑

S∈B

λS1
S = 1N

(i.e., for every i ∈ N,
∑

S∋i ,S∈B λS = 1)(1N is in the relative interior

of the cone generated by the 1S , S ∈ B).
(λS )S∈B are the balancing weights.
Examples:

Every partition (balancing weights: 1)
n = 3:
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2
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, 1

2

)

n = 4:
{

12, 13, 14, 234
}

with λ =
(

1

3
, 1

3
, 1

3
, 2
3

)

.

A balanced collection is minimal if no proper subcollection is
balanced (equivalently, the balancing weights are unique).
So far, the number of minimal balanced collections (m.b.c.) is
unknown beyond n = 4. A recursive algorithm has been proposed by
Peleg (1965).
Balanced collections correspond to regular hypergraphs
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Nonemptiness of the core

Theorem (Bondareva-Shapley, sharp form)

A game v has a nonempty core if and only if for any minimal balanced
collection B with balancing vector (λB

S )S∈B, we have

∑

S∈B

λB
S v(S) ≤ v(N).

Moreover, none of the inequalities is redundant, except the one for
B = {N}.
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Nonemptiness of the core

Theorem (Bondareva-Shapley, sharp form)

A game v has a nonempty core if and only if for any minimal balanced
collection B with balancing vector (λB

S )S∈B, we have

∑

S∈B

λB
S v(S) ≤ v(N).

Moreover, none of the inequalities is redundant, except the one for
B = {N}.

Games satisfying this condition are called balanced
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2 The set BGα(n) of balanced games v on N such that v(N) = α
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3 The set BG+(n) of balanced games v on N such that v > 0 (and
v(N) = 1 arbitrarily fixed)
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Balanced games

Four sets are of interest:

1 The set BG(n) of balanced games on N = {1, . . . , n}

2 The set BGα(n) of balanced games v on N such that v(N) = α

3 The set BG+(n) of balanced games v on N such that v > 0 (and
v(N) = 1 arbitrarily fixed)

4 The set BGM(n) of balanced games which are monotone and
v(N) = 1, i.e., capacities

The set BGM(n) seems extremely difficult to study. Its structure is not
elucidated.
→ We focus on BG+(n) and BG(n).
Notation: B∗(n): set of m.b.c. on N, except {N}.
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Structure of BG+(n)

BG+(n) is determined by the following system of inequalities
∑

S∈B

λSv(S) 6 1, B ∈ B
∗(n)

v(S) > 0, S ∈ 2N \ {∅,N}
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∑

S∈B

λSv(S) 6 1, B ∈ B
∗(n)

v(S) > 0, S ∈ 2N \ {∅,N}

→֒ BG+(n) is a convex polytope. What are its vertices?
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BG+(n) is determined by the following system of inequalities
∑

S∈B

λSv(S) 6 1, B ∈ B
∗(n)

v(S) > 0, S ∈ 2N \ {∅,N}

→֒ BG+(n) is a convex polytope. What are its vertices?

Theorem

v is a vertex of BG+(n) if and only if v is balanced and 0-1-valued.
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v(S) > 0, S ∈ 2N \ {∅,N}

→֒ BG+(n) is a convex polytope. What are its vertices?

Theorem

v is a vertex of BG+(n) if and only if v is balanced and 0-1-valued.

To any 0-1-valued game v , we associate D ⊆ 2N \ {∅,N}, the collection
of subsets S such that v(S) = 1.
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Structure of BG+(n)

BG+(n) is determined by the following system of inequalities
∑

S∈B

λSv(S) 6 1, B ∈ B
∗(n)

v(S) > 0, S ∈ 2N \ {∅,N}

→֒ BG+(n) is a convex polytope. What are its vertices?

Theorem

v is a vertex of BG+(n) if and only if v is balanced and 0-1-valued.

To any 0-1-valued game v , we associate D ⊆ 2N \ {∅,N}, the collection
of subsets S such that v(S) = 1.

