The geometry of balanced games

Pedro GARCIA-SEGADOR^a, Michel GRABISCH^{b,c} and Pedro MIRANDA^d

 ^a National Statistical Institute, Madrid, Spain
 ^b Université Paris I Panthéon-Sorbonne, Centre d'Economie de la Sorbonne
 ^c Paris School of Economics, Paris, France
 ^d Complutense University of Madrid, Spain

1/18

Cooperative games on a finite set N of players assign to any coalition S ⊆ N its benefit v(S) due to the cooperation of its members.

Introduction

- Cooperative games on a finite set N of players assign to any coalition $S \subseteq N$ its benefit v(S) due to the cooperation of its members.
- Supposing all players cooperate, generating a benefit v(N), the question is how to share this benefit among the players in a rational way.

Introduction

- Cooperative games on a finite set N of players assign to any coalition $S \subseteq N$ its benefit v(S) due to the cooperation of its members.
- Supposing all players cooperate, generating a benefit v(N), the question is how to share this benefit among the players in a rational way.
- The *core* is the set of sharings such that no coalition S receives less than v(S). It can be empty.

- Cooperative games on a finite set N of players assign to any coalition $S \subseteq N$ its benefit v(S) due to the cooperation of its members.
- Supposing all players cooperate, generating a benefit v(N), the question is how to share this benefit among the players in a rational way.
- The *core* is the set of sharings such that no coalition S receives less than v(S). It can be empty.
- The Bondareva-Shapley theorem characterizes the class of games with a nonempty core. Such games are called *balanced*.

- Cooperative games on a finite set N of players assign to any coalition $S \subseteq N$ its benefit v(S) due to the cooperation of its members.
- Supposing all players cooperate, generating a benefit v(N), the question is how to share this benefit among the players in a rational way.
- The *core* is the set of sharings such that no coalition S receives less than v(S). It can be empty.
- The Bondareva-Shapley theorem characterizes the class of games with a nonempty core. Such games are called *balanced*.
- A question arise:

2/18

What is the shape of the set of balanced games?

→ E → < E →</p>

- Cooperative games on a finite set N of players assign to any coalition $S \subseteq N$ its benefit v(S) due to the cooperation of its members.
- Supposing all players cooperate, generating a benefit v(N), the question is how to share this benefit among the players in a rational way.
- The *core* is the set of sharings such that no coalition S receives less than v(S). It can be empty.
- The Bondareva-Shapley theorem characterizes the class of games with a nonempty core. Such games are called *balanced*.
- A question arise:

What is the shape of the set of balanced games?

• We show that it is a polyhedron, and find its vertices and extremal rays.

イロト イポト イヨト イヨト

• $N = \{1, ..., n\}$ set of players. Subsets of N are called *coalitions*.

▲圖▶ ▲屋▶ ▲屋▶

3

- $N = \{1, ..., n\}$ set of players. Subsets of N are called *coalitions*.
- A game with transferable utility in characteristic form (abbreviated by *TU-game* or simply game) is a mapping v : 2^N → ℝ s.t. v(Ø) = 0.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- $N = \{1, ..., n\}$ set of players. Subsets of N are called *coalitions*.
- A game with transferable utility in characteristic form (abbreviated by *TU-game* or simply game) is a mapping v : 2^N → ℝ s.t. v(Ø) = 0.
- $x \in \mathbb{R}^N$ is a *payoff vector*. Notation: for every $S \subseteq N$,

$$x(S) = \sum_{i \in S} x_i$$

- $N = \{1, ..., n\}$ set of players. Subsets of N are called *coalitions*.
- A game with transferable utility in characteristic form (abbreviated by *TU-game* or simply game) is a mapping v : 2^N → ℝ s.t. v(Ø) = 0.
- $x \in \mathbb{R}^N$ is a *payoff vector*. Notation: for every $S \subseteq N$,

$$x(S) = \sum_{i \in S} x_i$$

 Aim of (cooperative) game theory: find a (set of) rational, satisfactory payoff vector(s) x, called the *solution* of the game. Usually, one impose x(N) = v(N) (*efficiency: share the whole cake*).

・ 同 ト ・ ヨ ト ・ ヨ ト

3/18

- $N = \{1, ..., n\}$ set of players. Subsets of N are called *coalitions*.
- A game with transferable utility in characteristic form (abbreviated by *TU-game* or simply game) is a mapping v : 2^N → ℝ s.t. v(Ø) = 0.
- $x \in \mathbb{R}^N$ is a *payoff vector*. Notation: for every $S \subseteq N$,

$$x(S) = \sum_{i \in S} x_i$$

- Aim of (cooperative) game theory: find a (set of) rational, satisfactory payoff vector(s) x, called the *solution* of the game. Usually, one impose x(N) = v(N) (*efficiency: share the whole cake*).
- One of the best known solution: the core (Gillies, 1953)

$$C(v) = \{x \in \mathbb{R}^N : x(S) \ge v(S) \forall S, x(N) = v(N)\}$$

(coalitional rationality, or stability of the grand coalition N)

In decision theory, one considers *capacities*, which are monotone games: v is a capacity if S ⊆ T implies v(S) ≤ v(T) and v(N) = 1.

