The geometry of balanced games

Pedro GARCIA-SEGADOR ${ }^{a}$, Michel GRABISCH ${ }^{b, c}$ and Pedro MIRANDA ${ }^{d}$

${ }^{\text {a }}$ National Statistical Institute, Madrid, Spain
${ }^{b}$ Université Paris I Panthéon-Sorbonne, Centre d'Economie de la Sorbonne
${ }^{c}$ Paris School of Economics, Paris, France
${ }^{d}$ Complutense University of Madrid, Spain

Introduction

- Cooperative games on a finite set N of players assign to any coalition $S \subseteq N$ its benefit $v(S)$ due to the cooperation of its members.

Introduction

- Cooperative games on a finite set N of players assign to any coalition $S \subseteq N$ its benefit $v(S)$ due to the cooperation of its members.
- Supposing all players cooperate, generating a benefit $v(N)$, the question is how to share this benefit among the players in a rational way.

Introduction

- Cooperative games on a finite set N of players assign to any coalition $S \subseteq N$ its benefit $v(S)$ due to the cooperation of its members.
- Supposing all players cooperate, generating a benefit $v(N)$, the question is how to share this benefit among the players in a rational way.
- The core is the set of sharings such that no coalition S receives less than $v(S)$. It can be empty.

Introduction

- Cooperative games on a finite set N of players assign to any coalition $S \subseteq N$ its benefit $v(S)$ due to the cooperation of its members.
- Supposing all players cooperate, generating a benefit $v(N)$, the question is how to share this benefit among the players in a rational way.
- The core is the set of sharings such that no coalition S receives less than $v(S)$. It can be empty.
- The Bondareva-Shapley theorem characterizes the class of games with a nonempty core. Such games are called balanced.

Introduction

- Cooperative games on a finite set N of players assign to any coalition $S \subseteq N$ its benefit $v(S)$ due to the cooperation of its members.
- Supposing all players cooperate, generating a benefit $v(N)$, the question is how to share this benefit among the players in a rational way.
- The core is the set of sharings such that no coalition S receives less than $v(S)$. It can be empty.
- The Bondareva-Shapley theorem characterizes the class of games with a nonempty core. Such games are called balanced.
- A question arise:

What is the shape of the set of balanced games?

Introduction

- Cooperative games on a finite set N of players assign to any coalition $S \subseteq N$ its benefit $v(S)$ due to the cooperation of its members.
- Supposing all players cooperate, generating a benefit $v(N)$, the question is how to share this benefit among the players in a rational way.
- The core is the set of sharings such that no coalition S receives less than $v(S)$. It can be empty.
- The Bondareva-Shapley theorem characterizes the class of games with a nonempty core. Such games are called balanced.
- A question arise:

What is the shape of the set of balanced games?

- We show that it is a polyhedron, and find its vertices and extremal rays.

TU-games

- $N=\{1, \ldots, n\}$ set of players. Subsets of N are called coalitions.

TU-games

- $N=\{1, \ldots, n\}$ set of players. Subsets of N are called coalitions.
- A game with transferable utility in characteristic form (abbreviated by T U-game or simply game) is a mapping $v: 2^{N} \rightarrow \mathbb{R}$ s.t. $v(\varnothing)=0$.

TU-games

- $N=\{1, \ldots, n\}$ set of players. Subsets of N are called coalitions.
- A game with transferable utility in characteristic form (abbreviated by T U-game or simply game) is a mapping $v: 2^{N} \rightarrow \mathbb{R}$ s.t. $v(\varnothing)=0$.
- $x \in \mathbb{R}^{N}$ is a payoff vector. Notation: for every $S \subseteq N$,

$$
x(S)=\sum_{i \in S} x_{i}
$$

TU-games

- $N=\{1, \ldots, n\}$ set of players. Subsets of N are called coalitions.
- A game with transferable utility in characteristic form (abbreviated by $T U$-game or simply game) is a mapping $v: 2^{N} \rightarrow \mathbb{R}$ s.t.
$v(\varnothing)=0$.
- $x \in \mathbb{R}^{N}$ is a payoff vector. Notation: for every $S \subseteq N$,

$$
x(S)=\sum_{i \in S} x_{i}
$$

- Aim of (cooperative) game theory: find a (set of) rational, satisfactory payoff vector(s) x, called the solution of the game. Usually, one impose $x(N)=v(N)$ (efficiency: share the whole cake).

TU-games

- $N=\{1, \ldots, n\}$ set of players. Subsets of N are called coalitions.
- A game with transferable utility in characteristic form (abbreviated by TU-game or simply game) is a mapping $v: 2^{N} \rightarrow \mathbb{R}$ s.t.
$v(\varnothing)=0$.
- $x \in \mathbb{R}^{N}$ is a payoff vector. Notation: for every $S \subseteq N$,

$$
x(S)=\sum_{i \in S} x_{i}
$$

- Aim of (cooperative) game theory: find a (set of) rational, satisfactory payoff vector(s) x, called the solution of the game. Usually, one impose $x(N)=v(N)$ (efficiency: share the whole cake).
- One of the best known solution: the core (Gillies, 1953)

$$
C(v)=\left\{x \in \mathbb{R}^{N}: x(S) \geq v(S) \forall S, x(N)=v(N)\right\}
$$

(coalitional rationality, or stability of the grand coalition N)

TU-games in other domains

- In decision theory, one considers capacities, which are monotone games: v is a capacity if $S \subseteq T$ implies $v(S) \leqslant v(T)$ and $v(N)=1$.