Theorem

Let D be a family of subsets D in 2N \ {∅,N}. Then, D defines a vertex
of BG+(n) iff either D = ∅ or

⋂

D 6= ∅.
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Structure of BG+(n)

Lemma

Consider a vertex v of BG+(n), associated to collection D. Then the
dimension of the core of v is |

⋂

D| − 1
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Structure of BG+(n)

Lemma

Consider a vertex v of BG+(n), associated to collection D. Then the
dimension of the core of v is |

⋂

D| − 1

Consequently, when
⋂

D = {i}, the core is reduced to the vector 1{i},
i.e., the vector in R

n with ith component equal to 1, and 0 otherwise.
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Structure of BG+(n)

Lemma

Consider a vertex v of BG+(n), associated to collection D. Then the
dimension of the core of v is |

⋂

D| − 1

Consequently, when
⋂

D = {i}, the core is reduced to the vector 1{i},
i.e., the vector in R

n with ith component equal to 1, and 0 otherwise.

Theorem

The number of vertices vn of BG+(n) is given by vn = fn + 1 where fn is
defined recursively as follows:

fn =

n−1
∑

k=1

(

n

k

)

(

22
k−1 − fk − 1

)

,∀n > 1 and f1 = 0
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Structure of BG+(n)

Lemma

Consider a vertex v of BG+(n), associated to collection D. Then the
dimension of the core of v is |

⋂

D| − 1

Consequently, when
⋂

D = {i}, the core is reduced to the vector 1{i},
i.e., the vector in R

n with ith component equal to 1, and 0 otherwise.

Theorem

The number of vertices vn of BG+(n) is given by vn = fn + 1 where fn is
defined recursively as follows:

fn =

n−1
∑

k=1

(

n

k

)

(

22
k−1 − fk − 1

)

,∀n > 1 and f1 = 0

n 1 2 3 4 5 6 7 8

vn 1 3 19 471 162631 12884412819 6.456e + 19 1.361e + 39
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Adjacency in BG+(n)

Recall that two vertices v1, v2 are not adjacent if there exist λ, λ′ ∈ [0, 1]
and vertices v3, v4 distinct from v1, v2 s.t.

λv1 + (1− λ)v2 = λ′v3 + (1− λ′)v4
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Recall that two vertices v1, v2 are not adjacent if there exist λ, λ′ ∈ [0, 1]
and vertices v3, v4 distinct from v1, v2 s.t.

λv1 + (1− λ)v2 = λ′v3 + (1− λ′)v4

Definition

(Naddef and Pulleyblank, 1981) A polytope P is said to be combinatorial
if the two following conditions hold:

All vertices of P are 0,1-valued.

Given two vertices v1, v2 of P, if they are not
adjacent, then there exists two other different vertices v3, v4 such that

v1 + v2 = v3 + v4
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Definition

(Naddef and Pulleyblank, 1981) A polytope P is said to be combinatorial
if the two following conditions hold:

All vertices of P are 0,1-valued.

Given two vertices v1, v2 of P, if they are not
adjacent, then there exists two other different vertices v3, v4 such that

v1 + v2 = v3 + v4

Theorem

The polytope BG+(n) is combinatorial.

As a consequence, the graph of the vertices of BG+(n) is Hamiltonian
(n > 2) or a hypercube (n = 1, 2).
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Adjacency in BG+(n)

Theorem

Consider two vertices v1, v2 of BG+(n), associated to D1,D2

respectively, and
⋂

D1 = {i} =
⋂

D2. Then v1 and v2 are adjacent iff
either D1 ⊆ D2 or the converse, and |D1∆D2| = 1.
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Adjacency in BG+(n)

Theorem

Consider two vertices v1, v2 of BG+(n), associated to D1,D2

respectively, and
⋂

D1 = {i} =
⋂

D2. Then v1 and v2 are adjacent iff
either D1 ⊆ D2 or the converse, and |D1∆D2| = 1.

D1 D2

B1

B2

B3

B4

(a)

D1 D2

B3

B4

(b)

D1 D2

D4

(c)

Figure: Non-adjacency of v1, v2, with associated collections D1,D2. Case (a):
D3 = B1 ∪ (D1 ∩D2) ∪B3, D4 = B2 ∪ (D1 ∩D2) ∪B4; Case (b):
D3 = D1 ∪B3, D4 = (D1 ∩D2) ∪B4 (similar when D1,D2 exchanged); Case
(c): D3 = D1 ∪D2, D4 = D1 ∩D2.
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Structure of BG(n)

BG(n) is determined by the following system of inequalities
∑

S∈B

λSv(S)− v(N) 6 0, B ∈ B
∗(n)
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BG(n) is determined by the following system of inequalities
∑

