Envy-free division of a cake with groups, and other extensions

Frédéric Meunier

École des Ponts
October 23rd, 2023

Joint work with Ayumi Igarashi

Dividing a cake

Theorem (Folklore)

To divide a cake between two people in an envy-free manner, let one person cut the cake and let the other choose.

(1) Standard setting

(2) Group extension
(3) Two-dimensional topology
(4) Algorithm
(5) Extensions

Plan

(1) Standard setting
(2) Group extension
(3) Two-dimensional topology
(4) Algorithm
(5) Extensions

Standard setting

Envy-free cake division

A cake has to be shared between people.

It will be divided into as many pieces as there are people.

Each person will be assigned a piece.

Envy-free division: each person prefers his piece.

Envy-free cake division

A cake has to be shared between people.

It will be divided into as many pieces as there are people.

Each person will be assigned a piece.

Envy-free division: each person is at least as happy with his piece than with any other piece.

Model

\& n players: $j=1, \ldots, n$
a Cake: $[0,1]=\underset{0}{\vdash_{1}}$
\& Division of the cake: partition \mathcal{I} of $[0,1]$ into nonempty intervals (the pieces)
2. Player j has a choice function:

$$
c_{j}:\{\text { divisions }\} \rightarrow 2^{\{\text {pieces }\}} .
$$

Given a division \mathcal{I}, player j is happy with the pieces $I \in \mathcal{I}$ such that $I \in c_{j}(\mathcal{I})$.
Given a division \mathcal{I}, an envy-free assignment is
$\pi:$ \{players $\} \longrightarrow$ \{pieces $\}$
$\star \pi$ is bijective.
$\star \pi(j) \in c_{j}(\mathcal{I})$ for every player j.

Existence of envy-free divisions

d Choice function c_{j} is closed if

$$
\lim _{k \rightarrow \infty} \mathcal{I}^{k}=\mathcal{I} \text { and } I^{k} \in c_{j}\left(\mathcal{I}^{k}\right) \forall k \quad \Longrightarrow \quad I^{\infty} \in c_{j}(\mathcal{I})
$$

Choice function c_{j} is hungry if

$$
I \in c_{j}(\mathcal{I}) \quad \Longrightarrow \quad \lambda(I) \neq 0
$$

Theorem Stromquist, Woodall 1980

No matter how many players there are, when all choice functions are closed and hungry, there is always an envy-free division.

Algorithmic consideration

Theorem Deng-Qi-Saberi 2012

For every fixed number $k \geqslant 3$ of players with hungry choice functions, computing an (approximate) envy-free division is PPADcomplete.

Theorem Deng-Qi-Saberi 2012

Suppose there are 3 players and the choice function are hungry and monotone. Then computing an (approximate) envy-free division can be done in $O\left(\log ^{2} 1 / \varepsilon\right)$.

Monotonicity: Consider a division \mathcal{I}, a player j, and a piece $I \in \mathcal{I}$ such that $I \in c_{j}(\mathcal{I})$. For any new division \mathcal{I}^{\prime} with $I^{\prime} \supseteq I$ and $K^{\prime} \subseteq K$ for all other pieces $K \neq I$, we have $I^{\prime} \in c_{j}\left(\mathcal{I}^{\prime}\right)$.

Plan

(1) Standard setting

(2) Group extension
(3) Two-dimensional topology
(4) Algorithm
(5) Extensions

Group extension

Cake division among groups

Theorem Segal-Halevi-Suksompong 2021

Consider an instance with n players. Let k_{1}, \ldots, k_{q} be nonnegative integers summing up to n. When all choice functions are closed and hungry, there exist a division into q pieces and a partition of the players into q groups of size k_{1}, \ldots, k_{q} with an envy-free assignment of the pieces to the q groups.

Motivation

\& Public basketball court
\& 30 players want to play on some day
\& Cake = the day
\& Players have different preferences regarding the time at
 which they prefer to play

With the theorem:
It is possible to partition the players into 3 groups of 10 players each, and divide the day into 3 contiguous intervals-one interval per group-so that each group of 10 is happy to play in its designated time slot.

