A stochastic programming approach for planning remanufacturing activities under uncertain returns and demand forecasts

Céline GICQUEL¹, Safia KEDAD-SIDHOUM², Dominique QUADRI¹

¹Laboratoire de Recherche en Informatique Université Paris Saclay ²Laboratoire d'Informatique de Paris 6 Université Pierre et Marie Curie

> Journée du GDT COS 3 décembre 2015

A D N A A N

Plan

- 2 State of the art
- Oeterministic optimization problem
- Proposed stochastic programming approach
- 5 Preliminary computational results
- 6 Conclusion and perspectives

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Plan

- 2) State of the art
- 3 Deterministic optimization problem
- Proposed stochastic programming approach
- 5 Preliminary computational results
- 6 Conclusion and perspectives

・ロト ・日下・ ・ ヨト・

Circular economy

Linear industrial processes

- "Take, Make, Dispose"
- \rightarrow Depletion of natural resources
- \rightarrow Waste generation and pollution

Circular industrial processes

 ${\sf End-of-life\ products} = {\sf input\ to\ create\ new\ products}$

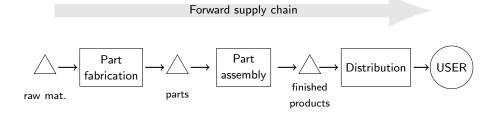
A B A B A B A

Reverse supply chains

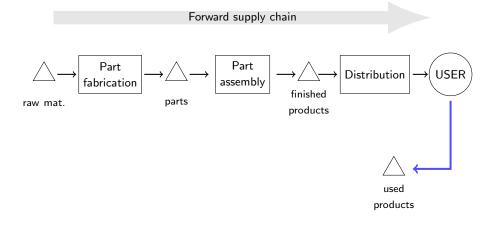
• Transform end-of-life products returned by customers into once again usable products

Reverse supply chains

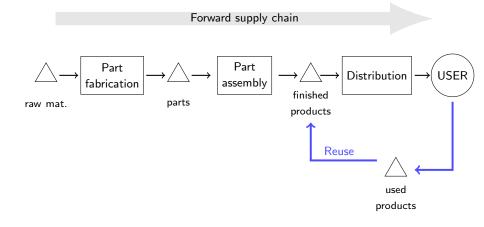
- Transform end-of-life products returned by customers into once again usable products
- Many activities:
 - collection,
 - transportation,
 - testing and sorting,
 - rehabilitation,
 - redistribution...