TU-games in other domains

- In decision theory, one considers *capacities*, which are monotone games: v is a capacity if S ⊆ T implies v(S) ≤ v(T) and v(N) = 1.
- Probability measures are additive capacities:
 v(A ∪ B) = v(A) + v(B) for disjoint A, B

・ 同 ト ・ ヨ ト ・ ヨ ト

TU-games in other domains

- In decision theory, one considers *capacities*, which are monotone games: v is a capacity if S ⊆ T implies v(S) ≤ v(T) and v(N) = 1.
- Probability measures are additive capacities: $v(A \cup B) = v(A) + v(B)$ for disjoint A, B
- The core of a capacity v is:

$$C(v) = \{x \in \mathbb{R}^N : x(S) \ge v(S) \forall S, x(N) = 1\}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

i.e., $x \in C(v)$ can be interpreted as a probability measure dominating (compatible with) v.

TU-games in other domains

- In decision theory, one considers *capacities*, which are monotone games: v is a capacity if S ⊆ T implies v(S) ≤ v(T) and v(N) = 1.
- Probability measures are additive capacities: $v(A \cup B) = v(A) + v(B)$ for disjoint A, B
- The core of a capacity v is:

$$C(v) = \{x \in \mathbb{R}^N : x(S) \ge v(S) \forall S, x(N) = 1\}$$

i.e., $x \in C(v)$ can be interpreted as a probability measure dominating (compatible with) v.

 In combinatorial optimization, when v is submodular, it can be seen as the rank function of a matroid. Then the (anti-)core of v is the base polyhedron of v (Edmonds, 1970).

イロン イヨン イヨン ・ ヨン

(Shapley, 1967) A collection B ⊆ 2^N of nonempty coalitions is called balanced if there exist positive numbers λ_S for all S ∈ B s.t.

$$\sum_{S \in \mathcal{B}} \lambda_S 1^S = 1^N$$

(Shapley, 1967) A collection B ⊆ 2^N of nonempty coalitions is called balanced if there exist positive numbers λ_S for all S ∈ B s.t.

$$\sum_{S \in \mathcal{B}} \lambda_S 1^S = 1^N$$

(i.e., for every $i \in N$, $\sum_{S \ni i, S \in \mathcal{B}} \lambda_S = 1$)(1^N is in the relative interior of the cone generated by the 1^S, $S \in \mathcal{B}$).

• $(\lambda_S)_{S\in\mathcal{B}}$ are the balancing weights.

(Shapley, 1967) A collection B ⊆ 2^N of nonempty coalitions is called balanced if there exist positive numbers λ_S for all S ∈ B s.t.

$$\sum_{\boldsymbol{S}\in\mathcal{B}}\lambda_{\boldsymbol{S}}\mathbf{1}^{\boldsymbol{S}}=\mathbf{1}^{\boldsymbol{N}}$$

- $(\lambda_S)_{S\in\mathbb{B}}$ are the balancing weights.
- Examples:

(Shapley, 1967) A collection B ⊆ 2^N of nonempty coalitions is called balanced if there exist positive numbers λ_S for all S ∈ B s.t.

$$\sum_{S \in \mathcal{B}} \lambda_S 1^S = 1^N$$

- $(\lambda_S)_{S\in\mathcal{B}}$ are the *balancing weights*.
- Examples:
 - Every partition (balancing weights: 1)

(Shapley, 1967) A collection B ⊆ 2^N of nonempty coalitions is called balanced if there exist positive numbers λ_S for all S ∈ B s.t.

$$\sum_{S \in \mathcal{B}} \lambda_S 1^S = 1^N$$

- $(\lambda_S)_{S \in \mathcal{B}}$ are the *balancing weights*.
- Examples:
 - Every partition (balancing weights: 1)
 - n = 3: $\{\overline{12}, \overline{13}, \overline{23}\}$ with $\lambda = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$

(Shapley, 1967) A collection B ⊆ 2^N of nonempty coalitions is called balanced if there exist positive numbers λ_S for all S ∈ B s.t.

$$\sum_{S \in \mathcal{B}} \lambda_S 1^S = 1^N$$

伺い イヨト イヨト

(i.e., for every $i \in N$, $\sum_{S \ni i, S \in \mathcal{B}} \lambda_S = 1$)(1^N is in the relative interior of the cone generated by the 1^S, $S \in \mathcal{B}$).

- $(\lambda_S)_{S \in \mathbb{B}}$ are the balancing weights.
- Examples:

5/18

• Every partition (balancing weights: 1)

•
$$n = 3$$
: $\{\overline{12}, \overline{13}, \overline{23}\}$ with $\lambda = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$
• $n = 4$: $\{\overline{12}, \overline{13}, \overline{14}, \overline{234}\}$ with $\lambda = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{2}{3})$.