S∈B

λSv(S)− v(N) 6 0, B ∈ B
∗(n)

→֒ BG(n) is an unbounded convex polyhedron.
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∑

S∈B

λSv(S)− v(N) 6 0, B ∈ B
∗(n)

→֒ BG(n) is an unbounded convex polyhedron.
For any nonempty S ⊆ N, we define
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Structure of BG(n)

BG(n) is determined by the following system of inequalities
∑

S∈B

λSv(S)− v(N) 6 0, B ∈ B
∗(n)

→֒ BG(n) is an unbounded convex polyhedron.
For any nonempty S ⊆ N, we define

the unanimity game uS by uS(T ) = 1 iff T ⊇ S and 0 otherwise
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Structure of BG(n)

BG(n) is determined by the following system of inequalities
∑

S∈B

λSv(S)− v(N) 6 0, B ∈ B
∗(n)

→֒ BG(n) is an unbounded convex polyhedron.
For any nonempty S ⊆ N, we define

the unanimity game uS by uS(T ) = 1 iff T ⊇ S and 0 otherwise
the Dirac game δS by δS (T ) = 1 iff T = S and 0 otherwise
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Structure of BG(n)

BG(n) is determined by the following system of inequalities
∑

S∈B

λSv(S)− v(N) 6 0, B ∈ B
∗(n)

→֒ BG(n) is an unbounded convex polyhedron.
For any nonempty S ⊆ N, we define

the unanimity game uS by uS(T ) = 1 iff T ⊇ S and 0 otherwise
the Dirac game δS by δS (T ) = 1 iff T = S and 0 otherwise

Theorem

Let n > 2. Then BG(n) is (2n − 1)-dimensional polyhedral cone, which is
not pointed. Its lineality space Lin(BG(n)) has dimension n, with basis
(wi )i∈N , wi = u{i}, the unanimity game centered on {i}
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Structure of BG(n)

BG(n) is determined by the following system of inequalities
∑

S∈B

λSv(S)− v(N) 6 0, B ∈ B
∗(n)

→֒ BG(n) is an unbounded convex polyhedron.
For any nonempty S ⊆ N, we define

the unanimity game uS by uS(T ) = 1 iff T ⊇ S and 0 otherwise
the Dirac game δS by δS (T ) = 1 iff T = S and 0 otherwise

Theorem

Let n > 2. Then BG(n) is (2n − 1)-dimensional polyhedral cone, which is
not pointed. Its lineality space Lin(BG(n)) has dimension n, with basis
(wi )i∈N , wi = u{i}, the unanimity game centered on {i}

As BG(n) is not pointed, it can be decomposed as follows:

BG(n) = Lin(BG(n))⊕BG0(n)

where BG0(n) is a supplementary space (not unique), chosen so that the
coordinates corresponding to singletons are zero.
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Structure of BG(n)

Theorem

Let n > 2. The extremal rays of BG(n) are

The 2n extremal rays corresponding to Lin(BG(n)):
w1, . . . ,wn,−w1, . . . ,−wn;

2n − n − 2 extremal rays of the form rS = −δS , S ⊂ N, |S | > 1;

n extremal rays of the form

ri =
∑

S∋i ,|S|>1

δS , i ∈ N.

This yields in total 2n + 2n − 2 extremal rays.
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Structure of BG(n)

Theorem

Let n > 2. The extremal rays of BG(n) are

The 2n extremal rays corresponding to Lin(BG(n)):
w1, . . . ,wn,−w1, . . . ,−wn;

2n − n − 2 extremal rays of the form rS = −δS , S ⊂ N, |S | > 1;

n extremal rays of the form

ri =
∑

S∋i ,|S|>1

δS , i ∈ N.

This yields in total 2n + 2n − 2 extremal rays.

Lemma

The cores of wi , −wi , ri , rS for all i ∈ N, S ⊂ N, |S | > 1 are singletons
(respectively, {1{i}}, {−1{i}}, {1{i}}, {0}).
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Structure of BG(n)

0

Lin(BG(n))

BG0(n)
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When is the core reduced to a point?

In the case of BG(n), all extremal rays have a point core.
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When is the core reduced to a point?

In the case of BG(n), all extremal rays have a point core.

However, in the case of BG+(n), not all vertices have a point core:
a vertex v has a point core iff its support D is s.t. |

⋂

D| = 1.

