

Dynamic capacity control for manufacturing environments

Tanja Mlinar

IÉSEG School of Management, France

t.mlinar@ieseg.fr

December 03, 2015

GdT COS 2015

IÉSEG

Mlinar

• Make-To-Order environments

- Revenue management for operations with urgent orders, (with P. Chevalier, A. Lamas, L. Lu)
 - European Journal of Operational Research
- Dynamic admission control for two customer classes with stochastic demands and strict due dates, (with P. Chevalier)
 - International Journal of Production Research

• Hybrid Make-To-Stock and Make-To-Order environments

- Revenue maximization by integrating order acceptance and stocking policies, (with P. Chevalier, A. Lamas)
 - To be submitted

Mlinar

GdT COS 2015

Dynamic capacity control for Make-To-Order environments

	/linar	GdT COS 2015	IÉSEG	
--	--------	--------------	-------	--

Dynamic capacity control for Make-To-Order environments

The challenge for the company

To make decisions of accepting or rejecting customer requests in order to maximize its profit and to fullfill the promises agreed with the customers.

М	llir	na	r

Motivation

A trade-off between the amount of low profitable orders to accept and the available capacity to allocate future high profitable orders.

- Accepting too many regular orders lead to loosing the possibility to serve more profitable orders.
- Accepting too few regular orders lead to under-utilization of capacity.

Examples

Iron-Steel Industry, Heating, Ventilation and Air-Conditioning (HVAC), High Fashion Clothing...

Mlinar	GdT COS 2015	IÉSEG	

To provide an approach which maximizes the expected net profit of the company by selectively accepting orders from two different demand streams.

- We study the dynamic capacity allocation problem under demand uncertainty in arrivals and order sizes.
- An optimal order acceptance policy (an MDP formulation).
 - The system state space explodes quickly for larger instances.

Mlinar	GdT COS 2015	IÉSEG	
--------	--------------	-------	--

5

N

- We study the dynamic capacity allocation problem under demand uncertainty in arrivals and order sizes.
- An optimal order acceptance policy (an MDP formulation).
 - The system state space explodes quickly for larger instances.
- A threshold-based heuristic policy
 - To reduce the cardinality of possible policies, and thus the computational requirements.

linar	GdT COS 2015	IÉSEG	
linar	GdT COS 2015	IESEG	

- We study the dynamic capacity allocation problem under demand uncertainty in arrivals and order sizes.
- An optimal order acceptance policy (an MDP formulation).
 - The system state space explodes quickly for larger instances.
- A threshold-based heuristic policy
 - To reduce the cardinality of possible policies, and thus the computational requirements.
- We evaluate whether the solutions are robust to changes:
 - in operational conditions
 - in actual demand from its estimation (forecast errors).

Problem Description

Assumptions and Parameters

- Infinite-discrete planning horizon.
- Unit discrete capacity.
- Two customer classes $(k = \{1, 2\})$:
 - Stochastic demand:
 - $D_k = B_{k,s}$ with arrival probability p_k and probability of occurrence of size $s \ q_{k,s}$, and $D_k = 0$ with probability $1 p_k$.
 - Number of order sizes of class k, n_k .
 - Revenue per unit capacity r_k : $r_1 > r_2$.
 - Lead time l_k : $L_1 < L_2$.

Assumptions and Parameters

- When an order is placed, processing times are known with certainty.
- No changeovers.
- Accept all or nothing of an order.
- The regular orders can be selectively rejected, urgent orders can only be passively rejected.
- Shipping on or before the due date.

0. Current state

Mlinar	
--------	--

Mlinar	
--------	--

6

Markov Decision Process Formulation

- Three reservation vectors are defined:
 - ${\ensuremath{\,\circ}}$ vector ${\ensuremath{\,x}}$ represents the system state at the beginning of each period
 - $\mathbf{x}[0] \in \{0, 1, \dots, L_1\}$ the total reserved capacity till L_1 the period.
 - $\mathbf{x}[\mathbf{j}] \in \{0,1\}$, the reserved capacity of $L_1 + j$ period, where

$$j = 1, 2, \cdots, L_2 - L_1$$

- $\bullet\,$ vector $\mathbf{\tilde{x}}$ represents the system state upon the acceptance of regular order.
- $\bullet\,$ vector $\hat{\mathbf{x}}$ represents the system state upon the update to the next period.