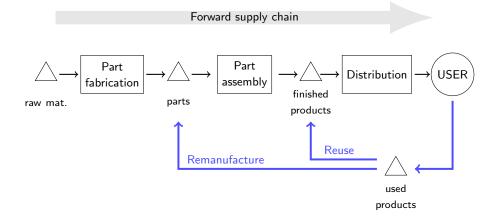
2


• • • • • • • • •

Rehabilitation activities

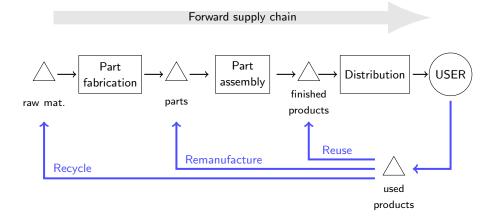

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Rehabilitation activities

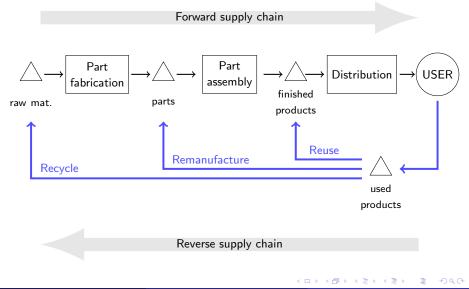


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

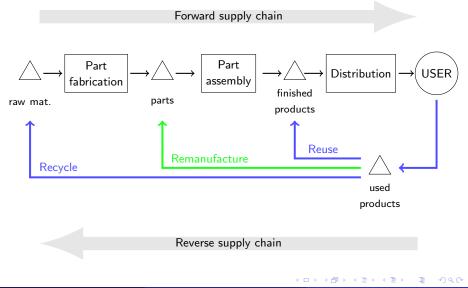
Rehabilitation activities



Rehabilitation activities

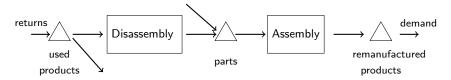

◆□> ◆□> ◆三> ◆三> ・三 ・のへで

Rehabilitation activities



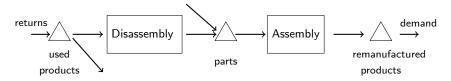
◆□> ◆□> ◆豆> ◆豆> ・豆 ・のへで

Rehabilitation activities


Rehabilitation activities

GDT COS 2015 7 / 45

Remanufacturing planning

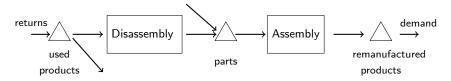

Remanufacturing system

・ロト ・日下・ ・ ヨト・

Remanufacturing planning

Remanufacturing system

Aggregate production planning


Decide how many:

- used products to disassemble
- remanufactured products to assemble
- new parts to buy

Image: A math a math

Remanufacturing planning

Remanufacturing system

Aggregate production planning

Decide how many:

- used products to disassemble
- remanufactured products to assemble
- new parts to buy

so as to:

- satisfy customer demand
- respect technical constraints: capacity, bill of materials, inventory balance

while minimizing total remanufacturing costs.

Uncertain returns/demand

Uncertain returns

- A specific feature in reverse logistics
- End users \neq suppliers
- Lack of control on product returns
- Uncertainty on returns quantity and quality
- \rightarrow Disorganization of the disassembly and assembly production plan

[Fleischmann et al., 1997]

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Uncertain returns/demand

Uncertain returns

- A specific feature in reverse logistics
- End users \neq suppliers
- Lack of control on product returns
- Uncertainty on returns quantity and quality
- \rightarrow Disorganization of the disassembly and assembly production plan

[Fleischmann et al., 1997]

Our proposal

A two-stage stochastic programming approach to take into account the uncertainty on:

- returns quantity / quality
- customer demand

Plan

Introduction

2 State of the art

3 Deterministic optimization problem

Proposed stochastic programming approach

5 Preliminary computational results

6 Conclusion and perspectives

Aggregate production planning for remanufacturing

イロト イヨト イヨト イヨ

Aggregate production planning for remanufacturing

• General literature reviews [Aksali and Cetinkaya, 2011], [Lage and Godinho, 2012]

・ロン ・回 と ・ ヨン・

Aggregate production planning for remanufacturing

- General literature reviews [Aksali and Cetinkaya, 2011], [Lage and Godinho, 2012]
- Deterministic optimization problems [Jayaraman, 2006], [Qu and Williams, 2008] [Corominas *et al.*, 2012], [Fall *et al.*, 2013] [Han *et al.*, 2013]

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Aggregate production planning for remanufacturing

- General literature reviews [Aksali and Cetinkaya, 2011], [Lage and Godinho, 2012]
- Deterministic optimization problems [Jayaraman, 2006], [Qu and Williams, 2008] [Corominas *et al.*, 2012], [Fall *et al.*, 2013] [Han *et al.*, 2013]
- Stochastic optimization problems [Li et al., 2009], [Shi et al., 2010] [Denizel et al., 2010], [Rouf and Zhang, 2011] [Mahapathra et al., 2012], [Li et al., 2013]

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Aggregate production planning for remanufacturing

- General literature reviews [Aksali and Cetinkaya, 2011], [Lage and Godinho, 2012]
- Deterministic optimization problems [Jayaraman, 2006], [Qu and Williams, 2008] [Corominas *et al.*, 2012], [Fall *et al.*, 2013] [Han *et al.*, 2013]
- Stochastic optimization problems [Li et al., 2009], [Shi et al., 2010] [Denizel et al., 2010], [Rouf and Zhang, 2011] [Mahapathra et al., 2012], [Li et al., 2013]
- Robust optimization problems [Wei *et al.*, 2011]

Main current limitations

- Single product or single period planning problem
- Uncertainty on returns quantity or on returns quality

Main current limitations

- Single product or single period planning problem
- Uncertainty on returns quantity or on returns quality

Our proposal

Optimizing the planning of remanufacturing activities:

- for a multi-product multi-period setting
- with uncertainty on both returns quantity and quality
- \rightarrow Two-stage stochastic programming approach