TU-games in other domains

- In decision theory, one considers capacities, which are monotone games: v is a capacity if $S \subseteq T$ implies $v(S) \leqslant v(T)$ and $v(N)=1$.
- Probability measures are additive capacities: $v(A \cup B)=v(A)+v(B)$ for disjoint A, B

TU-games in other domains

- In decision theory, one considers capacities, which are monotone games: v is a capacity if $S \subseteq T$ implies $v(S) \leqslant v(T)$ and $v(N)=1$.
- Probability measures are additive capacities:
$v(A \cup B)=v(A)+v(B)$ for disjoint A, B
- The core of a capacity v is:

$$
C(v)=\left\{x \in \mathbb{R}^{N}: x(S) \geq v(S) \forall S, x(N)=1\right\}
$$

i.e., $x \in C(v)$ can be interpreted as a probability measure dominating (compatible with) v.

TU-games in other domains

- In decision theory, one considers capacities, which are monotone games: v is a capacity if $S \subseteq T$ implies $v(S) \leqslant v(T)$ and $v(N)=1$.
- Probability measures are additive capacities: $v(A \cup B)=v(A)+v(B)$ for disjoint A, B
- The core of a capacity v is:

$$
C(v)=\left\{x \in \mathbb{R}^{N}: x(S) \geq v(S) \forall S, x(N)=1\right\}
$$

i.e., $x \in C(v)$ can be interpreted as a probability measure dominating (compatible with) v.

- In combinatorial optimization, when v is submodular, it can be seen as the rank function of a matroid. Then the (anti-)core of v is the base polyhedron of v (Edmonds, 1970).

Balanced collections

- (Shapley, 1967) A collection $\mathcal{B} \subseteq 2^{N}$ of nonempty coalitions is called balanced if there exist positive numbers λ_{S} for all $S \in \mathcal{B}$ s.t.

$$
\sum_{S \in \mathcal{B}} \lambda_{S} 1^{S}=1^{N}
$$

(i.e., for every $\left.i \in N, \sum_{S \ni i, S \in \mathcal{B}} \lambda_{S}=1\right)\left(1^{N}\right.$ is in the relative interior of the cone generated by the $\left.1^{S}, S \in \mathcal{B}\right)$.

Balanced collections

- (Shapley, 1967) A collection $\mathcal{B} \subseteq 2^{N}$ of nonempty coalitions is called balanced if there exist positive numbers λ_{S} for all $S \in \mathcal{B}$ s.t.

$$
\sum_{S \in \mathcal{B}} \lambda_{S} 1^{S}=1^{N}
$$

(i.e., for every $\left.i \in N, \sum_{S \ni i, S \in \mathcal{B}} \lambda_{S}=1\right)\left(1^{N}\right.$ is in the relative interior of the cone generated by the $\left.1^{S}, S \in \mathcal{B}\right)$.

- $\left(\lambda_{S}\right)_{S \in \mathcal{B}}$ are the balancing weights.

Balanced collections

- (Shapley, 1967) A collection $\mathcal{B} \subseteq 2^{N}$ of nonempty coalitions is called balanced if there exist positive numbers λ_{S} for all $S \in \mathcal{B}$ s.t.

$$
\sum_{S \in \mathcal{B}} \lambda_{S} 1^{S}=1^{N}
$$

(i.e., for every $\left.i \in N, \sum_{S \ni i, S \in \mathcal{B}} \lambda_{S}=1\right)\left(1^{N}\right.$ is in the relative interior of the cone generated by the $\left.1^{S}, S \in \mathcal{B}\right)$.

- $\left(\lambda_{S}\right)_{S \in \mathcal{B}}$ are the balancing weights.
- Examples:

Balanced collections

- (Shapley, 1967) A collection $\mathcal{B} \subseteq 2^{N}$ of nonempty coalitions is called balanced if there exist positive numbers λ_{S} for all $S \in \mathcal{B}$ s.t.

$$
\sum_{S \in \mathcal{B}} \lambda_{S} 1^{S}=1^{N}
$$

(i.e., for every $\left.i \in N, \sum_{S \ni i, S \in \mathcal{B}} \lambda_{S}=1\right)\left(1^{N}\right.$ is in the relative interior of the cone generated by the $\left.1^{S}, S \in \mathcal{B}\right)$.

- $\left(\lambda_{S}\right)_{S \in \mathcal{B}}$ are the balancing weights.
- Examples:
- Every partition (balancing weights: 1)

Balanced collections

- (Shapley, 1967) A collection $\mathcal{B} \subseteq 2^{N}$ of nonempty coalitions is called balanced if there exist positive numbers λ_{S} for all $S \in \mathcal{B}$ s.t.

$$
\sum_{S \in \mathcal{B}} \lambda_{S} 1^{S}=1^{N}
$$

(i.e., for every $\left.i \in N, \sum_{S \ni i, S \in \mathcal{B}} \lambda_{S}=1\right)\left(1^{N}\right.$ is in the relative interior of the cone generated by the $\left.1^{S}, S \in \mathcal{B}\right)$.

- $\left(\lambda_{S}\right)_{S \in \mathcal{B}}$ are the balancing weights.
- Examples:
- Every partition (balancing weights: 1)
- $n=3:\{\overline{12}, \overline{13}, \overline{23}\}$ with $\lambda=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$

Balanced collections

- (Shapley, 1967) A collection $\mathcal{B} \subseteq 2^{N}$ of nonempty coalitions is called balanced if there exist positive numbers λ_{S} for all $S \in \mathcal{B}$ s.t.

$$
\sum_{S \in \mathcal{B}} \lambda_{S} 1^{S}=1^{N}
$$

(i.e., for every $\left.i \in N, \sum_{S \ni i, S \in \mathcal{B}} \lambda_{S}=1\right)\left(1^{N}\right.$ is in the relative interior of the cone generated by the $\left.1^{S}, S \in \mathcal{B}\right)$.

- $\left(\lambda_{S}\right)_{s \in \mathcal{B}}$ are the balancing weights.
- Examples:
- Every partition (balancing weights: 1)
- $n=3:\{\overline{12}, \overline{13}, \overline{23}\}$ with $\lambda=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$
- $n=4:\{\overline{12}, \overline{13}, \overline{14}, \overline{234}\}$ with $\lambda=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{2}{3}\right)$.