Mlinar	GdT COS 2015	IÉSEG	
--------	--------------	-------	--

Markov Decision Process Formulation

- Three reservation vectors are defined:
 - ${\ensuremath{\,\circ}}$ vector ${\ensuremath{\,x}}$ represents the system state at the beginning of each period
 - $\mathbf{x}[0] \in \{0, 1, \dots, L_1\}$ the total reserved capacity till L_1 the period.
 - $\mathbf{x}[\mathbf{j}] \in \{0,1\}$, the reserved capacity of $L_1 + j$ period, where

$$j = 1, 2, \cdots, L_2 - L_1$$

- $\bullet\,$ vector $\mathbf{\tilde{x}}$ represents the system state upon the acceptance of regular order.
- $\bullet\,$ vector $\hat{\mathbf{x}}$ represents the system state upon the update to the next period.
- Acceptance policy: vector \mathbf{a} , number of elements n_2 .

Optimal order acceptance policy

3 order sizes of class 2:

Feasible policies:

Χ	ХХ	ххх		
ť	ХХ	ххх		
X	ŤŤ	ххх		
X	ХХ	ŤŤŤ		
ť	ŤŤ	ххх		
7	хх	ttt		
X	ŤŤ	ttt		
7	ŤŤ	ŤŤŤ		

Markov Decision Process Formulation

- System state space: $s = (L_1 + 1) \cdot 2^{L_2 L_1 1}$.
 - $\bullet~\textit{Reservation vector } \mathbf{x}$

•
$$\mathbf{x}[0] \in \{0, 1, \dots, L_1\}$$

• $\mathbf{x}[\mathbf{j}] \in \{0, 1\}$, where $j = 1, 2, \cdots, L_2 - L_1$.

Mlinar	GdT COS 2015	IÉSEG	11

Markov Decision Process Formulation

- System state space: $s = (L_1 + 1) \cdot 2^{L_2 L_1 1}$.
 - \bullet Reservation vector ${\bf x}$
 - $\mathbf{x}[0] \in \{0, 1, \dots, L_1\}$
 - $\mathbf{x}[\mathbf{j}] \in \{0, 1\}$, where $j = 1, 2, \cdots, L_2 L_1$.
- Action space: $2^{n_2} \cdot (L_1 + 1) \cdot 2^{L_2 L_1 1}$.
 - Acceptance policy \mathbf{a} : number of elements n_2 .

Linear Programming model is developed to solve the MDP problem

$\max g$

- $s.t. \qquad V(\mathbf{x}) + g \leq \mathbb{E}_{\mathbf{D}}\left\{R(\mathbf{x},\mathbf{D},\mathbf{a}) + V\left(\widehat{\mathbf{x}}(\mathbf{x},\mathbf{D},\mathbf{a})\right)\right\}, \forall \mathbf{x}, \forall \mathbf{a}.$
- Number of constraints: $2^{n_2} \cdot (L_1+1) \cdot 2^{L_2-L_1-1}$

Mlinar	GdT COS 2015	IÉSEG	12

Optimal order acceptance policy

Limitations:

- Obtaining the optimal policy becomes hard when $L_2 L_1$ and n_2 increase.
 - For example, when $L_1 = 5$, $L_2 = 25$ and $n_2 = 5$:
 - The action space: 100, 663, 000.
 - The system state space: 3, 146, 000.

Mlinar	GdT COS 2015	IÉSEG	

13

Limitations:

- Obtaining the optimal policy becomes hard when $L_2 L_1$ and n_2 increase.
 - For example, when $L_1 = 5$, $L_2 = 25$ and $n_2 = 5$:
 - The action space: 100, 663, 000.
 - The system state space: 3, 146, 000.

Our objective:

- To provide efficient heuristic policies by reducing the complexity of the formulation.
 - To reduce the action space.
 - To reduce the system state space.

