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Dividing a cake

To divide a cake between two people in an envy-free manner, let
one person cut the cake and let the other choose.

Theorem (Folklore)
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Standard setting
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Envy-free cake division

A cake has to be shared between people.

It will be divided into as many pieces as there are people.

Each person will be assigned a piece.

Envy-free division: each person prefers his piece.
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Envy-free cake division

A cake has to be shared between people.

It will be divided into as many pieces as there are people.

Each person will be assigned a piece.

Envy-free division: each person is at least as happy with his piece
than with any other piece.
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Model
♣ n players: j = 1, . . . , n

♣ Cake: [0, 1] =
0 1

♣ Division of the cake: partition I of [0, 1] into nonempty intervals (the
pieces)

♣ Player j has a choice function:

cj : {divisions} → 2{pieces} .

Given a division I, player j is happy with the pieces I ∈ I such that I ∈ cj (I).

♣ Given a division I, an envy-free assignment is
π : {players} −→ {pieces}

? π is bijective.

? π(j) ∈ cj(I) for every player j .

7/45



Existence of envy-free divisions

♣ Choice function cj is closed if

lim
k→∞

Ik = I and I k ∈ cj(Ik) ∀k =⇒ I∞ ∈ cj(I)

♣ Choice function cj is hungry if

I ∈ cj(I) =⇒ λ(I ) 6= 0

No matter how many players there are, when all choice functions
are closed and hungry, there is always an envy-free division.

Theorem Stromquist, Woodall 1980
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Algorithmic consideration

For every fixed number k > 3 of players with hungry choice func-
tions, computing an (approximate) envy-free division is PPAD-
complete.

Theorem Deng–Qi–Saberi 2012

Suppose there are 3 players and the choice function are hungry
and monotone. Then computing an (approximate) envy-free di-
vision can be done in O(log2 1/ε).

Theorem Deng–Qi–Saberi 2012

Monotonicity: Consider a division I, a player j , and a piece I ∈ I such that

I ∈ cj(I). For any new division I′ with I ′ ⊇ I and K ′ ⊆ K for all other pieces

K 6= I , we have I ′ ∈ cj(I′).
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Group extension
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Cake division among groups

Consider an instance with n players. Let k1, . . . , kq be nonneg-
ative integers summing up to n. When all choice functions are
closed and hungry, there exist a division into q pieces and a
partition of the players into q groups of size k1, . . . , kq with an
envy-free assignment of the pieces to the q groups.

Theorem Segal-Halevi–Suksompong 2021
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Motivation

♣ Public basketball court

♣ 30 players want to play on some day

♣ Cake = the day

♣ Players have different preferences regarding the time at
which they prefer to play

With the theorem:

It is possible to partition the players into 3 groups of 10 players each, and

divide the day into 3 contiguous intervals—one interval per group—so

that each group of 10 is happy to play in its designated time slot.
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Algorithms

Counterpart to groups of the polynomial result of Deng, Qi, and
Saberi (2012).

Suppose there are n players and the choice function are hungry
and monotone. Then computing 3 groups and an (approximate)
envy-free division can be done in O(n log2 1/ε).

Theorem Igarashi–M. 2023+
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Two-dimensional topology

16/45



Configuration space

x

y x

1 2 3

y

1 3

y

x

17/45



Measuring the popularity
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In maths

For cuts located at x and y

fi (x , y) :=
1

n
× (#players prefering i)

f1(x , y) + f2(x , y) + f3(x , y) = 1 .

With:

• f = (f1, f2, f3)

• � = {(x , y) : x , y ∈ [0, 1]}
• 4 = {(z1, z2, z3) ∈ R+ : z1 + z2 + z3 = 1}

f : �→4
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Finishing the proof

The map f is surjective.

Lemma

Let ω = (k1/n, k2/n, k3/n).

In particular, there exists (x∗, y∗) ∈ � such that f (x∗, y∗) = ω.

This means:
(x∗, y∗) = division into 3 pieces for which it exists a partition of
the players into 3 groups of size k1, k2, k3 with an envy-free
assignment.
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Algorithms
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Computing the intersection

If x 6 x ′, then f1(x , y) 6 f1(x ′, y).