Balanced collections

- (Shapley, 1967) A collection $\mathcal{B} \subseteq 2^{N}$ of nonempty coalitions is called balanced if there exist positive numbers λ_{S} for all $S \in \mathcal{B}$ s.t.

$$
\sum_{S \in \mathcal{B}} \lambda_{S} 1^{S}=1^{N}
$$

(i.e., for every $\left.i \in N, \sum_{S \ni i, S \in \mathcal{B}} \lambda_{S}=1\right)\left(1^{N}\right.$ is in the relative interior of the cone generated by the $\left.1^{S}, S \in \mathcal{B}\right)$.

- $\left(\lambda_{S}\right)_{S \in \mathcal{B}}$ are the balancing weights.
- Examples:
- Every partition (balancing weights: 1)
- $n=3:\{\overline{12}, \overline{13}, \overline{23}\}$ with $\lambda=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$
- $n=4:\{\overline{12}, \overline{13}, \overline{14}, \overline{234}\}$ with $\lambda=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{2}{3}\right)$.
- A balanced collection is minimal if no proper subcollection is balanced (equivalently, the balancing weights are unique).

Balanced collections

- (Shapley, 1967) A collection $\mathcal{B} \subseteq 2^{N}$ of nonempty coalitions is called balanced if there exist positive numbers λ_{S} for all $S \in \mathcal{B}$ s.t.

$$
\sum_{S \in \mathcal{B}} \lambda_{S} 1^{S}=1^{N}
$$

(i.e., for every $\left.i \in N, \sum_{S \ni i, S \in \mathcal{B}} \lambda_{S}=1\right)\left(1^{N}\right.$ is in the relative interior of the cone generated by the $\left.1^{S}, S \in \mathcal{B}\right)$.

- $\left(\lambda_{S}\right)_{S \in \mathcal{B}}$ are the balancing weights.
- Examples:
- Every partition (balancing weights: 1)
- $n=3:\{\overline{12}, \overline{13}, \overline{23}\}$ with $\lambda=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$
- $n=4:\{\overline{12}, \overline{13}, \overline{14}, \overline{234}\}$ with $\lambda=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{2}{3}\right)$.
- A balanced collection is minimal if no proper subcollection is balanced (equivalently, the balancing weights are unique).
- So far, the number of minimal balanced collections (m.b.c.) is unknown beyond $n=4$. A recursive algorithm has been proposed by Peleg (1965).

Balanced collections

- (Shapley, 1967) A collection $\mathcal{B} \subseteq 2^{N}$ of nonempty coalitions is called balanced if there exist positive numbers λ_{S} for all $S \in \mathcal{B}$ s.t.

$$
\sum_{S \in \mathcal{B}} \lambda_{S} 1^{S}=1^{N}
$$

(i.e., for every $\left.i \in N, \sum_{S \ni i, S \in \mathcal{B}} \lambda_{S}=1\right)\left(1^{N}\right.$ is in the relative interior of the cone generated by the $\left.1^{S}, S \in \mathcal{B}\right)$.

- $\left(\lambda_{S}\right)_{S \in \mathcal{B}}$ are the balancing weights.
- Examples:
- Every partition (balancing weights: 1)
- $n=3:\{\overline{12}, \overline{13}, \overline{23}\}$ with $\lambda=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$
- $n=4:\{\overline{12}, \overline{13}, \overline{14}, \overline{234}\}$ with $\lambda=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{2}{3}\right)$.
- A balanced collection is minimal if no proper subcollection is balanced (equivalently, the balancing weights are unique).
- So far, the number of minimal balanced collections (m.b.c.) is unknown beyond $n=4$. A recursive algorithm has been proposed by Peleg (1965).
- Balanced collections correspond to regular hypergraphs

Nonemptiness of the core

Theorem (Bondareva-Shapley, sharp form)

A game v has a nonempty core if and only if for any minimal balanced collection \mathcal{B} with balancing vector $\left(\lambda_{S}^{\mathcal{B}}\right)_{S \in \mathcal{B}}$, we have

$$
\sum_{S \in \mathcal{B}} \lambda_{S}^{\mathcal{B}} v(S) \leq v(N)
$$

Moreover, none of the inequalities is redundant, except the one for $\mathcal{B}=\{N\}$.

Nonemptiness of the core

Theorem (Bondareva-Shapley, sharp form)

A game v has a nonempty core if and only if for any minimal balanced collection \mathcal{B} with balancing vector $\left(\lambda_{S}^{\mathcal{B}}\right)_{S \in \mathcal{B}}$, we have

$$
\sum_{S \in \mathcal{B}} \lambda_{S}^{\mathcal{B}} v(S) \leq v(N)
$$

Moreover, none of the inequalities is redundant, except the one for $\mathcal{B}=\{N\}$.

Games satisfying this condition are called balanced

Balanced games

Four sets are of interest:

Balanced games

Four sets are of interest:
(1) The set $\mathcal{B G}(n)$ of balanced games on $N=\{1, \ldots, n\}$

Balanced games

Four sets are of interest:
(1) The set $\mathcal{B G}(n)$ of balanced games on $N=\{1, \ldots, n\}$
(2) The set $\mathcal{B G}_{\alpha}(n)$ of balanced games v on N such that $v(N)=\alpha$

Balanced games

Four sets are of interest:
(1) The set $\mathcal{B G}(n)$ of balanced games on $N=\{1, \ldots, n\}$
(2) The set $\mathcal{B G}_{\alpha}(n)$ of balanced games v on N such that $v(N)=\alpha$
(3) The set $\mathcal{B} \mathcal{G}_{+}(n)$ of balanced games v on N such that $v \geqslant 0$ (and $v(N)=1$ arbitrarily fixed)