• To reduce the action space:

- We propose a threshold based policy $t = \{0, 1, 2, \cdots n_2\}$.
 - We modify the MDP formulation in order to provide such a policy.
- New action space: $(n_2 + 1) \cdot (L_1 + 1) \cdot 2^{L_2 L_1 + 1}$.

Mlinar	GdT COS 2015	IÉSEG	
--------	--------------	-------	--

14

Threshold based order acceptance policy

3 order sizes of class 2:

Feasible policies:

Threshold policies:

Χ	ХХ	ХХХ	Χ	ХХ	ххх
ť	ХХ	ххх	*	ХХ	ххх
X	ŤŤ	ххх	*	ŤŤ	ххх
X	ХХ	ttt	*	ŤŤ	ťťť
ť	ŤŤ	ххх			
ť	ХХ	ŤŤŤ			

- X 77 777
- ť ťť ťťť

• To reduce the system state space:

- We aggregate the distributional information in the interval $L_2 L_1 1$.
 - The reduced formulation is used to generate heuristic policies.

Mlinar	GdT COS 2015	IÉSEG	
--------	--------------	-------	--

16

Threshold-based Partial Aggregation Heuristic T-PAH

- Parameter z ∈ {0,..., L₂ − L₁ − 1} controls the level of aggregation in each state of the system
- Size of the state space $(L_1+1) \cdot (L_2 L_1 + 1 z) \cdot 2^z$

MDP Formulation x=(1, 1, 1, 0, 0, 1)size $(L_1+1) \cdot 2^{L_2-L_1+1}$

FAH Optimistic Scenario $x_f=(1,3)$ size $(L_1+1)\cdot(L_2-L_1+1)$

PAH Optimistic Scenario $x_j = (1,1,2), z=1$ size $(L_1+1) \cdot (L_2-L_1+1-z) \cdot 2^z$

Reduction in the computational time

_						
					Aggreg	gation Heuristics
	L_1, L_2	Policy	n_1, n_2	MDP	FAH	PAH (z=4)
	6, 18	threshold unconstrained	3, 7	8.2 133.8	0.02 0.30	0.59 6.18
	6, 30	threshold unconstrained	3, 7	*	0.08 0.74	8.17 38.77

Note: Values are in seconds.

Mlinar	GdT COS 2015	IÉSEG	19

Reduction in the computational time

				Aggreg	ation Heuristics
L_1, L_2	Policy	n_1, n_2	MDP	FAH	PAH (z=4)
6, 18	threshold unconstrained	3, 7	8.2 133.8	0.02 0.30	0.59 6.18
6, 30	threshold unconstrained	3, 7	*	0.08 0.74	8.17 38.77

Note: Values are in seconds.

Reduction in the dimension of the admission problem

				Aggrega	ation Heuristics
L_2	Policy	n_2	MDP	FAH	PAH (z=4)
30	threshold unconstrained	7	469,762 7,516,192	1 21	65 1,032
Note: values in 10^3					

Note: values in 10^3 .

Mlinar	GdT COS 2015	IÉSEG

Structure of the optimal policy

- The threshold policy is the optimal policy for majority of instances.
 - The largest optimality gap is 0.133%.
 - For a very small number of states there is a combinatorial effect related to order sizes.

Mlinar	GdT COS 2015	IÉSEG

20

Structure of the optimal policy

- The threshold policy is the optimal policy for majority of instances.
 - The largest optimality gap is 0.133%.
 - For a very small number of states there is a combinatorial effect related to order sizes.

Structure of the FAH heuristic policy

 \bullet Corresponds to a threshold in the values of $\mathbf{x}_f[0]$ and $\mathbf{x}_f[1].$

Mlinar GdT COS 2015 IÉSEG

20

Robustness to Changes in Operational Parameters

• T-FAH under the realistic and pessimistic scenarios is superior over the other methods.

 The largest optimality gaps under the pessimistic and realistic scenario are lower than the average optimality gap under the PLB policy obtained by a myopic approach (Barut and Sridharan, 2005).