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Plan

Introduction

- 2 State of the art
- 3 Deterministic optimization problem
 - Proposed stochastic programming approach
 - 5 Preliminary computational results
 - 6 Conclusion and perspectives

イロト イヨト イヨト イ

Problem description (1)

Product flows

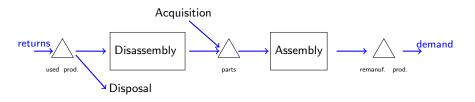
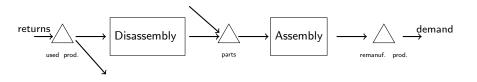
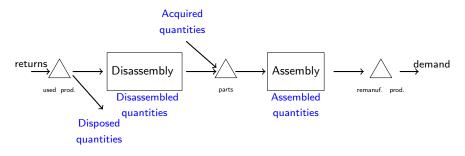



Image: A math a math

Deterministic optimization problem

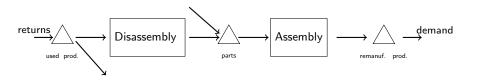
Problem description (3)


Main decisions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

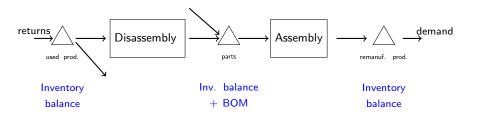
Problem description (3)

Main decisions



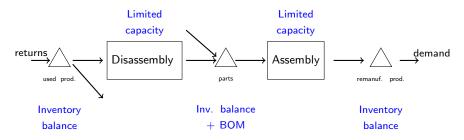
・ロン ・回 と ・ ヨン・

Deterministic optimization problem


Problem description (3)

Constraints

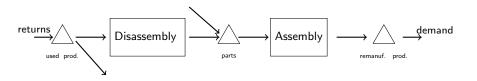
Problem description (3)


Constraints

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Problem description (3)

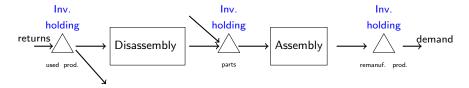
Constraints


GDT COS 2015 16 / 45

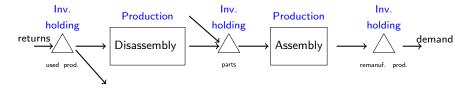
・ロト ・回ト ・ヨト ・

Deterministic optimization problem

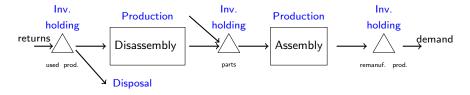
Problem description (4)


Costs

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

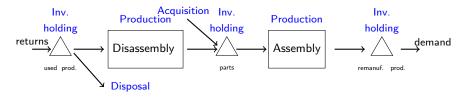

Problem description (4)

Costs


Problem description (4)

Costs

Problem description (4)


Costs

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Problem description (4)

Costs

・ロト ・回ト ・ヨト ・

Problem description (5)

Quality of the returned products

Use of a finite set of discrete quality levels For each returned product type and each quality level:

- A disassembly bill-of-material
- A per unit disassembly capacity consumption
- A per unit disassembly cost

[Jayaraman, 2006]

Assumption

The returned products have already been sorted and assigned to a quality level.

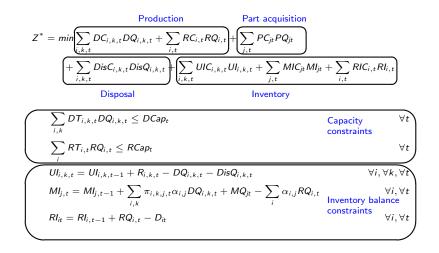
$$Z^{*} = \min \sum_{i,k,t} DC_{i,k,t} DQ_{i,k,t} + \sum_{i,t} RC_{i,t} RQ_{i,t} + \sum_{j,t} PC_{jt} PQ_{jt} + \sum_{i,k,t} DisC_{i,k,t} DisQ_{i,k,t} + \sum_{i,k,t} UIC_{i,k,t} UI_{i,k,t} + \sum_{j,t} MIC_{jt} MI_{jt} + \sum_{i,t} RIC_{i,t} RI_{i,t}$$