(Shapley, 1967) A collection B ⊆ 2^N of nonempty coalitions is called balanced if there exist positive numbers λ_S for all S ∈ B s.t.

$$\sum_{S \in \mathcal{B}} \lambda_S 1^S = 1^N$$

(i.e., for every $i \in N$, $\sum_{S \ni i, S \in \mathcal{B}} \lambda_S = 1$)(1^N is in the relative interior of the cone generated by the 1^S, $S \in \mathcal{B}$).

- $(\lambda_S)_{S\in\mathbb{B}}$ are the balancing weights.
- Examples:

5/18

• Every partition (balancing weights: 1)

•
$$n = 3$$
: $\{\overline{12}, \overline{13}, \overline{23}\}$ with $\lambda = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$

- n = 4: $\{\overline{12}, \overline{13}, \overline{14}, \overline{234}\}$ with $\lambda = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{2}{3})$.
- A balanced collection is *minimal* if no proper subcollection is balanced (equivalently, the balancing weights are unique).

(Shapley, 1967) A collection B ⊆ 2^N of nonempty coalitions is called balanced if there exist positive numbers λ_S for all S ∈ B s.t.

$$\sum_{S \in \mathcal{B}} \lambda_S 1^S = 1^N$$

(i.e., for every $i \in N$, $\sum_{S \ni i, S \in \mathcal{B}} \lambda_S = 1$)(1^N is in the relative interior of the cone generated by the 1^S, $S \in \mathcal{B}$).

- $(\lambda_S)_{S \in \mathbb{B}}$ are the balancing weights.
- Examples:
 - Every partition (balancing weights: 1)
 - n = 3: $\{\overline{12}, \overline{13}, \overline{23}\}$ with $\lambda = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ • n = 4: $\{\overline{12}, \overline{13}, \overline{14}, \overline{234}\}$ with $\lambda = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{2}{2})$.
- A balanced collection is *minimal* if no proper subcollection is balanced (equivalently, the balancing weights are unique).
- So far, the number of minimal balanced collections (m.b.c.) is unknown beyond n = 4. A recursive algorithm has been proposed by Peleg (1965).

(1日) (日) (日)

(Shapley, 1967) A collection B ⊆ 2^N of nonempty coalitions is called balanced if there exist positive numbers λ_S for all S ∈ B s.t.

$$\sum_{S \in \mathcal{B}} \lambda_S 1^S = 1^N$$

(i.e., for every $i \in N$, $\sum_{S \ni i, S \in \mathcal{B}} \lambda_S = 1$)(1^N is in the relative interior of the cone generated by the 1^S, $S \in \mathcal{B}$).

- $(\lambda_S)_{S \in \mathbb{B}}$ are the balancing weights.
- Examples:

5/18

- Every partition (balancing weights: 1)
- n = 3: $\{\overline{12}, \overline{13}, \overline{23}\}$ with $\lambda = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ • n = 4: $\{\overline{12}, \overline{13}, \overline{14}, \overline{234}\}$ with $\lambda = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{2}{2})$.
- A balanced collection is *minimal* if no proper subcollection is balanced (equivalently, the balancing weights are unique).
- So far, the number of minimal balanced collections (m.b.c.) is unknown beyond n = 4. A recursive algorithm has been proposed by Peleg (1965).
- Balanced collections correspond to *regular hypergraphs*

Theorem (Bondareva-Shapley, sharp form)

A game v has a nonempty core if and only if for any minimal balanced collection \mathcal{B} with balancing vector $(\lambda_{\mathcal{S}}^{\mathcal{B}})_{\mathcal{S}\in\mathcal{B}}$, we have

$$\sum_{S\in\mathfrak{B}}\lambda_S^{\mathfrak{B}}v(S)\leq v(N).$$

Moreover, none of the inequalities is redundant, except the one for $\mathcal{B} = \{N\}$.

Theorem (Bondareva-Shapley, sharp form)

A game v has a nonempty core if and only if for any minimal balanced collection \mathcal{B} with balancing vector $(\lambda_{\mathcal{S}}^{\mathcal{B}})_{\mathcal{S}\in\mathcal{B}}$, we have

$$\sum_{S\in\mathfrak{B}}\lambda_S^{\mathfrak{B}}v(S)\leq v(N).$$

Moreover, none of the inequalities is redundant, except the one for $\mathcal{B} = \{N\}$.

Games satisfying this condition are called balanced

Balanced games

Four sets are of interest:

個 と く ヨ と く ヨ と

æ

Balanced games

Four sets are of interest:

• The set $\mathcal{BG}(n)$ of balanced games on $N = \{1, \ldots, n\}$

- The set $\mathcal{BG}(n)$ of balanced games on $N = \{1, \ldots, n\}$
- **2** The set $\mathcal{BG}_{\alpha}(n)$ of balanced games v on N such that $v(N) = \alpha$

- The set $\mathcal{BG}(n)$ of balanced games on $N = \{1, \ldots, n\}$
- ② The set ${\mathcal B}{\mathcal G}_lpha(n)$ of balanced games v on N such that v(N)=lpha
- ③ The set $\mathcal{BG}_+(n)$ of balanced games *v* on *N* such that *v* ≥ 0 (and v(N) = 1 arbitrarily fixed)