Balanced games

Four sets are of interest:
(1) The set $\mathcal{B G}(n)$ of balanced games on $N=\{1, \ldots, n\}$
(2) The set $\mathcal{B G}_{\alpha}(n)$ of balanced games v on N such that $v(N)=\alpha$
(3) The set $\mathcal{B G _ { + }}(n)$ of balanced games v on N such that $v \geqslant 0$ (and $v(N)=1$ arbitrarily fixed)
(9) The set $\mathcal{B G}_{M}(n)$ of balanced games which are monotone and $v(N)=1$, i.e., capacities

Balanced games

Four sets are of interest:
(1) The set $\mathcal{B G}(n)$ of balanced games on $N=\{1, \ldots, n\}$
(2) The set $\mathcal{B G}_{\alpha}(n)$ of balanced games v on N such that $v(N)=\alpha$
(3) The set $\mathcal{B \mathcal { G } _ { + }}(n)$ of balanced games v on N such that $v \geqslant 0$ (and $v(N)=1$ arbitrarily fixed)
(9) The set $\mathcal{B G}_{M}(n)$ of balanced games which are monotone and $v(N)=1$, i.e., capacities

The set $\mathcal{B G}_{M}(n)$ seems extremely difficult to study. Its structure is not elucidated.

Balanced games

Four sets are of interest:
(1) The set $\mathcal{B G}(n)$ of balanced games on $N=\{1, \ldots, n\}$
(2) The set $\mathcal{B G}_{\alpha}(n)$ of balanced games v on N such that $v(N)=\alpha$
(3) The set $\mathcal{B G _ { + }}(n)$ of balanced games v on N such that $v \geqslant 0$ (and $v(N)=1$ arbitrarily fixed)
(9) The set $\mathcal{B G}_{M}(n)$ of balanced games which are monotone and $v(N)=1$, i.e., capacities

The set $\mathcal{B G}_{M}(n)$ seems extremely difficult to study. Its structure is not elucidated.
\rightarrow We focus on $\mathcal{B} \mathcal{G}_{+}(n)$ and $\mathcal{B G}(n)$.

Balanced games

Four sets are of interest:
(1) The set $\mathcal{B G}(n)$ of balanced games on $N=\{1, \ldots, n\}$
(2) The set $\mathcal{B G}_{\alpha}(n)$ of balanced games v on N such that $v(N)=\alpha$
(3) The set $\mathcal{B G _ { + }}(n)$ of balanced games v on N such that $v \geqslant 0$ (and $v(N)=1$ arbitrarily fixed)
(3) The set $\mathcal{B G}_{M}(n)$ of balanced games which are monotone and $v(N)=1$, i.e., capacities

The set $\mathcal{B G}_{M}(n)$ seems extremely difficult to study. Its structure is not elucidated.
\rightarrow We focus on $\mathcal{B} \mathcal{G}_{+}(n)$ and $\mathcal{B G}(n)$.
Notation: $\mathfrak{B}^{*}(n)$: set of m.b.c. on N, except $\{N\}$.

Structure of $\mathcal{B} \mathcal{G}_{+}(n)$

- $\mathcal{B} \mathcal{G}_{+}(n)$ is determined by the following system of inequalities

$$
\begin{aligned}
& \sum_{S \in \mathcal{B}} \lambda_{S} v(S) \leqslant 1, \quad \mathcal{B} \in \mathfrak{B}^{*}(n) \\
& v(S) \geqslant 0, \quad S \in 2^{N} \backslash\{\varnothing, N\}
\end{aligned}
$$

Structure of $\mathcal{B G}_{+}(n)$

- $\mathcal{B G}_{+}(n)$ is determined by the following system of inequalities

$$
\begin{aligned}
& \sum_{S \in \mathcal{B}} \lambda_{S} v(S) \leqslant 1, \quad \mathcal{B} \in \mathfrak{B}^{*}(n) \\
& v(S) \geqslant 0, \quad S \in 2^{N} \backslash\{\varnothing, N\}
\end{aligned}
$$

- $\hookrightarrow \mathcal{B} \mathcal{G}_{+}(n)$ is a convex polytope. What are its vertices?

Structure of $\mathcal{B} \mathcal{G}_{+}(n)$

- $\mathcal{B G}_{+}(n)$ is determined by the following system of inequalities

$$
\begin{aligned}
& \sum_{S \in \mathcal{B}} \lambda_{S} v(S) \leqslant 1, \quad \mathcal{B} \in \mathfrak{B}^{*}(n) \\
& v(S) \geqslant 0, \quad S \in 2^{N} \backslash\{\varnothing, N\}
\end{aligned}
$$

- $\hookrightarrow \mathcal{B} \mathcal{G}_{+}(n)$ is a convex polytope. What are its vertices?

Theorem

v is a vertex of $\mathcal{B G}_{+}(n)$ if and only if v is balanced and 0-1-valued.

Structure of $\mathcal{B G}_{+}(n)$

- $\mathcal{B} \mathcal{G}_{+}(n)$ is determined by the following system of inequalities

$$
\begin{aligned}
& \sum_{S \in \mathcal{B}} \lambda_{S} v(S) \leqslant 1, \quad \mathcal{B} \in \mathfrak{B}^{*}(n) \\
& v(S) \geqslant 0, \quad S \in 2^{N} \backslash\{\varnothing, N\}
\end{aligned}
$$

- $\hookrightarrow \mathcal{B} \mathcal{G}_{+}(n)$ is a convex polytope. What are its vertices?

Theorem

v is a vertex of $\mathcal{B G}_{+}(n)$ if and only if v is balanced and 0-1-valued.
To any 0 -1-valued game v, we associate $\mathcal{D} \subseteq 2^{N} \backslash\{\varnothing, N\}$, the collection of subsets S such that $v(S)=1$.