$$\sum_{i,k} DT_{i,k,t} DQ_{i,k,t} \le DCap_t \qquad \forall t$$

$$\sum_{i} RT_{i,t} RQ_{i,t} \le RCap_t \qquad \forall t$$

$$UI_{i,k,t} = UI_{i,k,t-1} + R_{i,k,t} - DQ_{i,k,t} - DisQ_{i,k,t} \qquad \forall i, \forall k, \forall t$$

$$MI_{j,t} = MI_{j,t-1} + \sum_{i,k} \pi_{i,k,j,t} \alpha_{i,j} DQ_{i,k,t} + MQ_{jt} - \sum_{i} \alpha_{i,j} RQ_{i,t} \qquad \forall i, \forall t$$


$$RI_{it} = RI_{i,t-1} + RQ_{i,t} - D_{it} \qquad \forall i, \forall t$$

► ◀ Ē ► Ē ∽ ९ (~ GDT COS 2015 19 / 45

イロト イヨト イヨト イヨト

$$\begin{aligned} & \underset{\substack{i,k,t}{Production}}{Part acquisition} \\ Z^* &= \min \underbrace{\sum_{i,k,t} DC_{i,k,t} DQ_{i,k,t} + \sum_{i,t} RC_{i,t} RQ_{i,t}}_{i,t} + \underbrace{\sum_{j,t} PC_{jt} PQ_{jt}}_{i,k,t} + \sum_{i,t} DisC_{i,k,t} DisQ_{i,k,t}} + \underbrace{\sum_{i,k,t} DisC_{i,k,t} DisQ_{i,k,t}}_{i,k,t} + \sum_{j,t} MIC_{jt} MI_{jt} + \sum_{i,t} RIC_{i,t} RI_{i,t}}_{i,t} \\ & \underset{i,k}{Disposal} \\ & \underset{i,k}{DT_{i,k,t} DQ_{i,k,t}} \leq DCap_{t} \\ & \forall t \\ & \underset{i}{\sum} RT_{i,t} RQ_{i,t} \leq RCap_{t} \\ & \forall i, \forall k, \forall t \\ & MI_{j,t} = MI_{j,t-1} + \sum_{i,k} \pi_{i,k,j,t} \alpha_{i,j} DQ_{i,k,t} + MQ_{jt} - \sum_{i} \alpha_{i,j} RQ_{i,t} \\ & \forall i, \forall t \\ & RI_{it} = RI_{i,t-1} + RQ_{i,t} - D_{it} \end{aligned}$$

<ロ> (日) (日) (日) (日) (日)

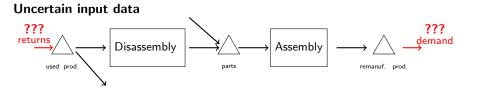
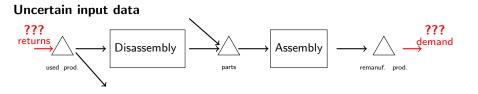
イロト イ団ト イヨト イヨト

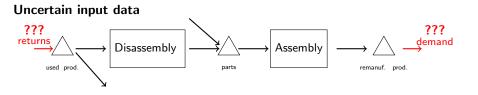
Plan

Introduction

- 2 State of the art
- 3 Deterministic optimization problem
- Proposed stochastic programming approach
 - 5 Preliminary computational results
 - 6 Conclusion and perspectives

イロト イヨト イヨト イ


Image: A match a ma

Practical consequences

- Demand
 - \rightarrow Impact limited to the remanufactured product inventory

Image: A match a ma

Practical consequences

- Demand
 - \rightarrow Impact limited to the remanufactured product inventory
- Returns quantity and quality
 - \rightarrow Disorganization of the disassembly and assembly production plan

A B A B
 A B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Modeling consequences

$$Z^{*} = \min \sum_{i,k,t} DC_{i,k,t} DQ_{i,k,t} + \sum_{i,t} RC_{i,t} RQ_{i,t} + \sum_{j,t} PC_{jt} PQ_{jt} + \sum_{i,k,t} DisC_{i,k,t} DisQ_{i,k,t} + \sum_{i,k,t} UIC_{i,k,t} UI_{i,k,t} + \sum_{j,t} MIC_{jt} MI_{jt} + \sum_{i,t} RIC_{i,t} RI_{i,t}$$