- The set $\mathcal{BG}(n)$ of balanced games on $N = \{1, \ldots, n\}$
- ② The set $\mathcal{BG}_{lpha}(n)$ of balanced games v on N such that v(N) = lpha
- ③ The set $\mathcal{BG}_+(n)$ of balanced games v on N such that $v \ge 0$ (and v(N) = 1 arbitrarily fixed)
- The set BG_M(n) of balanced games which are monotone and v(N) = 1, i.e., capacities

伺 と く き と く き とう

7/18

- The set $\mathcal{BG}(n)$ of balanced games on $N = \{1, \ldots, n\}$
- **2** The set $\mathcal{BG}_{\alpha}(n)$ of balanced games v on N such that $v(N) = \alpha$
- ③ The set $\mathcal{BG}_+(n)$ of balanced games *v* on *N* such that *v* ≥ 0 (and v(N) = 1 arbitrarily fixed)
- The set BG_M(n) of balanced games which are monotone and v(N) = 1, i.e., capacities

The set $\mathcal{BG}_M(n)$ seems extremely difficult to study. Its structure is not elucidated.

伺い イヨト イヨト

- The set $\mathcal{BG}(n)$ of balanced games on $N = \{1, \ldots, n\}$
- **2** The set $\mathcal{BG}_{\alpha}(n)$ of balanced games v on N such that $v(N) = \alpha$
- ③ The set $\mathcal{BG}_+(n)$ of balanced games *v* on *N* such that *v* ≥ 0 (and v(N) = 1 arbitrarily fixed)
- The set BG_M(n) of balanced games which are monotone and v(N) = 1, i.e., capacities

The set $\mathcal{BG}_M(n)$ seems extremely difficult to study. Its structure is not elucidated.

 \rightarrow We focus on $\mathcal{BG}_+(n)$ and $\mathcal{BG}(n)$.

7/18

・ 同 ト ・ ヨ ト ・ ヨ ト …

7/18

- The set $\mathcal{BG}(n)$ of balanced games on $N = \{1, \ldots, n\}$
- **2** The set $\mathcal{BG}_{\alpha}(n)$ of balanced games v on N such that $v(N) = \alpha$
- ③ The set $\mathcal{BG}_+(n)$ of balanced games *v* on *N* such that *v* ≥ 0 (and v(N) = 1 arbitrarily fixed)
- The set BG_M(n) of balanced games which are monotone and v(N) = 1, i.e., capacities

The set $\mathcal{BG}_M(n)$ seems extremely difficult to study. Its structure is not elucidated.

→ We focus on $\mathcal{BG}_+(n)$ and $\mathcal{BG}(n)$. Notation: $\mathfrak{B}^*(n)$: set of m.b.c. on N, except $\{N\}$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Structure of $\mathcal{BG}_+(n)$

• $\mathfrak{BG}_+(n)$ is determined by the following system of inequalities $\sum_{S \in \mathfrak{B}} \lambda_S v(S) \leqslant 1, \quad \mathfrak{B} \in \mathfrak{B}^*(n)$ $v(S) \ge 0, \quad S \in 2^N \setminus \{\varnothing, N\}$

御 と く ヨ と く ヨ と …

2

• $\mathfrak{BG}_+(n)$ is determined by the following system of inequalities $\sum_{S \in \mathfrak{B}} \lambda_S v(S) \leqslant 1, \quad \mathfrak{B} \in \mathfrak{B}^*(n)$ $v(S) \ge 0, \quad S \in 2^N \setminus \{\varnothing, N\}$

• $\hookrightarrow \mathcal{BG}_+(n)$ is a convex polytope. What are its vertices?

御 と く ヨ と く ヨ と …

Structure of $\mathcal{B}\mathcal{G}_+(n)$

• $\mathfrak{BG}_+(n)$ is determined by the following system of inequalities $\sum_{S \in \mathfrak{B}} \lambda_S v(S) \leqslant 1, \quad \mathfrak{B} \in \mathfrak{B}^*(n)$ $v(S) \ge 0, \quad S \in 2^N \setminus \{\varnothing, N\}$

• $\hookrightarrow \mathcal{BG}_+(n)$ is a convex polytope. What are its vertices?

Theorem

v is a vertex of $\mathcal{BG}_+(n)$ if and only if v is balanced and 0-1-valued.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ……

Structure of $\mathcal{B}\mathcal{G}_+(n)$

• $\mathfrak{BG}_+(n)$ is determined by the following system of inequalities $\sum_{S \in \mathfrak{B}} \lambda_S v(S) \leqslant 1, \quad \mathfrak{B} \in \mathfrak{B}^*(n)$ $v(S) \ge 0, \quad S \in 2^N \setminus \{\varnothing, N\}$

• $\hookrightarrow \mathcal{BG}_+(n)$ is a convex polytope. What are its vertices?

Theorem

v is a vertex of $\mathcal{BG}_+(n)$ if and only if v is balanced and 0-1-valued.

To any 0-1-valued game v, we associate $\mathcal{D} \subseteq 2^N \setminus \{\emptyset, N\}$, the collection of subsets S such that v(S) = 1.

