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Given:
> Y C {0,1}": feasibility set of an optimization problem
» U={ueR"| Au< b,0 < u < d}: uncertainty polytope

» ¢: nominal cost vector

Solve:
. T .
minmax u Min-Max
}’EI)} uelU y ( )
Example of U:
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A 3D example

Translated description:
U'={u" eR3|uf +uj +uf <2,0<u”" <1}

/1
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“Natural” description: 8 symmetric copies of the polytope
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o
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Hardness |: the 2-scenarios case is hard

The robust selection problem is NP-hard even when |U| = 2.
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SCN,|S|=p ueU jcs

3. PARTITION PROBLEM:  min max (3 a, ai
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Hardness Il: polytope is more general than 2 scenarios

The robust selection problem is NP-hard when the number of rows of
A is part of the input.
a

1PN G4
6/29



Hardness |l: polytope is more general than 2 scenarios

Corollary

The robust selection problem is NP-hard when the number of rows of
A is part of the input.

Proof.

1. y* €argminmax (c+u)"y < y* €argmin max (c+u)'y
yey u€U yey u€ext(U)

6/29



Hardness |l: polytope is more general than 2 scenarios

Corollary

The robust selection problem is NP-hard when the number of rows of
A is part of the input.

Proof.

1. y* €argminmax (c+u)"y < y* €argmin max (c+u)'y
yey u€U yey u€ext(U)

2. {u,v?} is hard = conv({u?, u?}) is hard.

6/29
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Corollary

The robust selection problem is NP-hard when the number of rows of
A is part of the input.

Proof.

1. y* €argminmax (c+u)"y < y* €argmin max (c+u)'y
yey u€U yey u€ext(U)

2. {u,v?} is hard = conv({u?, u?}) is hard.
3. conv({u!, u?}) can be described by 2n + 2 inequalities
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Constant number of rows
U={ueR"| Au< b,0 <u<d}, sdenotesthe number of rows of A

Theorem

Solving (Min-Max) amounts to solve O(n®) problems of the form
LT

minc'y

yeY

Proof.
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2. we can construct a set |D|* € O(n®) such that:

U Proia | ext(D(y))] € D*
xe{0,1}"

—> enumerate a € D*
3. variables 7, can be substituted by max(yx — f(«),0)
4. max(yx — f(«)) = yk max(1 — f(@)) + (1 — yx) max(—f(«),0)
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Extension |: non-linear objective
The previous results extend to:

. T
min max(c + u) ' f(x
yey uGU( + ) ( )

where fi(x) € {0, Fx} for each y € V.
Examples

» max-cut with uncertain weights:

with F; = 1.
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Extension |: non-linear objective
The previous results extend to:

. T
minmax(c + u) ' f(x
yey ueU( + ) ( )

where fi(x) € {0, Fx} for each y € V.

Examples

| 2

max-cut with uncertain weights:

with F; = 1.

with U;(y) = 1 iff job / fails in schedule y.
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Extension Il: constraint uncertainty

Define:
7 Y=Yr{(a+u)Ty<h Vue U}
- 3 u
st. (a+u)y<h VueU g u)'y < h,
yey @ Yl@)=yn {a(a)Ty < h}
Y= U V(a)
aeD*
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Extension Il: constraint uncertainty
Define:

min CT)/ f yﬂ{( + )T <h VY U}
p— ) e
st. (a+u)y<h VueU - Y= ’
yey (1) V(@) =Yn{a(@)Ty<h
Theorem
y=J V)
aeD*
Corollary

Solving (1) amounts to solve O(n®) problems of the form
min cTy
s.t. 5Ty <h, VYuelU
yey
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master  pricing

y=yMn P
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master  pricing

y=yMnyF

VP = YPn{(a+u)Ty < h, Yu € U}
Master:

min ¢! <Z )\st>
s.t. Z Asxs € YM

AEN

Pricing: min {cTy | x € )7'3}
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Extension |l: constraint uncertainty - D.-W. reformulation

master  pricing

y=yMnyF

YP(a) = YPn{a(a)Ty < h}
Master:

)7” = ypﬁ{(a—l-u)Ty < h, Yu € U}
Master:

- T
min ¢’ <Z/\5Xs> e (g;;&mm)
t T e st Y S Aol

a€eD* s

AeA > Ma)eA

aeD*

T { T ~P} _
ricing: minJc'y | x €Y Pricing: min {cTy|X€yP(Oé)}

See Pessoa et al. [2021] for pre-processing techniques reducing the
number of a € D*
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Step by step definition of the problem

Note: for the sake of simplicity, we consider
A:{(SER"| > (5;§1,0§(5§1}
i€[n]
See Omer et al. [2024] for the generalization to U.

Decision dependent information discovery (DDID)

Before choosing y, one may ask for q deviations to be revealed:
» worst-case realization of those g deviations is considered,
» y is chosen after those g observations.

=DDID seeks for the optimal choice of the g observations.
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Step by step definition of the problem

Note: for the sake of simplicity, we consider

A:{(SeR"| 25,g1,0§5g1}

i€[n]
See Omer et al. [2024] for the generalization to U.