$$\sum_{i,k} DT_{i,k,t} DQ_{i,k,t} \le DCap_t \qquad \forall t$$

$$\sum_{i} RT_{i,t} RQ_{i,t} \le RCap_t \qquad \forall t$$

$$UI_{i,k,t} = UI_{i,k,t-1} + \frac{\tilde{R}_{i,k,t}}{\tilde{R}_{i,k,t}} - DQ_{i,k,t} - DisQ_{i,k,t} \qquad \forall i, \forall k, \forall t$$

$$MI_{j,t} = MI_{j,t-1} + \sum_{i,k} \pi_{i,k,j,t} \alpha_{i,j} DQ_{i,k,t} + MQ_{jt} - \sum_{i} \alpha_{i,j} RQ_{i,t} \qquad \forall i, \forall t$$

$$Rl_{it} = Rl_{i,t-1} + RQ_{i,t} - \tilde{D}_{it}$$

Feasibility issues for the $\forall i, \forall t$
inventory balance constraints !

イロト イヨト イヨト イヨト

Uncertainty representation

Continuous random variables

- Uncertainty mostly due to forecasting errors
- Forecasting errors = Normally distributed random variables
- Terms involving integrals in the mathematical formulation
- $\bullet \ \rightarrow \ {\rm Computational} \ {\rm difficulties}$

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

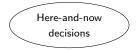
Uncertainty representation

Continuous random variables

- Uncertainty mostly due to forecasting errors
- Forecasting errors = Normally distributed random variables
- Terms involving integrals in the mathematical formulation
- $\bullet \ \rightarrow \ {\rm Computational} \ {\rm difficulties}$

A finite set of discrete scenarios

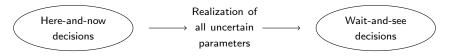
- Monte Carlo sampling of the continuous random variables $\tilde{R}_{i,k,t}$ and \tilde{D}_{it}
- A scenario s = a possible realization of all uncertain parameters
 - $R_{i,k,t}^{s}$: returned quantity for product (i, k) in t in scenario s
 - D_{it}^{s} : demand for product *i* in *t* in scenario *s*
- The larger the sample size, the better the approximation.


< 口 > < 同 > < 三 > < 三

A two-stage decision process

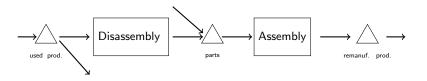
・ロン ・回 と ・ ヨン・

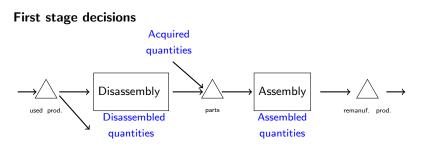
A two-stage decision process


 "Here-and-now" decisions Before the realization of the uncertain parameters Decisions common for all scenarios

A B A B A B A

A two-stage decision process

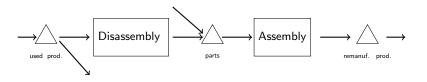

- "Here-and-now" decisions Before the realization of the uncertain parameters Decisions common for all scenarios
- "Wait-and-see" decisions / Recourse actions After the realization of the uncertain parameters Decisions specific to each scenario



A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Two-stage stochastic programming approach

First stage decisions



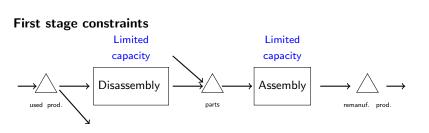
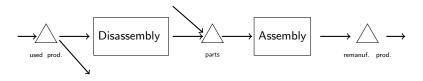

GDT COS 2015 27 / 45

Image: A math a math

Two-stage stochastic programming approach

First stage constraints

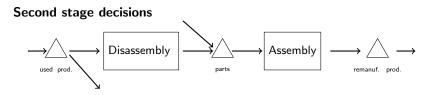


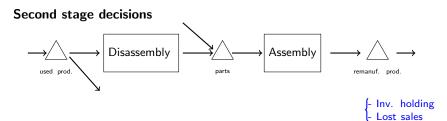
A B > A B >

Two-stage stochastic programming approach

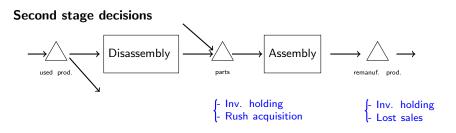
First stage costs

Two-stage stochastic programming approach


First stage costs

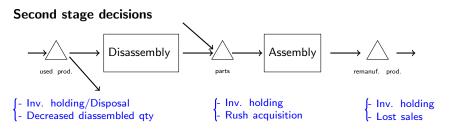
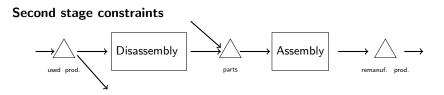
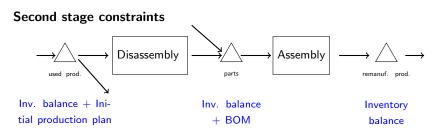