• $\mathfrak{BG}_+(n)$ is determined by the following system of inequalities $\sum_{S \in \mathfrak{B}} \lambda_S v(S) \leqslant 1, \quad \mathfrak{B} \in \mathfrak{B}^*(n)$ $v(S) \ge 0, \quad S \in 2^N \setminus \{\varnothing, N\}$

• $\hookrightarrow \mathcal{BG}_+(n)$ is a convex polytope. What are its vertices?

Theorem

v is a vertex of $\mathcal{BG}_+(n)$ if and only if v is balanced and 0-1-valued.

To any 0-1-valued game v, we associate $\mathcal{D} \subseteq 2^N \setminus \{\emptyset, N\}$, the collection of subsets S such that v(S) = 1.

Theorem

Let \mathfrak{D} be a family of subsets \mathfrak{D} in $2^N \setminus \{\emptyset, N\}$. Then, \mathfrak{D} defines a vertex of $\mathfrak{BG}_+(n)$ iff either $\mathfrak{D} = \emptyset$ or $\bigcap \mathfrak{D} \neq \emptyset$.

Consider a vertex v of $\mathfrak{BG}_+(n)$, associated to collection \mathfrak{D} . Then the dimension of the core of v is $|\bigcap \mathfrak{D}| - 1$

Consider a vertex v of $\mathfrak{BG}_+(n)$, associated to collection \mathfrak{D} . Then the dimension of the core of v is $|\bigcap \mathfrak{D}| - 1$

Consequently, when $\bigcap \mathcal{D} = \{i\}$, the core is reduced to the vector $1^{\{i\}}$, i.e., the vector in \mathbb{R}^n with *i*th component equal to 1, and 0 otherwise.

Consider a vertex v of $\mathfrak{BG}_+(n)$, associated to collection \mathfrak{D} . Then the dimension of the core of v is $|\bigcap \mathfrak{D}| - 1$

Consequently, when $\bigcap \mathcal{D} = \{i\}$, the core is reduced to the vector $1^{\{i\}}$, i.e., the vector in \mathbb{R}^n with *i*th component equal to 1, and 0 otherwise.

Theorem

The number of vertices v_n of $\mathcal{BG}_+(n)$ is given by $v_n = f_n + 1$ where f_n is defined recursively as follows:

$$f_n = \sum_{k=1}^{n-1} {n \choose k} \left(2^{2^k - 1} - f_k - 1 \right), \forall n > 1 \text{ and } f_1 = 0$$

向下 イヨト イヨト

Consider a vertex v of $\mathfrak{BG}_+(n)$, associated to collection \mathfrak{D} . Then the dimension of the core of v is $|\bigcap \mathfrak{D}| - 1$

Consequently, when $\bigcap \mathcal{D} = \{i\}$, the core is reduced to the vector $1^{\{i\}}$, i.e., the vector in \mathbb{R}^n with *i*th component equal to 1, and 0 otherwise.

Theorem

The number of vertices v_n of $\mathcal{BG}_+(n)$ is given by $v_n = f_n + 1$ where f_n is defined recursively as follows:

$$f_n = \sum_{k=1}^{n-1} {n \choose k} \left(2^{2^k - 1} - f_k - 1 \right), \forall n > 1 \text{ and } f_1 = 0$$

п	1	2	3	4	5	6	7	8		
vn	1	3	19	471	162631	12884412819	6.456e + 19	1.361e + 39		
							▲□ ▶ ▲圖 ▶ ▲ 副 ▶	▲目> 目 のQ(?)		
9/18	P. Garcia-Segador, M. Grabisch and P. Miranda © 2023						The geometry of balanced games			

Recall that two vertices v_1, v_2 are *not adjacent* if there exist $\lambda, \lambda' \in [0, 1]$ and vertices v_3, v_4 distinct from v_1, v_2 s.t.

$$\lambda v_1 + (1-\lambda)v_2 = \lambda' v_3 + (1-\lambda')v_4$$

回 と く ヨ と く ヨ と …

Recall that two vertices v_1, v_2 are *not adjacent* if there exist $\lambda, \lambda' \in [0, 1]$ and vertices v_3, v_4 distinct from v_1, v_2 s.t.

$$\lambda v_1 + (1-\lambda)v_2 = \lambda' v_3 + (1-\lambda')v_4$$

Definition

(Naddef and Pulleyblank, 1981) A polytope \mathcal{P} is said to be *combinatorial* if the two following conditions hold:

- All vertices of \mathcal{P} are 0,1-valued.
- Given two vertices v_1, v_2 of \mathcal{P} , if they are not adjacent, then there exists two other different vertices v_3, v_4 such that

 $v_1 + v_2 = v_3 + v_4$

Recall that two vertices v_1, v_2 are *not adjacent* if there exist $\lambda, \lambda' \in [0, 1]$ and vertices v_3, v_4 distinct from v_1, v_2 s.t.

$$\lambda v_1 + (1-\lambda)v_2 = \lambda' v_3 + (1-\lambda')v_4$$

Definition

(Naddef and Pulleyblank, 1981) A polytope \mathcal{P} is said to be *combinatorial* if the two following conditions hold:

- All vertices of \mathcal{P} are 0,1-valued.
- Given two vertices v_1, v_2 of \mathcal{P} , if they are not adjacent, then there exists two other different vertices v_3, v_4 such that

$$v_1 + v_2 = v_3 + v_4$$

イロン イヨン イヨン ・ ヨン

Theorem

The polytope $\mathcal{B}\mathcal{G}_+(n)$ is combinatorial.

