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Autonomous Control for Water Distribution Systems

2

Water Distribution Systems

● IoT.H2O Project:

○ TU Kaiserslautern, ULiège, UFMG, Dr. Kraetzig

● Water Distribution System

○ Germany, logged data, and simulator
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The Pump Scheduling Problem
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Pump Scheduling
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Pump Scheduling

● Water demand has to be delivered

● Storage tanks must not overflow or run out of water

● A minimum water reserve has to be in the tanks

● A minimum pressure must be guaranteed in the pipe network

● Pumps must be operated efficiently

● Guarantee water exchange in tanks

Which pressure is necessary to deliver a certain amount of water into the system?
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Pump Scheduling

[1] [3]

[2] [4]
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Autonomous control



Autonomous Control
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actionsactions

observationsobservations

Policy

Dynamic



Markov Decision Process (MDP)
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Andrey Markov

States S
Observations O

Actions A Reward Function R



Markov Decision Process (MDP)
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Andrey Markov

state s state s’

action a

reward r

returns = r(0) + γ¹r(1) +  γ²r(2) …



Markov Decision Process (MDP)
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state s state s’

action a

reward r

The MDP defines an RL problem!

Andrey Markov



Q-Learning [Watkins & Dayan (1992)]
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Richard Bellman

How good is being in a state s and performing an action a?Q(s,a)



Dealing with high dimensional state spaces!

Reinforcement Learning (RL) [Sutton & Barto. 2018]
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Q(s, a)

Deep Q-Networks [Mnih et at. 2013]

state



RL in Real-World [Dulac-Arnold et al. 2017]
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Observations?Observations?

Rewards?Rewards?

Define an RL 
problem Experiences Learning
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Pump Scheduling: POMDP

● State: < Tank level, Water Consumption, Time of Day, Month, Last Action, Time Pumping, Quality >

● Actions: {NP1, NP2, NP3, NP4, NOP}

● Reward:
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Pump Scheduling: POMDP

Efficiency
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Pump Scheduling: POMDP

Safety 
Constraints
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Pump Scheduling: POMDP

Pump 
Use/Switch
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Pump Scheduling: POMDP

Electricity
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Water Distribution Simulator

Simulator

Water Consumption (t) YearMonthDayTime steps 1 min
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Water Distribution Simulator

Simulator

Water Consumption (t) YearMonthDayTime steps 1 min

Transition < S, A, R, S’ >

Action π(s)

Until n new transitions

Replay Memory

Tank level [t+1] Q, kW, H [NP#]
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Water Distribution Simulator

Simulator

Water Consumption (t) YearMonthDayTime steps 1 min

Transition < S, A, R, S’ >

Action π(s)

Until n new transitions

Replay Memory

Tank level [t+1] Q, kW, H [NP#]

Otherwise

Batch
Mini-Batch #1

Mini-Batch #2

Mini-Batch #3

Batch Shuffled

Mini-Batch #2

Mini-Batch #1

Mini-Batch #3

States

Q(s, a)

Target Network
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● [Mnih.2015] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, 
Andrei A Rusu, Joel Veness,Marc G Bellemare, Alex Graves, Martin 
Riedmiller, Andreas K Fidjeland, GeorgOstrovski, et al.2015. Human-
level control through deep reinforcement learning. nature 518, 7540 
(2015), 529–533.



Safety through Intrinsically Motivated Imitation 
Learning
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Imitation Learning
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action
s

action
s

observatio
ns

observatio
ns

Logged DataLogged Data



Imitation Learning
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Logged DataLogged Data

Supervised 
Learning



Safety through Intrinsically Motivated Imitation Learning (SIMIL)
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state K-Nearest Neighbors 

choose the action most often

apply this action

augment the reward according to the state 
likelihood under the demonstration distribution



Offline RL Algorithms
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❏ Batch Constrained deep Q-Learning (BCQ)❏ Random Ensemble Mixture (REM)

● Compare performance with Offline RL Algorithms

Q1 Q2 Q3

⅀ 𝜆i Qi

𝜆1
𝜆2

𝜆3 x



Offline RL Algorithms
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● Compare performance with Offline RL Algorithms

● Generate the same amount of data

● SIMIL + REM

● Evaluate the policies using the water distribution simulator

○ 1 year for learning, 1 year for evaluation

● We average the mean cumulative return of 5 policies 



Results
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Comparison Real-World
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Policy Electricity Consumption (kW) (%)

REM Π1 -1.11 ± 9.78

SIMIL + REM Π1 -4.05 ± 1.97

BCQ Π1 -3.54 ± 2.71

REM Π2 4.08 ± 7.93

SIMIL + REM Π2 -3.33 ± 5.77

BCQ Π2 -1.40 ± 3.33



Knowledge Transfer for Compositional 
Representations through Curriculum Learning
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Curriculum Learning [Bengio et al. 2009]

1 + 1 + 1 = 3

5 - 1 - 2 = 2

7 - 3 + 4 = 8

Task Complexity

3 x 1 = 3

5 x 1 - 3 = 2

8 ÷ 2 x 2 = 8

3 x (1 + 3) = 12

7 ÷ 2 = 3.5

x ÷ 2 = 8 + 4
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Knowledge Transfer for Compositional Representations

State Space 𝑆 Action Space 𝐴 Reward Function 𝑅

State Space 𝑆’ Action Space 𝐴’ Reward Function 𝑅’ 

Degrees of 
Freedom!
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Knowledge Transfer for Compositional Representations

State Space 𝑆 Action Space 𝐴 Reward Function 𝑅

State Space 𝑆’ Action Space 𝐴’ Reward Function 𝑅’ 

Source TaskPolicy πs

Exploration!
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Knowledge Transfer for Compositional Representations

State Space 𝑆 Action Space 𝐴 Reward Function 𝑅

State Space 𝑆’ Action Space 𝐴’ Reward Function 𝑅’ 

Source Task

softmax(max(Qs), max(Qt))

Policy πs

Target Task Policy πt

Transfer 
Learning!



44

Knowledge Transfer for Compositional Representations

Source Task

softmax(max(Qs), max(Qt))

Target Task
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Knowledge Transfer for Compositional Representations

Source Task
Target Task

Source Task
Target Task …

softmax(max(Qs), max(Qt))
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Knowledge Transfer for Compositional Representations

Policy πs

Policy πt

Source Task Target Task
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Pump Scheduling: State 𝑆 and Action 𝐴

NP1

NP2

NP3

NP4
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Pump Scheduling: 3 steps curriculum

NP1

NP2

NP3

NP4

First task
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Pump Scheduling: 3 steps curriculum

ON OFF

Second task
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Pump Scheduling: 3 steps curriculum

ON OFF

Final task

Qs = {avg(NOP),NP1, NP2, NP3, NP4}
softmax(max(Qs), max(Qt))
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Pump Scheduling

NP1

NP2

NP3

NP4

ON OFF

Qs = {avg(NOP),NP1, NP2, NP3, NP4}
softmax(max(Qs), max(Qt))



52

Results: Pump Scheduling
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Summary

● POMDP for Pump Scheduling

○ Lead to electricity savings while meeting constraints

● SIMIL

○ Improve policy’s performance over baseline learning algorithm

● Curriculum Learning

○ Can lead to better asymptotic performance compared to standard exploration
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