8 AL.		IÉCEC	
Milinar	GdT COS 2015	IESEG	

Efficiency of the T-PAH for the worst instances

• The T-PAH shrinks the optimality gap for the worst 10% of instances.

Mlinar	GdT COS 2015	IÉSEG	22

Robustness to Forecast Errors

T-FAH Realistic Scenario

T-FAH Pesimistic Scenario

Observations

- The impact of errors is considerably smaller when ε₁ > 0.
- The pessimistic scenario underestimates the available capacity in Interval I, the average performance degradation is larger when $\epsilon_1 > 0$

Efficiency of the threshold based policy for large instances

• The average optimality gap of the T-FAH under the realistic scenario is lower than 6.06%.

Mlinar	GdT COS 2015	IÉSEG	24

Conclusions

- The work represents a first work which deals with order acceptance decisions with heterogeneous customer classes by explicitly taking into account uncertainty in demand and a rolling planning horizon
- We showed that the optimal policy is a threshold policy for most of the instances.
- Our threshold heuristic policies are near optimal and can be obtained very quickly.
- Solutions are robust to changes in operational parameters and forecast errors.

Mlinar	GdT COS 2015	IÉSEG	

Conclusions

- The work represents a first work which deals with order acceptance decisions with heterogeneous customer classes by explicitly taking into account uncertainty in demand and a rolling planning horizon
- We showed that the optimal policy is a threshold policy for most of the instances.
- Our threshold heuristic policies are near optimal and can be obtained very quickly.
- Solutions are robust to changes in operational parameters and forecast errors.
- Future research
 - To determine under which conditions the optimal policy has a threshold structure.
 - To prove analytically that the heuristic policy is a threshold in values of $x_f[0]$ and $x_f[1].$

Mlinar	GdT COS 2015	IÉSEG

Dynamic Capacity Control: Hybrid Make-to-Order and Make-to-Stock Environments

Mlinar	GdT COS 2015	IÉSEG	
--------	--------------	-------	--

Decision

Assumptions:

- Unit discrete capacity.
- Deterministic processing times.
- Accept all or nothing of an incoming order.
- No tardiness.
- Storage capacity of *I_{max}* units.
- Unit holding cost per period.

In order to maximize its profit, the manufacturer must decide:

- whether to accept or reject a regular order.
- whether to increase or not the inventory level.

Mlinar	GdT COS 2015	IÉSEG	
--------	--------------	-------	--

Problem Description Four types of stock problems

Stock of urgent units

Ready to pay holding costs to meet short

lead times.

Stock of urgent and regular units

Heterogeneous products.

Stock of regular units

Regular orders correspond to more standardized products.

Joint stock of units

Products only differ in lead times.

29

Mlinar	GdT COS 2015	IÉSEG

Stock of urgent units

Mlinar GdT COS 2015 IÉSEG	Mlinar	GdT COS 2015	IÉSEG	30
---------------------------	--------	--------------	-------	----

Methodology

We formulate the problem as a Markov Decision Process (MDP)

- $\bullet\,$ The state of the system is described by (x,s)
 - $\bullet \ x$ keeps track of capacity that has been reserved for processing;

$$x[j] = \begin{cases} 1 & \text{if the capacity of } j \text{th period is reserved} \\ 0 & \text{otherwise} \end{cases}, \text{for } j = 1..., L_2.$$

- s denotes the inventory level of class 1, i.e., $s \in \{0, ..., Imax\}$.
- $A(\boldsymbol{x},\boldsymbol{s})$ represents the decision made upon the arrivals of class 1 and class 2 orders,
- We maximize the expected long run revenues.

31

Preliminary Results

Stock of urgent units

We studied the order acceptance and inventory problem for $\mathsf{MTO}/\mathsf{MTS}$ environments.

The proposed MDP formulation considers different types of inventory problems.

• The resolution implies high computational requirements.

Future research

• To propose an heuristic approach consisting in a parametric aggregation of the state space.

Dynamic capacity control for manufacturing environments

Thank you for your attention!

Mlinar	GdT COS 2015	IÉSEG	34