Recall that two vertices v_1, v_2 are *not adjacent* if there exist $\lambda, \lambda' \in [0, 1]$ and vertices v_3, v_4 distinct from v_1, v_2 s.t.

$$\lambda v_1 + (1-\lambda)v_2 = \lambda' v_3 + (1-\lambda')v_4$$

Definition

(Naddef and Pulleyblank, 1981) A polytope \mathcal{P} is said to be *combinatorial* if the two following conditions hold:

- All vertices of \mathcal{P} are 0,1-valued.
- Given two vertices v_1, v_2 of \mathcal{P} , if they are not adjacent, then there exists two other different vertices v_3, v_4 such that

$$v_1 + v_2 = v_3 + v_4$$

Theorem

The polytope $\mathcal{B}\mathcal{G}_+(n)$ is combinatorial.

As a consequence, the graph of the vertices of $\mathcal{BG}_+(n)$ is Hamiltonian (n > 2) or a hypercube (n = 1, 2).

Theorem

Consider two vertices v_1, v_2 of $\mathcal{BG}_+(n)$, associated to $\mathcal{D}_1, \mathcal{D}_2$ respectively, and $\bigcap \mathcal{D}_1 = \{i\} = \bigcap \mathcal{D}_2$. Then v_1 and v_2 are adjacent iff either $\mathcal{D}_1 \subseteq \mathcal{D}_2$ or the converse, and $|\mathcal{D}_1 \Delta \mathcal{D}_2| = 1$.

伺下 イヨト イヨト

Theorem

11/18

Consider two vertices v_1, v_2 of $\mathcal{BG}_+(n)$, associated to $\mathcal{D}_1, \mathcal{D}_2$ respectively, and $\bigcap \mathcal{D}_1 = \{i\} = \bigcap \mathcal{D}_2$. Then v_1 and v_2 are adjacent iff either $\mathcal{D}_1 \subset \mathcal{D}_2$ or the converse, and $|\mathcal{D}_1 \Delta \mathcal{D}_2| = 1$.

P. Garcia-Segador, M. Grabisch and P. Miranda © 2023

• $\mathfrak{BG}(n)$ is determined by the following system of inequalities $\sum_{S \in \mathfrak{B}} \lambda_S v(S) - v(N) \leq 0, \quad \mathfrak{B} \in \mathfrak{B}^*(n)$

御 と く ヨ と く ヨ と …

2

- $\mathfrak{BG}(n)$ is determined by the following system of inequalities $\sum_{S \in \mathfrak{B}} \lambda_S v(S) - v(N) \leqslant 0, \quad \mathfrak{B} \in \mathfrak{B}^*(n)$
- $\hookrightarrow \mathcal{BG}(n)$ is an unbounded convex polyhedron.

回 と く ヨ と く ヨ と

- $\mathfrak{BG}(n)$ is determined by the following system of inequalities $\sum_{S \in \mathfrak{B}} \lambda_S v(S) - v(N) \leqslant 0, \quad \mathfrak{B} \in \mathfrak{B}^*(n)$
- $\hookrightarrow \mathcal{BG}(n)$ is an unbounded convex polyhedron.
- For any nonempty $S \subseteq N$, we define

伺下 イヨト イヨト

- $\mathfrak{BG}(n)$ is determined by the following system of inequalities $\sum_{S \in \mathfrak{B}} \lambda_S v(S) - v(N) \leqslant 0, \quad \mathfrak{B} \in \mathfrak{B}^*(n)$
- $\hookrightarrow \mathcal{BG}(n)$ is an unbounded convex polyhedron.
- For any nonempty $S \subseteq N$, we define
 - the unanimity game u_S by $u_S(T) = 1$ iff $T \supseteq S$ and 0 otherwise

コット くほう くほう

• $\mathfrak{BG}(n)$ is determined by the following system of inequalities

$$\sum_{S\in\mathfrak{B}}\lambda_{S}v(S)-v(N)\leqslant 0,\quad \mathfrak{B}\in\mathfrak{B}^{*}(n)$$

伺 ト イヨ ト イヨト

- $\hookrightarrow \mathcal{BG}(n)$ is an unbounded convex polyhedron.
- For any nonempty $S \subseteq N$, we define
 - the unanimity game u_S by $u_S(T) = 1$ iff $T \supseteq S$ and 0 otherwise
 - the *Dirac game* δ_S by $\delta_S(T) = 1$ iff T = S and 0 otherwise