GDT COS 2015 29 / 45

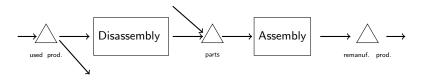
・ロト ・回ト ・ヨト ・

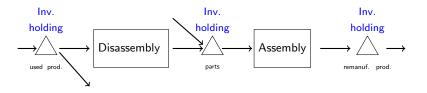

Two-stage stochastic programming approach

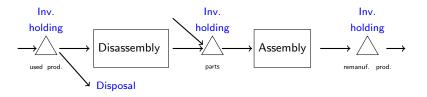
Two-stage stochastic programming approach

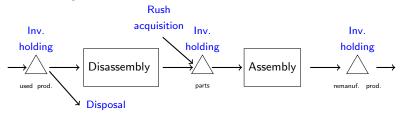
Two-stage stochastic programming approach

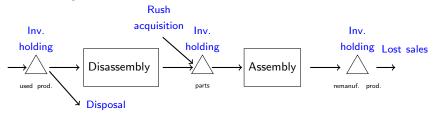

Image: A match a ma


Two-stage stochastic programming approach





A D > A B > A B >



◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

・ロト ・回ト ・ヨト ・

$$Z^{*} = \min \sum_{i,k,t} DC_{i,k,t} DQ_{i,k,t} + \sum_{i,t} RC_{i,t} RQ_{i,t} + \sum_{j,t} MPC_{jt} MQ_{jt}$$

+ $\sum_{s} \frac{1}{S} \Big[\sum_{i,k,t} DisC_{i,k,t} DisQ_{i,k,t}^{s} + \sum_{i,k,t} UIC_{i,k,t} UI_{i,k,t}^{s} + \sum_{j,t} MIC_{jt} MI_{j,t}^{s} \Big]$
+ $\sum_{jt} RMC_{jt} RMQ_{j,t}^{s} + \sum_{i,t} RIC_{i,t} RI_{i,t}^{s} + \sum_{i,t} LSC_{i,t} LS_{i,t}^{s} \Big]$

$$\sum_{i,k} DT_{i,k,t} DQ_{i,k,t} \le DCap_t \qquad \forall t$$

$$\sum_{i} RT_{i,t} RQ_{i,t} \le RCap_t \qquad \forall t$$

$$Ul_{i,k,t}^{s} = Ul_{i,k,t-1}^{s} + R_{i,k,t}^{s} - modDQ_{i,k,t}^{s} - DisQ_{i,k,t}^{s} \qquad \forall i, \forall k, \forall t, \forall s$$

$$modDQ_{i,k,t}^s \leq DQ_{i,k,t} \qquad \forall i, \forall k, \forall t, \forall s$$

$$\begin{aligned} MI_{j,t}^{s} &= MI_{j,t-1}^{s} + \sum_{i,k} \pi_{i,k,j,t} \alpha_{i,j} modDQ_{i,k,t}^{s} \\ &+ MQ_{jt} + RMQ_{j,t}^{s} - \sum \alpha_{i,j} RQ_{i,t} \end{aligned}$$

$$RI_{it}^{s} = RI_{i,t-1}^{s} + RQ_{i,t} + L_{i,t}^{s} - D_{it}^{s} \qquad \qquad \forall i, \forall t, \forall s$$

$$Z^{*} = \min \left\{ \sum_{i,k,t} DC_{i,k,t} DQ_{i,k,t} + \sum_{i,t} RC_{i,t} RQ_{i,t} + \sum_{j,t} MPC_{jt} MQ_{jt} + \left\{ \sum_{s} \frac{1}{S} \left[\sum_{i,k,t} DisC_{i,k,t} DisQ_{i,k,t}^{s} + \sum_{i,k,t} UIC_{i,k,t} UI_{i,k,t}^{s} + \sum_{j,t} MIC_{jt} MI_{j,t}^{s} + \sum_{j,t} RMC_{jt} RMQ_{j,t}^{s} + \sum_{i,t} RIC_{i,t} RI_{i,t}^{s} + \sum_{i,t} LSC_{i,t} LS_{i,t}^{s} \right\} \right\}$$
First-stage costs