15/18 P. Garcia-Segador, M. Grabisch and P. Miranda c©2023 The geometry of balanced games



When is the core reduced to a point?

In the case of BG(n), all extremal rays have a point core.

However, in the case of BG+(n), not all vertices have a point core:
a vertex v has a point core iff its support D is s.t. |

⋂

D| = 1.

What can we say more?

15/18 P. Garcia-Segador, M. Grabisch and P. Miranda c©2023 The geometry of balanced games



When is the core reduced to a point?

In the case of BG(n), all extremal rays have a point core.

However, in the case of BG+(n), not all vertices have a point core:
a vertex v has a point core iff its support D is s.t. |

⋂

D| = 1.

What can we say more?
General result: a game in the interior of BG+(n) (or BG(n)) does not
have a point core.
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When is the core reduced to a point? Case of BG+(n)

Theorem

Consider two adjacent vertices v1, v2 of BG+(n), with associated
collections D1,D2 respectively, and

⋂

D1 = {i},
⋂

D2 = {j}. Consider
v = λv1 + (1− λ)v2. Then:

1 If i = j , then C (v) is a singleton, i.e., v has a point core.

2 If i 6= j and n 6 4, then v has a point core.
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When is the core reduced to a point? Case of BG+(n)

Theorem

Consider two adjacent vertices v1, v2 of BG+(n), with associated
collections D1,D2 respectively, and

⋂

D1 = {i},
⋂

D2 = {j}. Consider
v = λv1 + (1− λ)v2. Then:

1 If i = j , then C (v) is a singleton, i.e., v has a point core.

2 If i 6= j and n 6 4, then v has a point core.

When n > 5, taking two adjacent vertices v1, v2 having a point core does
not guarantee that any game on the edge between v1, v2 has a point
core. A more specific result seems difficult to obtain.
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When is the core reduced to a point? Case of BG(n)

Lemma

Any game in the lineality space BG(n) has a point core.
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When is the core reduced to a point? Case of BG(n)

Lemma

Any game in the lineality space BG(n) has a point core.

We recall that facets of BG(n) are in bijection with the elements of
B

∗(n), i.e., minimal balanced collections.

Theorem

Consider a m.b.c. B ∈ B
∗(n) and its corresponding facet in BG(n).

1 If |B| = n, every game in the facet has a point core.

2 Otherwise, no game in the relative interior of the facet has a point
core.
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When is the core reduced to a point? Case of BG(n)

Lemma

Any game in the lineality space BG(n) has a point core.

We recall that facets of BG(n) are in bijection with the elements of
B

∗(n), i.e., minimal balanced collections.

Theorem

Consider a m.b.c. B ∈ B
∗(n) and its corresponding facet in BG(n).

1 If |B| = n, every game in the facet has a point core.

2 Otherwise, no game in the relative interior of the facet has a point
core.

Theorem

Consider a face F of BG(n), being the intersection of facets F1, . . . ,Fp

with associated m.b.c. B1, . . . ,Bp . Then any game in F has a point core
iff the rank of the matrix {1S ,S ∈ B1 ∪ · · · ∪Bp} is n.
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The case n = 3

The lineality space has basis {u{1}, u{2}, u{3}}, with extremal rays
−δ12,−δ13,−δ23, and r1, r2, r3.
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The case n = 3

The lineality space has basis {u{1}, u{2}, u{3}}, with extremal rays
−δ12,−δ13,−δ23, and r1, r2, r3.

m.b.c. −δ12 −δ13 −δ23 r1 r2 r3
B1 = {1, 2, 3} × × ×
B2 = {1, 23} × × × ×
B3 = {2, 13} × × × ×
B4 = {3, 12} × × × ×

B5 = {12, 13, 23} × × ×
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The lineality space has basis {u{1}, u{2}, u{3}}, with extremal rays
−δ12,−δ13,−δ23, and r1, r2, r3.

m.b.c. −δ12 −δ13 −δ23 r1 r2 r3
B1 = {1, 2, 3} × × ×
B2 = {1, 23} × × × ×
B3 = {2, 13} × × × ×
B4 = {3, 12} × × × ×

B5 = {12, 13, 23} × × ×

{1, 2, 3}

{12, 13, 23}

{1, 23}{2, 13} {3, 12}
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