• $\mathcal{BG}(n)$ is determined by the following system of inequalities

$$\sum_{S\in\mathfrak{B}}\lambda_S v(S)-v(N)\leqslant 0,\quad \mathfrak{B}\in\mathfrak{B}^*(n)$$

- $\hookrightarrow \mathcal{BG}(n)$ is an unbounded convex polyhedron.
- For any nonempty $S \subseteq N$, we define
 - the unanimity game u_S by $u_S(T) = 1$ iff $T \supseteq S$ and 0 otherwise
 - the *Dirac game* δ_S by $\delta_S(T) = 1$ iff T = S and 0 otherwise

Theorem

Let $n \ge 2$. Then $\mathfrak{BG}(n)$ is $(2^n - 1)$ -dimensional polyhedral cone, which is not pointed. Its lineality space $\operatorname{Lin}(\mathfrak{BG}(n))$ has dimension n, with basis $(w_i)_{i \in N}, w_i = u_{\{i\}}$, the unanimity game centered on $\{i\}$

・ 回 と ・ ヨ と ・ ヨ と …

• $\mathcal{BG}(n)$ is determined by the following system of inequalities

$$\sum_{S\in\mathfrak{B}}\lambda_S v(S)-v(N)\leqslant 0,\quad \mathfrak{B}\in\mathfrak{B}^*(n)$$

- $\hookrightarrow \mathcal{BG}(n)$ is an unbounded convex polyhedron.
- For any nonempty $S \subseteq N$, we define
 - the unanimity game u_S by $u_S(T) = 1$ iff $T \supseteq S$ and 0 otherwise
 - the *Dirac game* δ_S by $\delta_S(T) = 1$ iff T = S and 0 otherwise

Theorem

Let $n \ge 2$. Then $\mathfrak{BG}(n)$ is $(2^n - 1)$ -dimensional polyhedral cone, which is not pointed. Its lineality space $\operatorname{Lin}(\mathfrak{BG}(n))$ has dimension n, with basis $(w_i)_{i \in N}, w_i = u_{\{i\}}$, the unanimity game centered on $\{i\}$

As $\mathcal{BG}(n)$ is not pointed, it can be decomposed as follows:

 $\mathfrak{BG}(n) = \operatorname{Lin}(\mathfrak{BG}(n)) \oplus \mathfrak{BG}^{0}(n)$

where $\mathcal{BG}^{0}(n)$ is a supplementary space (not unique), chosen so that the coordinates corresponding to singletons are zero.

Theorem

Let $n \ge 2$. The extremal rays of $\mathfrak{BG}(n)$ are

- The 2n extremal rays corresponding to Lin(BG(n)): w₁,..., w_n, -w₁,..., -w_n;
- $2^n n 2$ extremal rays of the form $r_S = -\delta_S$, $S \subset N$, |S| > 1;
- n extremal rays of the form

$$r_i = \sum_{S \ni i, |S| > 1} \delta_S, \quad i \in N.$$

伺下 イヨト イヨト

This yields in total $2^n + 2n - 2$ extremal rays.

Theorem

Let $n \ge 2$. The extremal rays of $\mathfrak{BG}(n)$ are

- The 2n extremal rays corresponding to Lin(BG(n)): w₁,..., w_n, -w₁,..., -w_n;
- $2^n n 2$ extremal rays of the form $r_S = -\delta_S$, $S \subset N$, |S| > 1;
- n extremal rays of the form

$$r_i = \sum_{S \ni i, |S| > 1} \delta_S, \quad i \in N.$$

This yields in total $2^n + 2n - 2$ extremal rays.

Lemma

The cores of w_i , $-w_i$, r_i , r_s for all $i \in N$, $S \subset N$, |S| > 1 are singletons (respectively, $\{1^{\{i\}}\}, \{-1^{\{i\}}\}, \{1^{\{i\}}\}, \{0\}$).

 $Lin(\mathcal{BG}(n))$

< 日 > < 四 > < 回 > < 回 > < 回 > <

æ

• In the case of $\mathcal{BG}(n)$, all extremal rays have a point core.

★ 문 → ★ 문 →

A ■

- In the case of $\mathcal{BG}(n)$, all extremal rays have a point core.
- However, in the case of BG₊(n), not all vertices have a point core: a vertex v has a point core iff its support D is s.t. |∩D| = 1.

- In the case of $\mathcal{BG}(n)$, all extremal rays have a point core.
- However, in the case of BG₊(n), not all vertices have a point core: a vertex v has a point core iff its support D is s.t. |∩D| = 1.

What can we say more?

- In the case of $\mathcal{BG}(n)$, all extremal rays have a point core.
- However, in the case of BG₊(n), not all vertices have a point core: a vertex v has a point core iff its support D is s.t. |∩D| = 1.

What can we say more?

General result: a game in the interior of $\mathcal{BG}_+(n)$ (or $\mathcal{BG}(n)$) does not have a point core.