Lemma “Horizontal-monotonicity”

Up to a polynomially computable perturbation, intersection
well-defined

=⇒ binary search computing f
(
{(x , y) : x ∈ [0, 1]}

)
∩ Ω for any

fixed y ∈ [0, 1] in O(n log 1/ε)
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Strip containing ω

=⇒ second binary search computing yL and yR such that

• |yR − yL| = ε

• f
(
{(x , yL) : x ∈ [0, 1]}

)
∩ Ω is on the left of ω

• f
(
{(x , yR) : x ∈ [0, 1]}

)
∩ Ω is on the right of ω

Complexity = O(n log2 ε)
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Locating ω

Last binary search: identify a small (1/ε× 1/ε)-square “whose
image by f ” contains ω.

This is an “approximate” envy-free division.

Complexity still O(n log2 ε)
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Affine extension and approximate division

♣ Actually, it is not really the image by f .

♣ We have a small square with vertices v1, v2, v3, v4 such that
ω ∈ conv

(
f (v1), f (v2), f (v3), f (v4)

)
.

♣ In other words, there exist nonnegative α1, α2, α3, α4 with∑
` α` = 1 s.t. ∑

`

α`fi (v`) =
ki
n
.
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Finishing the proof
Let wji :=

∑
` α`1(player j prefers piece i at v`). Then:

wj1 + wj2 + wj3 = 1 ∀j and
n∑

j=1

wji = ki ∀i .

Bipartite graph H

...

players

pieces

j
i

Edges ji correspond to wji > 0.
We want F ⊆ E (H) such that

• degF (j) = 1 for all j

• degF (i) = ki for all i

total unimodularity ofx ∈ RE
+ :

∑
e∈δH (j)

xe = 1∀j ∈ [n],
∑

e∈δH (i)

xe = ki ∀i ∈ {1, 2, 3}

 QED
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Further extensions
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Birthday and poison

Birthday player:
classical extension of cake-cutting,
does not share his preferences

Non-hungry player:
recent extension, might prefer a
piece of length 0
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Birthday and poison

Consider an instance with n players, one of them being a “birth-
day” player. There exists a division into n pieces such that, no
matter which piece is chosen by the “birthday” player, there is
an envy-free assignment of the remaining pieces to the n − 1
players.

Theorem Woodall 1980

Consider an instance with n players, with closed choice functions.
If n is a prime power, then there exists an envy-free division.

Theorem Avvakumov–Karasev 2020
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Birthday, bad cake, groups

Consider an instance of a cake with n players, one of them being
a “birthday” player, with closed choice functions. Let q be an
integer such that q 6 n. If q is a prime power, then there exists
a division into q pieces so that no matter which piece is chosen
by the “birthday” player, there is an envy-free assignment of the
remaining pieces with each piece assigned to the same number
of players (up to one player).

Theorem Igarashi–M. 2023

Here, an envy-free assignment is π : {players} −→ {pieces}
? |π−1(piece I )| ∈ {bn/qc, dn/qe} for every piece I .

? π(j) ∈ cj(I) for every player j .
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Main tool

x1 x3 x4

x2 = 0 x5 = 0

x3 x4 x5

x1 = x2 = 0

Chessboard complex 42n−1,n

Let p be a prime number and G =
(
(Zp)k ,+

)
. Consider

a G -invariant triangulation of ∆2n−1,n, whose vertices are G -
equivariently labeled with elements of G . Then there is a fully
labeled simplex.

Theorem Volovikov 1980
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Combinatorial optimization

Let a1, a2, . . . , aq be nonnegative real numbers summing up to
n−1, and H = ([n−1], [q];E ) a bipartite graph with nonnegative
edge weights we . If∑
e∈δH(j)

we = 1 ∀j ∈ [n − 1] and
∑

e∈δH(i)

we = ai ∀i ∈ [q] ,

then for every i∗, there is an assignment π : [n − 1]→ [q] s.t.
• for each j ∈ [n− 1], the vertex π(i) is a neighbor of i in H,

• for each i ∈ [q] \ {i∗}, we have |π−1(i)| ∈ {baic, daie},
• |π−1(i∗)| = bai∗c.

Lemma

Proof. polytopex > 0 :
∑

e∈δH (j)

xe = 1∀j ∈ [n − 1] and baic 6
∑

e∈δH (i)

xe 6 daie ∀i ∈ [q]

 ,

total unimodularity, carefully chosen extreme point of the polytope 44/45



Thank you
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