Decision dependent information discovery (DDID)

Before choosing y, one may ask for q deviations to be revealed:
» worst-case realization of those g deviations is considered,
» y is chosen after those g observations.
=DDID seeks for the optimal choice of the g observations.
DDID . .
z = min maxmin max ¢ + didp)yi DDID
wew SEA)’EV(SEA(W,S)Z( i i0i)Yi, ( )
i€[n]
> W={we{0.1)"| T,w=q},

> A(w,d) = {6eA|wob=wo 5}: deviations cannot change once
observed.
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Applications

Any planning process were one may investigate the parameters before
taking the actual decision:

#“4‘ 9
=N

T

organ transplant (e.g. kidney exchange)
Y = {short cycles, short paths} Y = {trees, ...}
Carvalho et al. [2021] Focke et al. [2020]

Many more applications in Vayanos et al. [2020]
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Robust combinatorial optimization
Let's decompose

min max min  max ¢+ did))y;.
WEW GeA YEY SeA(w,5) g:[n]( i+ didi)y;

Remember: A = {(5 €0,1]"] X di < F}.
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Remember: A = {5 €0,1]"] X di < F}.
» How to solve the following 7

max _ (ci + did))y;
SEA(w,5) ,EZ[;]

» And the following ?

min  max ci + didi)y;.
yeYy seA IEZ[;]( )y

Theorem ([Bertsimas and Sim, 2003])

i i+ did;)y; = min Td® 4 mi fyis
iy e 2o+ by = i T g ) ciy,

where d* and c*, ¢ € [n], follow simple formulas.
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Robust combinatorial optimization
Let's decompose
min max min  max Z(c,- +d;id)y;.

weW SeA yEY seA(w,5) b
Remember: A = {(5 €0,1]"] X di < I'}.
» So the following is easy:

min  max ¢+ didi)y;.
YEY scA(w,d) ,EE[;]( )y

» What about the following ?

max min  max ¢ +did)y:.
SeA YEY SeA(w,d) %n:]( i+ didi)y;

= This is our main contribution. We study

®(w) = max min a ¢+ didj)y;,
( ) ;pezyely 5621(;,5) :ez[n:]( )y

under two assumptions:

Yy c{o,1}" and conv(Y) =P
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Linear formulation of the adversary problem |

For a given choice of observations w € W, the (outer) adversary problem
chooses the revealed deviations d:

®(w) = max min  ma ¢+ didi)y;,
(w) Segyely 5€A(“)/<»S) ,ez[;]( )y
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Let us “simplify” A(w,d) to A:

®(w) = max min max G+ did))y;,
( ) SeA yeY el Z( ' ' l)y'

i€[n]
where:
» G and T are affine functions of §
» A={5€[0,1]"| };6, <T}
» d is independent of §
1. Epigraphic formulation:
O(w) =max w
seA
s.t. < min ma Ci + d_,'é,‘ i
st w s minmax 3 (G +ddiy

i€[n]
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Linear formulation of the adversary problem Il
1. Epigraphic formulation:

O(w) =max w
dEA

s.t.  w < min max ¢+ did; ;
T yeY seA :ez[;]( 91y

2. B&S theorem: rhs is equivalent to solving n+ 1 independent
problems.

max w

deA

st. w< minTd+ min cly.
~ €[nlo yeyz i

i
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Linear formulation of the adversary problem Il
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O(w) =max w
sen
s.t. w < min max Z(E,- + c7,-5,-)y,-

YEY 5eA !
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2. B&S theorem: rhs is equivalent to solving n 4 1 independent problems.

max w
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st w<Td +min} cy, L€
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Linear formulation of the adversary problem Il|

2. B&S theorem: rhs is equivalent to solving n 4 1 independent problems.

max w
Sen

. <Td’ + mi cly., ¢
st w<Td +min} cy, L€
3. Dualization: use that conv()) = P to dualize the minimization.
=t T
st. w<Tld + T,aAXb e — Z“ﬂg,;, L€ [n]o
IE|n)

s:t.(B.i) Ae — me; < T, VL E [n]o, Vi
Ae, e >0, Vil e [n]O
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Linear formulation of the adversary problem Il|

2. B&S theorem: rhs is equivalent to solving n 4 1 independent problems.

max w
e

=5t . =t
st. w<Td +}rln€|3n} E,- Gy, Le€lno

3. Dualization: use that conv()) = P to dualize the minimization.

[STAN
st ow<Td+ T,aAXbT)\E — > e, L€ [nlo
i€[n]
s:t.(B.i) Ae — me; < T, VL E [n]o, Vi
e, me >0, VE € [n]o
& d(w) =max w
sea
st. w<Td'+b"A — Z i, £ € [n]o

i€[n]
(B<,,‘)TA£ — i < Ef,w € [n]o, Vi
Ao, e >0, V0 € [n]o
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Linear formulation of the adversary problem IV

We have reformulated néin d(w) as:

min max w
weWw feA

st. w<Td'+bTA — Z i, £ € [n]o
i€[n]
(B.i) X — 7 < ELVLE [n)o, Vi
e, >0, V0 € [n]o
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Linear formulation of the adversary problem IV

We have reformulated n%in d(w) as:

min max w
weWw feA

st. w<Td'+bTA — Z i, £ € [n]o
i€[n]
(BN — 7 <&,V e [n)o, Vi
)\[,71’@ > 07 VYl e [n]o

The formulation of the DDID is finally obtained by
» dualization of inner maximization problem,

» linearization of all the hidden products with the w.
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Main result: Compact MILP formulation for DDID

min Z (raguz + Z Ci¥yi T+ Z ﬁz,;y%;) + Z dio;

s.t.