Structure of $\mathcal{B G}_{+}(n)$

- $\mathcal{B G}_{+}(n)$ is determined by the following system of inequalities

$$
\begin{aligned}
& \sum_{S \in \mathcal{B}} \lambda_{S} v(S) \leqslant 1, \quad \mathcal{B} \in \mathfrak{B}^{*}(n) \\
& v(S) \geqslant 0, \quad S \in 2^{N} \backslash\{\varnothing, N\}
\end{aligned}
$$

- $\hookrightarrow \mathcal{B G}+(n)$ is a convex polytope. What are its vertices?

Theorem

v is a vertex of $\mathcal{B G}_{+}(n)$ if and only if v is balanced and 0-1-valued.
To any 0 -1-valued game v, we associate $\mathcal{D} \subseteq 2^{N} \backslash\{\varnothing, N\}$, the collection of subsets S such that $v(S)=1$.

Theorem

Let \mathcal{D} be a family of subsets \mathcal{D} in $2^{N} \backslash\{\emptyset, N\}$. Then, \mathcal{D} defines a vertex of $\mathcal{B G}_{+}(n)$ iff either $\mathcal{D}=\emptyset$ or $\bigcap \mathcal{D} \neq \varnothing$.

Structure of $\mathcal{B} \mathcal{G}_{+}(n)$

Lemma

Consider a vertex v of $\mathcal{B} \mathcal{G}_{+}(n)$, associated to collection \mathcal{D}. Then the dimension of the core of v is $|\bigcap \mathcal{D}|-1$

Structure of $\mathcal{B G}_{+}(n)$

Lemma

Consider a vertex v of $\mathcal{B G}_{+}(n)$, associated to collection \mathcal{D}. Then the dimension of the core of v is $|\bigcap \mathcal{D}|-1$

Consequently, when $\bigcap \mathcal{D}=\{i\}$, the core is reduced to the vector $1^{\{i\}}$, i.e., the vector in \mathbb{R}^{n} with i th component equal to 1 , and 0 otherwise.

Structure of $\mathcal{B} \mathcal{G}_{+}(n)$

Lemma

Consider a vertex v of $\mathcal{B} \mathcal{G}_{+}(n)$, associated to collection \mathcal{D}. Then the dimension of the core of v is $|\bigcap \mathcal{D}|-1$

Consequently, when $\bigcap \mathcal{D}=\{i\}$, the core is reduced to the vector $1^{\{i\}}$, i.e., the vector in \mathbb{R}^{n} with ith component equal to 1 , and 0 otherwise.

Theorem

The number of vertices v_{n} of $\mathcal{B G}_{+}(n)$ is given by $v_{n}=f_{n}+1$ where f_{n} is defined recursively as follows:

$$
f_{n}=\sum_{k=1}^{n-1}\binom{n}{k}\left(2^{2^{k}-1}-f_{k}-1\right), \forall n>1 \text { and } f_{1}=0
$$

Structure of $\mathcal{B G}_{+}(n)$

Lemma

Consider a vertex v of $\mathcal{B} \mathcal{G}_{+}(n)$, associated to collection \mathcal{D}. Then the dimension of the core of v is $|\bigcap \mathcal{D}|-1$

Consequently, when $\bigcap \mathcal{D}=\{i\}$, the core is reduced to the vector $1^{\{i\}}$, i.e., the vector in \mathbb{R}^{n} with ith component equal to 1 , and 0 otherwise.

Theorem

The number of vertices v_{n} of $\mathcal{B G}_{+}(n)$ is given by $v_{n}=f_{n}+1$ where f_{n} is defined recursively as follows:

$$
f_{n}=\sum_{k=1}^{n-1}\binom{n}{k}\left(2^{2^{k}-1}-f_{k}-1\right), \forall n>1 \text { and } f_{1}=0
$$

n	1	2	3	4	5	6	7	8
v_{n}	1	3	19	471	162631	12884412819	$6.456 e+19$	$1.361 e+39$

9/18 P. Garcia-Segador, M. Grabisch and P. Miranda ©(C2023 The geometry of balanced games

Adjacency in $\mathcal{B G}_{+}(n)$

Recall that two vertices v_{1}, v_{2} are not adjacent if there exist $\lambda, \lambda^{\prime} \in[0,1]$ and vertices v_{3}, v_{4} distinct from v_{1}, v_{2} s.t.

$$
\lambda v_{1}+(1-\lambda) v_{2}=\lambda^{\prime} v_{3}+\left(1-\lambda^{\prime}\right) v_{4}
$$

Adjacency in $\mathcal{B} \mathcal{G}_{+}(n)$

Recall that two vertices v_{1}, v_{2} are not adjacent if there exist $\lambda, \lambda^{\prime} \in[0,1]$ and vertices v_{3}, v_{4} distinct from v_{1}, v_{2} s.t.

$$
\lambda v_{1}+(1-\lambda) v_{2}=\lambda^{\prime} v_{3}+\left(1-\lambda^{\prime}\right) v_{4}
$$

Definition

(Naddef and Pulleyblank, 1981) A polytope \mathcal{P} is said to be combinatorial if the two following conditions hold:

- All vertices of \mathcal{P} are 0,1 -valued.
- Given two vertices v_{1}, v_{2} of \mathcal{P}, if they are not adjacent, then there exists two other different vertices v_{3}, v_{4} such that

$$
v_{1}+v_{2}=v_{3}+v_{4}
$$

Adjacency in $\mathcal{B G}_{+}(n)$

Recall that two vertices v_{1}, v_{2} are not adjacent if there exist $\lambda, \lambda^{\prime} \in[0,1]$ and vertices v_{3}, v_{4} distinct from v_{1}, v_{2} s.t.

$$
\lambda v_{1}+(1-\lambda) v_{2}=\lambda^{\prime} v_{3}+\left(1-\lambda^{\prime}\right) v_{4}
$$

Definition

(Naddef and Pulleyblank, 1981) A polytope \mathcal{P} is said to be combinatorial if the two following conditions hold:

- All vertices of \mathcal{P} are 0,1 -valued.
- Given two vertices v_{1}, v_{2} of \mathcal{P}, if they are not adjacent, then there exists two other different vertices v_{3}, v_{4} such that

$$
v_{1}+v_{2}=v_{3}+v_{4}
$$

Theorem

The polytope $\mathcal{B G}_{+}(n)$ is combinatorial.