Algorithms

Counterpart to groups of the polynomial result of Deng, Qi, and Saberi (2012).

Theorem Igarashi-M. 2023+

Suppose there are n players and the choice function are hungry and monotone. Then computing 3 groups and an (approximate) envy-free division can be done in $O\left(n \log ^{2} 1 / \varepsilon\right)$.

Plan

(1) Standard setting

(2) Group extension
(3) Two-dimensional topology
(4) Algorithm
(5) Extensions

Two-Dimensional topology

Configuration space

Measuring the popularity

In maths

For cuts located at x and y

$$
\begin{gathered}
f_{i}(x, y):=\frac{1}{n} \times(\# \text { players prefering } i) \\
f_{1}(x, y)+f_{2}(x, y)+f_{3}(x, y)=1
\end{gathered}
$$

With:

- $f=\left(f_{1}, f_{2}, f_{3}\right)$
- $\square=\{(x, y): x, y \in[0,1]\}$
- $\triangle=\left\{\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{R}_{+}: z_{1}+z_{2}+z_{3}=1\right\}$

$$
f: \square \rightarrow \triangle
$$

Finishing the proof

Lemma

The map f is surjective.

Let $\omega=\left(k_{1} / n, k_{2} / n, k_{3} / n\right)$.
In particular, there exists $\left(x^{*}, y^{*}\right) \in \square$ such that $f\left(x^{*}, y^{*}\right)=\omega$.
This means:
$\left(x^{*}, y^{*}\right)=$ division into 3 pieces for which it exists a partition of the players into 3 groups of size k_{1}, k_{2}, k_{3} with an envy-free assignment.

Plan

(1) Standard setting
(2) Group extension
(3) Two-dimensional topology
(4) Algorithm
(5) Extensions

Algorithms

Computing the intersection

Lemma "Horizontal-monotonicity"

If $x \leqslant x^{\prime}$, then $f_{1}(x, y) \leqslant f_{1}\left(x^{\prime}, y\right)$.

Up to a polynomially computable perturbation, intersection well-defined
\Longrightarrow binary search computing $f(\{(x, y): x \in[0,1]\}) \cap \Omega$ for any fixed $y \in[0,1]$ in $O(n \log 1 / \varepsilon)$

Strip containing ω

\Longrightarrow second binary search computing y^{L} and y^{R} such that

- $\left|y^{R}-y^{L}\right|=\varepsilon$
- $f\left(\left\{\left(x, y^{L}\right): x \in[0,1]\right\}\right) \cap \Omega$ is on the left of ω
- $f\left(\left\{\left(x, y^{R}\right): x \in[0,1]\right\}\right) \cap \Omega$ is on the right of ω

Complexity $=O\left(n \log ^{2} \varepsilon\right)$

Locating ω

Last binary search: identify a small $(1 / \varepsilon \times 1 / \varepsilon)$-square "whose image by $f^{\prime \prime}$ contains ω.

This is an "approximate" envy-free division.
Complexity still $O\left(n \log ^{2} \varepsilon\right)$

Affine extension and approximate division

\& Actually, it is not really the image by f.
of We have a small square with vertices $v_{1}, v_{2}, v_{3}, v_{4}$ such that $\omega \in \operatorname{conv}\left(f\left(v_{1}\right), f\left(v_{2}\right), f\left(v_{3}\right), f\left(v_{4}\right)\right)$.
α_{1} In other words, there exist nonnegative $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ with $\sum_{\ell} \alpha_{\ell}=1$ s.t.

$$
\sum_{\ell} \alpha_{\ell} f_{i}\left(v_{\ell}\right)=\frac{k_{i}}{n}
$$

Finishing the proof

Let $w_{j i}:=\sum_{\ell} \alpha_{\ell} \mathbf{1}$ (player j prefers piece i at v_{ℓ}). Then:

$$
w_{j 1}+w_{j 2}+w_{j 3}=1 \forall j \quad \text { and } \quad \sum_{j=1}^{n} w_{j i}=k_{i} \forall i
$$