$$\sum_{i,k} DT_{i,k,t} DQ_{i,k,t} \le DCap_t \qquad \forall t$$

$$\sum_{i} RT_{i,t} RQ_{i,t} \le RCap_t \qquad \forall t$$

$$Ul_{i,k,t}^{s} = Ul_{i,k,t-1}^{s} + R_{i,k,t}^{s} - modDQ_{i,k,t}^{s} - DisQ_{i,k,t}^{s} \qquad \forall i, \forall k, \forall t, \forall s$$

$$modDQ_{i,k,t}^{s} \leq DQ_{i,k,t} \qquad \forall i, \forall k, \forall t, \forall s$$

$$\begin{aligned} MI_{j,t}^{s} &= MI_{j,t-1}^{s} + \sum_{i,k} \pi_{i,k,j,t} \alpha_{i,j} modDQ_{i,k,t}^{s} \\ &+ MQ_{it} + RMQ_{i}^{s} - \sum \alpha_{i,j} RQ_{i,t} \end{aligned}$$

$$+ MQ_{jt} + RMQ_{j,t}^{s} - \sum_{i} \alpha_{i,j} RQ_{i,t} \qquad \forall i, \forall t, \forall s$$

$$RI_{it}^{s} = RI_{i,t-1}^{s} + RQ_{i,t} + L_{i,t}^{s} - D_{it}^{s} \qquad \forall i, \forall t, \forall s$$

GDT COS 2015 34 / 45

$$Z^{*} = \min \left\{ \sum_{i,k,t} DC_{i,k,t} DQ_{i,k,t} + \sum_{i,t} RC_{i,t} RQ_{i,t} + \sum_{j,t} MPC_{jt} MQ_{jt} + \sum_{i,k,t} \frac{1}{5} \left[\sum_{i,k,t} DisC_{i,k,t} DisQ_{i,k,t}^{s} + \sum_{i,k,t} UIC_{i,k,t} UI_{i,k,t}^{s} + \sum_{j,t} MIC_{jt} MI_{j,t}^{s} + \sum_{i,t} RMC_{jt} RMQ_{j,t}^{s} + \sum_{i,t} RIC_{i,t} RI_{i,t}^{s} + \sum_{i,t} LSC_{i,t} LS_{i,t}^{s} \right] \right\}$$

Second-stage costs

$$\sum_{i,k} DT_{i,k,t} DQ_{i,k,t} \leq DCap_{t}$$
First-stage $\forall t$
constraints $\forall t$

$$\sum_{i} RI_{i,t}RQ_{i,t} \leq RCap_{t} \qquad \forall t$$

$$U_{i,k,t}^{s} = UI_{i,k,t-1}^{s} + R_{i,k,t}^{s} - modDQ_{i,k,t}^{s} - DisQ_{i,k,t}^{s} \qquad \forall i, \forall k, \forall t, \forall s$$

$$modDQ_{i,k,t}^{s} \leq DQ_{i,k,t} \qquad \forall i, \forall k, \forall t, \forall s$$

$$MI_{j,t}^{s} = MI_{j,t-1}^{s} + \sum_{i,k} \pi_{i,k,j,t}\alpha_{i,j}modDQ_{i,k,t}^{s} \qquad \text{Second-stage}$$

$$constraints$$

$$+ MQ_{jt} + RMQ_{j,t}^{s} - \sum_{i} \alpha_{i,j}RQ_{i,t} \qquad \forall i, \forall t, \forall s$$

$$RI_{it}^{s} = RI_{i,t-1}^{s} + RQ_{i,t} + L_{i,t}^{s} - D_{it}^{s} \qquad \forall i, \forall t, \forall s$$

C. Gicquel, LRI, Université Paris Saclay

GDT COS 2015 35 / 45

Plan

Introduction

- 2 State of the art
- 3 Deterministic optimization problem
- Proposed stochastic programming approach
- 5 Preliminary computational results
 - Conclusion and perspectives