Adjacency in $\mathcal{B G}_{+}(n)$

Recall that two vertices v_{1}, v_{2} are not adjacent if there exist $\lambda, \lambda^{\prime} \in[0,1]$ and vertices v_{3}, v_{4} distinct from v_{1}, v_{2} s.t.

$$
\lambda v_{1}+(1-\lambda) v_{2}=\lambda^{\prime} v_{3}+\left(1-\lambda^{\prime}\right) v_{4}
$$

Definition

(Naddef and Pulleyblank, 1981) A polytope \mathcal{P} is said to be combinatorial if the two following conditions hold:

- All vertices of \mathcal{P} are 0,1 -valued.
- Given two vertices v_{1}, v_{2} of \mathcal{P}, if they are not adjacent, then there exists two other different vertices v_{3}, v_{4} such that

$$
v_{1}+v_{2}=v_{3}+v_{4}
$$

Theorem

The polytope $\mathcal{B G}_{+}(n)$ is combinatorial.
As a consequence, the graph of the vertices of $\mathcal{B} \mathcal{G}_{+}(n)$ is Hamiltonian $(n>2)$ or a hypercube $(n=1,2)$.

Adjacency in $\mathcal{B G}_{+}(n)$

Theorem

Consider two vertices v_{1}, v_{2} of $\mathcal{B G}_{+}(n)$, associated to $\mathcal{D}_{1}, \mathcal{D}_{2}$ respectively, and $\bigcap \mathcal{D}_{1}=\{i\}=\bigcap \mathcal{D}_{2}$. Then v_{1} and v_{2} are adjacent iff either $\mathcal{D}_{1} \subseteq \mathcal{D}_{2}$ or the converse, and $\left|\mathcal{D}_{1} \Delta \mathcal{D}_{2}\right|=1$.

Adjacency in $\mathcal{B} \mathcal{G}_{+}(n)$

Theorem

Consider two vertices v_{1}, v_{2} of $\mathcal{B G}_{+}(n)$, associated to $\mathcal{D}_{1}, \mathcal{D}_{2}$ respectively, and $\bigcap \mathcal{D}_{1}=\{i\}=\bigcap \mathcal{D}_{2}$. Then v_{1} and v_{2} are adjacent iff either $\mathcal{D}_{1} \subseteq \mathcal{D}_{2}$ or the converse, and $\left|\mathcal{D}_{1} \Delta \mathcal{D}_{2}\right|=1$.

(a)

(b)

(c)

Figure: Non-adjacency of v_{1}, v_{2}, with associated collections $\mathcal{D}_{1}, \mathcal{D}_{2}$. Case (a): $\mathcal{D}_{3}=\mathcal{B}_{1} \cup\left(\mathcal{D}_{1} \cap \mathcal{D}_{2}\right) \cup \mathcal{B}_{3}, \mathcal{D}_{4}=\mathcal{B}_{2} \cup\left(\mathcal{D}_{1} \cap \mathcal{D}_{2}\right) \cup \mathcal{B}_{4}$; Case (b):
$\mathcal{D}_{3}=\mathcal{D}_{1} \cup \mathcal{B}_{3}, \mathcal{D}_{4}=\left(\mathcal{D}_{1} \cap \mathcal{D}_{2}\right) \cup \mathcal{B}_{4}$ (similar when $\mathcal{D}_{1}, \mathcal{D}_{2}$ exchanged); Case (c): $\mathcal{D}_{3}=\mathcal{D}_{1} \cup \mathcal{D}_{2}, \mathcal{D}_{4}=\mathcal{D}_{1} \cap \mathcal{D}_{2}$.

Structure of $\mathcal{B} \mathcal{G}(n)$

- $\mathcal{B G}(n)$ is determined by the following system of inequalities

$$
\sum_{S \in \mathcal{B}} \lambda_{S} v(S)-v(N) \leqslant 0, \quad \mathcal{B} \in \mathfrak{B}^{*}(n)
$$

Structure of $\mathcal{B} \mathcal{G}(n)$

- $\mathcal{B G}(n)$ is determined by the following system of inequalities

$$
\sum_{S \in \mathcal{B}} \lambda_{S} v(S)-v(N) \leqslant 0, \quad \mathcal{B} \in \mathfrak{B}^{*}(n)
$$

- $\hookrightarrow \mathcal{B G}(n)$ is an unbounded convex polyhedron.

Structure of $\mathcal{B} \mathcal{G}(n)$

- $\mathcal{B G}(n)$ is determined by the following system of inequalities

$$
\sum_{S \in \mathcal{B}} \lambda_{S} v(S)-v(N) \leqslant 0, \quad \mathcal{B} \in \mathfrak{B}^{*}(n)
$$

- $\hookrightarrow \mathcal{B G}(n)$ is an unbounded convex polyhedron.
- For any nonempty $S \subseteq N$, we define

Structure of $\mathcal{B} \mathcal{G}(n)$

- $\mathcal{B G}(n)$ is determined by the following system of inequalities

$$
\sum_{S \in \mathcal{B}} \lambda_{S} v(S)-v(N) \leqslant 0, \quad \mathcal{B} \in \mathfrak{B}^{*}(n)
$$

- $\hookrightarrow \mathcal{B G}(n)$ is an unbounded convex polyhedron.
- For any nonempty $S \subseteq N$, we define
- the unanimity game u_{S} by $u_{S}(T)=1$ iff $T \supseteq S$ and 0 otherwise

Structure of $\mathcal{B} \mathcal{G}(n)$

- $\mathcal{B G}(n)$ is determined by the following system of inequalities

$$
\sum_{S \in \mathcal{B}} \lambda_{S} v(S)-v(N) \leqslant 0, \quad \mathcal{B} \in \mathfrak{B}^{*}(n)
$$