Theorem

Consider two adjacent vertices v_1, v_2 of $\mathfrak{BG}_+(n)$, with associated collections $\mathfrak{D}_1, \mathfrak{D}_2$ respectively, and $\bigcap \mathfrak{D}_1 = \{i\}, \bigcap \mathfrak{D}_2 = \{j\}$. Consider $v = \lambda v_1 + (1 - \lambda)v_2$. Then:

- If i = j, then C(v) is a singleton, i.e., v has a point core.
- 2 If $i \neq j$ and $n \leq 4$, then v has a point core.

A (10) A (10)

Theorem

Consider two adjacent vertices v_1, v_2 of $\mathfrak{BG}_+(n)$, with associated collections $\mathfrak{D}_1, \mathfrak{D}_2$ respectively, and $\bigcap \mathfrak{D}_1 = \{i\}, \bigcap \mathfrak{D}_2 = \{j\}$. Consider $v = \lambda v_1 + (1 - \lambda)v_2$. Then:

- If i = j, then C(v) is a singleton, i.e., v has a point core.
- 2 If $i \neq j$ and $n \leq 4$, then v has a point core.

When $n \ge 5$, taking two adjacent vertices v_1, v_2 having a point core does not guarantee that any game on the edge between v_1, v_2 has a point core. A more specific result seems difficult to obtain.

イロン イヨン イヨン -

When is the core reduced to a point? Case of $\mathfrak{BG}(n)$

Lemma

Any game in the lineality space $\mathfrak{BG}(n)$ has a point core.

御 と く ヨ と く ヨ と …

When is the core reduced to a point? Case of $\mathfrak{BG}(n)$

Lemma

Any game in the lineality space $\mathfrak{BG}(n)$ has a point core.

We recall that facets of $\mathcal{BG}(n)$ are in bijection with the elements of $\mathfrak{B}^*(n)$, i.e., minimal balanced collections.

Theorem

Consider a m.b.c. $\mathcal{B} \in \mathfrak{B}^*(n)$ and its corresponding facet in $\mathfrak{BG}(n)$.

- If $|\mathcal{B}| = n$, every game in the facet has a point core.
- Otherwise, no game in the relative interior of the facet has a point core.

When is the core reduced to a point? Case of $\mathfrak{BG}(n)$

Lemma

Any game in the lineality space $\mathfrak{BG}(n)$ has a point core.

We recall that facets of $\mathcal{BG}(n)$ are in bijection with the elements of $\mathfrak{B}^*(n)$, i.e., minimal balanced collections.

Theorem

Consider a m.b.c. $\mathcal{B} \in \mathfrak{B}^*(n)$ and its corresponding facet in $\mathfrak{BG}(n)$.

- **1** If $|\mathcal{B}| = n$, every game in the facet has a point core.
- Otherwise, no game in the relative interior of the facet has a point core.

Theorem

Consider a face \mathcal{F} of $\mathcal{BG}(n)$, being the intersection of facets $\mathcal{F}_1, \ldots, \mathcal{F}_p$ with associated m.b.c. $\mathcal{B}_1, \ldots, \mathcal{B}_p$. Then any game in \mathcal{F} has a point core iff the rank of the matrix $\{1^S, S \in \mathcal{B}_1 \cup \cdots \cup \mathcal{B}_p\}$ is n.

The case n = 3

The lineality space has basis $\{u_{\{1\}}, u_{\{2\}}, u_{\{3\}}\}$, with extremal rays $-\delta_{12}, -\delta_{13}, -\delta_{23}$, and r_1, r_2, r_3 .

白 と く ヨ と く ヨ と

3

The case n = 3

The lineality space has basis $\{u_{\{1\}}, u_{\{2\}}, u_{\{3\}}\}$, with extremal rays $-\delta_{12}, -\delta_{13}, -\delta_{23}$, and r_1, r_2, r_3 .

m.b.c.	$-\delta_{12}$	$-\delta_{13}$	$-\delta_{23}$	r_1	<i>r</i> ₂	<i>r</i> ₃
$\mathcal{B}_1 = \{1, 2, 3\}$	×	×	×			
$\mathcal{B}_2 = \{1, 23\}$	×	×			×	×
$\mathcal{B}_3 = \{2, 13\}$	×		×	×		×
$\mathcal{B}_4 = \{3, 12\}$		×	×	×	\times	
$\mathcal{B}_5 = \{12, 13, 23\}$				\times	\times	\times

白 と く ヨ と く ヨ と

3

The case n = 3

The lineality space has basis $\{u_{\{1\}}, u_{\{2\}}, u_{\{3\}}\}$, with extremal rays $-\delta_{12}, -\delta_{13}, -\delta_{23}$, and r_1, r_2, r_3 .

m.b.c.	$-\delta_{12}$	$-\delta_{13}$	$-\delta_{23}$	r_1	<i>r</i> ₂	<i>r</i> ₃
$\mathcal{B}_1 = \{1, 2, 3\}$	×	×	×			
$\mathcal{B}_2 = \{1, 23\}$	×	×			×	×
$\mathcal{B}_3 = \{2, 13\}$	×		×	×		×
$\mathcal{B}_4 = \{3, 12\}$		×	×	×	\times	
$\mathcal{B}_5 = \{12, 13, 23\}$				\times	\times	\times

伺下 イヨト イヨト

æ