・ロン ・回 と ・ ヨン・

Instances

Instance size

	Used/remanuf.	Quality		
	products	levels	Parts	Periods
Instance 1	2	6	2	2

Numerical values of the deterministic parameters

Case study presented in [Jayaraman, 2006] Remanufacturing of mobile phones

Scenario generation

- Random parameters: Normal distribution $\mathcal{N}(\mu, \sigma)$
- μ : case study presented in [Jayaraman, 2006]
- σ : 0.1 μ or 0.2 μ

イロト イヨト イヨト イヨ

Computational difficulty

Results for $\sigma = 0.1 \mu$

Scenarios	Variables	Constraints	Cost	Std dev.	Comp. time
1	120	60	89160	-	0.05s
10	912	564	96047	1355	0.05s
100	8832	5604	98810	534	0.30s
1000	88032	56004	98860	149	7.05s
2000	176032	112004	98970	71	19.1s
5000	440032	280004	98898	69	70.9s
10000	880032	560004	-	-	_

- Resolution with CPLEX 12.6

- PC running under Windows 7, Intel Core i5 (2.6 GHz), 4Go of RAM

- Average values on 10 randomly generated samples

Computational difficulty

Results for $\sigma = 0.2\mu$

Scenarios	Variables	Constraints	Cost	Std dev.	Comp. time
1	120	60	89160	-	0.05s
10	912	564	102774	2554	0.05s
100	8832	5604	110047	684	0.4s
1000	88032	56004	110136	319	7.4s
2000	176032	112004	109924	226	20.5s
5000	440032	280004	110140	227	78.4s
10000	880032	560004	_	-	-

- Resolution with CPLEX 12.6

- PC running under Windows 7, Intel Core i5 (2.6 GHz), 4Go of RAM

- Average values on 10 randomly generated samples

Value of stochastic programming Results for $\sigma = 0.1 \mu$

Scenarios	Cost	Post Optim. Eval.
1	89160	129209
10	96047	102499
100	98810	99150
1000	98860	98942
2000	98970	98928
5000	98898	98922
10000	-	-

- Resolution with CPLEX 12.6

- PC running under Windows 7, Intel Core i5 (2.6 GHz), 4Go of RAM
- Average values on 10 randomly generated samples
- Post optimization analysis carried out on 10000 out-of-sample scenarios

Value of stochastic programming Results for $\sigma = 0.2\mu$

Scenarios	Cost	Post Optim. Eval.
1	89160	173043
10	102774	117586
100	110047	110649
1000	110136	110514
2000	109924	110107
5000	110140	110085
10000	-	_

- Resolution with CPLEX 12.6

- PC running under Windows 7, Intel Core i5 (2.6 GHz), 4Go of RAM
- Average values on 10 randomly generated samples
- Post optimization analysis carried out on 10000 out-of-sample scenarios

Plan

Introduction

- 2 State of the art
- 3 Deterministic optimization problem
- Proposed stochastic programming approach
- 5 Preliminary computational results
- 6 Conclusion and perspectives

・ロン ・回 と ・ ヨン・

Conclusion

Remanufacturing planning under uncertainty

- Aggregate production planning
- Multi-product multi-period problem
- Uncertainty on the demand, returns quantity and quality

Conclusion

Remanufacturing planning under uncertainty

- Aggregate production planning
- Multi-product multi-period problem
- Uncertainty on the demand, returns quantity and quality

Two-stage stochastic programming approach

- Uncertainty represented by a set of discrete scenarios
- First-stage decisions: initial production and supply planning
- Second-stage decisions: planning adjustments applicable in practice
- Formulation of a large-size linear program
- Preliminary computational results on small instances

Perspectives

Short-term perspectives

- Solve instances with more products and more periods
- Improve sample generation
- Develop an efficient solution approach

・ロン ・回 と ・ ヨン・

Perspectives

Short-term perspectives

- Solve instances with more products and more periods
- Improve sample generation
- Develop an efficient solution approach

Mid-term perspectives

- Improve the production planning problem representation:
 - more activities: sorting/grading, part refurbishing
 - hybrid manufacturing/remanufacturing system
 - non-linear production costs
- Improve the uncertainty representation
 - \rightarrow multi-stage decision process

Thank you for your attention !