- $\hookrightarrow \mathcal{B G}(n)$ is an unbounded convex polyhedron.
- For any nonempty $S \subseteq N$, we define
- the unanimity game u_{S} by $u_{S}(T)=1$ iff $T \supseteq S$ and 0 otherwise
- the Dirac game δ_{S} by $\delta_{S}(T)=1$ iff $T=S$ and 0 otherwise

Structure of $\mathcal{B} \mathcal{G}(n)$

- $\mathcal{B G}(n)$ is determined by the following system of inequalities

$$
\sum_{S \in \mathcal{B}} \lambda_{S} v(S)-v(N) \leqslant 0, \quad \mathcal{B} \in \mathfrak{B}^{*}(n)
$$

- $\hookrightarrow \mathcal{B G}(n)$ is an unbounded convex polyhedron.
- For any nonempty $S \subseteq N$, we define
- the unanimity game u_{S} by $u_{S}(T)=1$ iff $T \supseteq S$ and 0 otherwise
- the Dirac game δ_{S} by $\delta_{S}(T)=1$ iff $T=S$ and 0 otherwise

Theorem

Let $n \geqslant 2$. Then $\mathcal{B G}(n)$ is $\left(2^{n}-1\right)$-dimensional polyhedral cone, which is not pointed. Its lineality space $\operatorname{Lin}(\mathcal{B G}(n))$ has dimension n, with basis $\left(w_{i}\right)_{i \in N}, w_{i}=u_{\{i\}}$, the unanimity game centered on $\{i\}$

Structure of $\mathcal{B} \mathcal{G}(n)$

- $\mathcal{B G}(n)$ is determined by the following system of inequalities

$$
\sum_{S \in \mathcal{B}} \lambda_{S} v(S)-v(N) \leqslant 0, \quad \mathcal{B} \in \mathfrak{B}^{*}(n)
$$

- $\hookrightarrow \mathcal{B G}(n)$ is an unbounded convex polyhedron.
- For any nonempty $S \subseteq N$, we define
- the unanimity game u_{S} by $u_{S}(T)=1$ iff $T \supseteq S$ and 0 otherwise
- the Dirac game δ_{S} by $\delta_{S}(T)=1$ iff $T=S$ and 0 otherwise

Theorem

Let $n \geqslant 2$. Then $\mathcal{B G}(n)$ is $\left(2^{n}-1\right)$-dimensional polyhedral cone, which is not pointed. Its lineality space $\operatorname{Lin}(\mathcal{B G}(n))$ has dimension n, with basis $\left(w_{i}\right)_{i \in N}, w_{i}=u_{\{i\}}$, the unanimity game centered on $\{i\}$

As $\mathcal{B G}(n)$ is not pointed, it can be decomposed as follows:

$$
\mathcal{B G}(n)=\operatorname{Lin}(\mathcal{B G}(n)) \oplus \mathcal{B G}^{0}(n)
$$

where $\mathcal{B} \mathcal{G}^{0}(n)$ is a supplementary space (not unique), chosen so that the coordinates corresponding to singletons are zero.

Structure of $\mathcal{B} \mathcal{G}(n)$

Theorem

Let $n \geqslant 2$. The extremal rays of $\mathcal{B G}(n)$ are

- The $2 n$ extremal rays corresponding to $\operatorname{Lin}(\mathcal{B G}(n))$: $w_{1}, \ldots, w_{n},-w_{1}, \ldots,-w_{n}$
- $2^{n}-n-2$ extremal rays of the form $r_{S}=-\delta_{S}, S \subset N,|S|>1$;
- n extremal rays of the form

$$
r_{i}=\sum_{S \ni i,|S|>1} \delta_{S}, \quad i \in N .
$$

This yields in total $2^{n}+2 n-2$ extremal rays.

Structure of $\mathcal{B} \mathcal{G}(n)$

Theorem

Let $n \geqslant 2$. The extremal rays of $\mathcal{B G}(n)$ are

- The $2 n$ extremal rays corresponding to $\operatorname{Lin}(\mathcal{B G}(n))$:

$$
w_{1}, \ldots, w_{n},-w_{1}, \ldots,-w_{n} ;
$$

- $2^{n}-n-2$ extremal rays of the form $r_{S}=-\delta_{S}, S \subset N,|S|>1$;
- n extremal rays of the form

$$
r_{i}=\sum_{S \ni i,|S|>1} \delta_{S}, \quad i \in N .
$$

This yields in total $2^{n}+2 n-2$ extremal rays.

Lemma

The cores of $w_{i},-w_{i}, r_{i}, r_{S}$ for all $i \in N, S \subset N,|S|>1$ are singletons (respectively, $\left\{1^{\{i\}}\right\},\left\{-1^{\{i\}}\right\},\left\{1^{\{i\}}\right\},\{0\}$).

Structure of $\mathcal{B G}(n)$

$\operatorname{Lin}(\mathcal{B G}(n))$

When is the core reduced to a point?

- In the case of $\mathcal{B G}(n)$, all extremal rays have a point core.

When is the core reduced to a point?

- In the case of $\mathcal{B G}(n)$, all extremal rays have a point core.
- However, in the case of $\mathcal{B} \mathcal{G}_{+}(n)$, not all vertices have a point core: a vertex v has a point core iff its support \mathcal{D} is s.t. $|\cap \mathcal{D}|=1$.

When is the core reduced to a point?

- In the case of $\mathcal{B G}(n)$, all extremal rays have a point core.
- However, in the case of $\mathcal{B} \mathcal{G}_{+}(n)$, not all vertices have a point core: a vertex v has a point core iff its support \mathcal{D} is s.t. $|\cap \mathcal{D}|=1$.

What can we say more?

When is the core reduced to a point?