Bipartite graph H
players

Edges $j i$ correspond to $w_{j i}>0$.
We want $F \subseteq E(H)$ such that

- $\operatorname{deg}_{F}(j)=1$ for all j
- $\operatorname{deg}_{F}(i)=k_{i}$ for all i
total unimodularity of

$$
\left\{\boldsymbol{x} \in \mathbb{R}_{+}^{E}: \sum_{e \in \delta_{H}(j)} x_{e}=1 \forall j \in[n], \quad \sum_{e \in \delta_{H}(i)} x_{e}=k_{i} \forall i \in\{1,2,3\}\right\} \quad \text { QED }
$$

Plan

(1) Standard setting

(2) Group extension
(3) Two-dimensional topology
(4) Algorithm
(5) Extensions

Further extensions

Birthday and poison

> Birthday player:
> classical extension of cake-cutting, does not share his preferences

Non-hungry player:
recent extension, might prefer a piece of length 0

Birthday and poison

Theorem Woodall 1980

Consider an instance with n players, one of them being a "birthday" player. There exists a division into n pieces such that, no matter which piece is chosen by the "birthday" player, there is an envy-free assignment of the remaining pieces to the $n-1$ players.

Theorem Avvakumov-Karasev 2020

Consider an instance with n players, with closed choice functions. If n is a prime power, then there exists an envy-free division.

Birthday, bad cake, groups

Theorem Igarashi-M. 2023

Consider an instance of a cake with n players, one of them being a "birthday" player, with closed choice functions. Let q be an integer such that $q \leqslant n$. If q is a prime power, then there exists a division into q pieces so that no matter which piece is chosen by the "birthday" player, there is an envy-free assignment of the remaining pieces with each piece assigned to the same number of players (up to one player).

Here, an envy-free assignment is $\pi:$ \{players $\} \longrightarrow$ \{pieces $\}$
$\star \mid \pi^{-1}$ (piece $\left.I\right) \mid \in\{\lfloor n / q\rfloor,\lceil n / q\rceil\}$ for every piece I.
$\star \pi(j) \in c_{j}(\mathcal{I})$ for every player j.

Main tool

Chessboard complex $\triangle_{2 n-1, n}$

Theorem Volovikov 1980

Let p be a prime number and $G=\left(\left(\mathbb{Z}_{p}\right)^{k},+\right)$. Consider a G-invariant triangulation of $\Delta_{2 n-1, n}$, whose vertices are G equivariently labeled with elements of G. Then there is a fully labeled simplex.

Lemma

Combinatorial optimization

Let $a_{1}, a_{2}, \ldots, a_{q}$ be nonnegative real numbers summing up to $n-1$, and $H=([n-1],[q] ; E)$ a bipartite graph with nonnegative edge weights w_{e}. If

$$
\sum_{e \in \delta_{H}(j)} w_{e}=1 \quad \forall j \in[n-1] \quad \text { and } \sum_{e \in \delta_{H}(i)} w_{e}=a_{i} \quad \forall i \in[q],
$$

then for every i^{*}, there is an assignment $\pi:[n-1] \rightarrow[q]$ s.t.

- for each $j \in[n-1]$, the vertex $\pi(i)$ is a neighbor of i in H,
- for each $i \in[q] \backslash\left\{i^{*}\right\}$, we have $\left|\pi^{-1}(i)\right| \in\left\{\left\lfloor a_{i}\right\rfloor,\left\lceil a_{i}\right\rceil\right\}$,
- $\left|\pi^{-1}\left(i^{*}\right)\right|=\left\lfloor a_{i^{*}}\right\rfloor$.

Proof. polytope

$$
\left\{x \geqslant \mathbf{0}: \sum_{e \in \delta_{H}(j)} x_{e}=1 \forall j \in[n-1] \text { and }\left\lfloor a_{i}\right\rfloor \leqslant \sum_{e \in \delta_{H}(i)} x_{e} \leqslant\left\lceil a_{i}\right\rceil \forall i \in[q]\right\}
$$

total unimodularity, carefully chosen extreme point of the polytope

Thank you