- In the case of $\mathcal{B G}(n)$, all extremal rays have a point core.
- However, in the case of $\mathcal{B} \mathcal{G}_{+}(n)$, not all vertices have a point core: a vertex v has a point core iff its support \mathcal{D} is s.t. $|\cap \mathcal{D}|=1$.

What can we say more?
General result: a game in the interior of $\mathcal{B G}_{+}(n)($ or $\mathcal{B} \mathcal{G}(n))$ does not have a point core.

When is the core reduced to a point? Case of $\mathcal{B} \mathcal{G}_{+}(n)$

Theorem

Consider two adjacent vertices v_{1}, v_{2} of $\mathcal{B G}_{+}(n)$, with associated collections $\mathcal{D}_{1}, \mathcal{D}_{2}$ respectively, and $\bigcap \mathcal{D}_{1}=\{i\}, \bigcap \mathcal{D}_{2}=\{j\}$. Consider $v=\lambda v_{1}+(1-\lambda) v_{2}$. Then:
(1) If $i=j$, then $C(v)$ is a singleton, i.e., v has a point core.
(2) If $i \neq j$ and $n \leqslant 4$, then v has a point core.

When is the core reduced to a point? Case of $\mathcal{B} \mathcal{G}_{+}(n)$

Theorem

Consider two adjacent vertices v_{1}, v_{2} of $\mathcal{B G}_{+}(n)$, with associated collections $\mathcal{D}_{1}, \mathcal{D}_{2}$ respectively, and $\bigcap \mathcal{D}_{1}=\{i\}, \bigcap \mathcal{D}_{2}=\{j\}$. Consider $v=\lambda v_{1}+(1-\lambda) v_{2}$. Then:
(1) If $i=j$, then $C(v)$ is a singleton, i.e., v has a point core.
(2) If $i \neq j$ and $n \leqslant 4$, then v has a point core.

When $n \geqslant 5$, taking two adjacent vertices v_{1}, v_{2} having a point core does not guarantee that any game on the edge between v_{1}, v_{2} has a point core. A more specific result seems difficult to obtain.

When is the core reduced to a point? Case of $\mathcal{B G}(n)$

Lemma

Any game in the lineality space $\mathcal{B G}(n)$ has a point core.

When is the core reduced to a point? Case of $\mathcal{B} \mathcal{G}(n)$

Lemma

Any game in the lineality space $\mathcal{B G}(n)$ has a point core.
We recall that facets of $\mathcal{B G}(n)$ are in bijection with the elements of $\mathfrak{B}^{*}(n)$, i.e., minimal balanced collections.

Theorem

Consider a m.b.c. $\mathcal{B} \in \mathfrak{B}^{*}(n)$ and its corresponding facet in $\mathcal{B G}(n)$.
(1) If $|\mathcal{B}|=n$, every game in the facet has a point core.
(2) Otherwise, no game in the relative interior of the facet has a point core.

When is the core reduced to a point? Case of $\mathcal{B G}(n)$

Lemma

Any game in the lineality space $\mathcal{B G}(n)$ has a point core.
We recall that facets of $\mathcal{B G}(n)$ are in bijection with the elements of $\mathfrak{B}^{*}(n)$, i.e., minimal balanced collections.

Theorem

Consider a m.b.c. $\mathcal{B} \in \mathfrak{B}^{*}(n)$ and its corresponding facet in $\mathcal{B G}(n)$.
(1) If $|\mathcal{B}|=n$, every game in the facet has a point core.
(2) Otherwise, no game in the relative interior of the facet has a point core.

Theorem

Consider a face \mathcal{F} of $\mathcal{B G}(n)$, being the intersection of facets $\mathcal{F}_{1}, \ldots, \mathcal{F}_{p}$ with associated m.b.c. $\mathcal{B}_{1}, \ldots, \mathcal{B}_{p}$. Then any game in \mathcal{F} has a point core iff the rank of the matrix $\left\{1^{S}, S \in \mathcal{B}_{1} \cup \cdots \cup \mathcal{B}_{p}\right\}$ is n.

The case $n=3$

The lineality space has basis $\left\{u_{\{1\}}, u_{\{2\}}, u_{\{3\}}\right\}$, with extremal rays $-\delta_{12},-\delta_{13},-\delta_{23}$, and r_{1}, r_{2}, r_{3}.

The case $n=3$

The lineality space has basis $\left\{u_{\{1\}}, u_{\{2\}}, u_{\{3\}}\right\}$, with extremal rays $-\delta_{12},-\delta_{13},-\delta_{23}$, and r_{1}, r_{2}, r_{3}.

m.b.c.	$-\delta_{12}$	$-\delta_{13}$	$-\delta_{23}$	r_{1}	r_{2}	r_{3}
$\mathcal{B}_{1}=\{1,2,3\}$	\times	\times	\times			
$\mathcal{B}_{2}=\{1,23\}$	\times	\times			\times	\times
$\mathcal{B}_{3}=\{2,13\}$	\times		\times	\times		\times
$\mathcal{B}_{4}=\{3,12\}$		\times	\times	\times	\times	
$\mathcal{B}_{5}=\{12,13,23\}$				\times	\times	\times

The case $n=3$

The lineality space has basis $\left\{u_{\{1\}}, u_{\{2\}}, u_{\{3\}}\right\}$, with extremal rays $-\delta_{12},-\delta_{13},-\delta_{23}$, and r_{1}, r_{2}, r_{3}.

m.b.c.	$-\delta_{12}$	$-\delta_{13}$	$-\delta_{23}$	r_{1}	r_{2}	r_{3}
$\mathcal{B}_{1}=\{1,2,3\}$	\times	\times	\times			
$\mathcal{B}_{2}=\{1,23\}$	\times	\times			\times	\times
$\mathcal{B}_{3}=\{2,13\}$	\times		\times	\times		\times
$\mathcal{B}_{4}=\{3,12\}$		\times	\times	\times	\times	
$\mathcal{B}_{5}=\{12,13,23\}$				\times	\times	\times