L€[n]o i€[n] i€[n] i€[n]

ZU[ZI

Ze[rl]o

ajo; > —a; Z aquy + Z Yoi—(1—w;),

L€[nlo L€[no
By, > ub,
Yoi < ug,
yg,i > Yoi— Wi
weW,uy,y’ o>0.

Vi € [n]

Ve [n]o
Ve € [n]o, i € [n]
Ve € [n]o, i € [n]
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Selection problem

Y = {select p = n/10 items among n to minimize total cost}

Vayanos et al. [2020]: K-adaptability heuristic: decision-maker must
chooses K strategies y', ..., yX among which one is chosen after
revealing 4.

» our own implementation
> budget uncertainty (L =1)
» K-adaptability reformulations grow linearly in L and K

n K T gap n T e

5 710 10 6 0.14

10 20 10 0.26
3 24 11

5 6 7 30 26 0.39

15 3 || 3075 9 40 49 0.16

50 || 160 0.22

K-adaptability MILP ref lati
(2) K-adaptability retormuiation (b) Our exact MILP reformulation.

Note: times are in centiseconds

20/29



Orienteering problem

Y = {elementary paths with maximum time constraint}

» CB: exact algorithm: column and constraint generation to solve the
adversary problem embedded in combinatorial Benders' cut
algorithm [Paradiso et al., 2022].

» BP: our branch-and-price algorithm

instance Opt Solved at root
CB BP BP
TS2N10 | 100% 100% 89%
TS1IN15 | 100% 100% 90%
TS3N16 | 100% 100% 83%
TS2N19 | 76% 100% 73%
TSIN30 | 41% 96% 61%
TS3N31 | 37% 90% 80%
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Conclusion

U={veR"|Au< b,0<u<d}, L is the number of rows of A

Take-away messages

» MIN-MAX: not harder than nominal problem if L is constant
» DDID: If conv(Y) = P is a compact polyhedron and L is constant

» Computing ¢ is a compact LP
» Solving DDID is a compact MILP
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U={veR"|Au< b,0<u<d}, L is the number of rows of A

Take-away messages

» MIN-MAX: not harder than nominal problem if L is constant
» DDID: If conv(Y) = P is a compact polyhedron and L is constant

» Computing ¢ is a compact LP
» Solving DDID is a compact MILP

Perspectives

» Complexity: it is not known yet whether DDID can be NP-Hard
when the nominal problem is polynomial = thesis of Xiaoyu Chen

» Numerically: decomposition is promising when conv()) # P

22/29



Table of Contents

A crash course in open science

23/29



What is open science?
Assuming our research is useful:
» Make the results of science available to everybody
» Help disseminating science to society

Open data ©

Benchmarks (MIPlib, QPlib, netlib...), real data from industrial
applications

Open code ©

©O® Most published algorithms are not reproducible!
© Some journals enforce reproducibility (1JOC, MPC, OJMO, OR)

Open publications ©

© Optimization online, arxiv
© Many papers not available online
®O Ever-increasing publication fees (cost ~ 100M<€ annually in France)
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The beginnings ...

Back in the days, publishing was expensive!
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Internet and KKTEX

» The advent of electronic publishing and dissemination via the Web
and the use of ATEXreduced significantly the operating costs of
publishers

» Led to nearly open and free publications?
» In fact no:

Profit margins in 2020

Elsevier's profit margins exceeded those of Apple, Google, Facebook and Zoom

50%

30%
20% . I 22%

10%

Net income as percentage of revenue

Tesla  Amazon RELX  Apple  Alphobet Cocalola Zoom  Mirosoft Facel
)

¢¢¢¢¢¢¢

source: PhD comics S L e st 202 o
Note: Publishers ask at least 2000€ for Open Access. lts real cost varies
between 3€and 800€ (when heavy typesetting is needed).
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The uprising

17062 Researchers Taking a Stand. see dhe i

Academics have protested against Elsevier's business practices for
years with little effect. These are some of their objections:

1. They charge exorbitantly high prices for subscriptions to
individual journals.

Z. Inthe light of these high prices, the only realistic option for
many libraries is to agree to buy very large "bundles”, which
will include many journals that those libraries do not actually
want. Elsevier thus makes huge profits by exploiting the fact
that some of their journals are essential.

5. They support measures such as SOPA, PIPA and the Research
Works-Act, that aim to restrict the free exchange of
information.

Sir Tim Gowers,
Eields Medal 1998 http://www.thecostofknowledge.com/

Taken from the presentation of Marie Farge
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Examples of fair journals/conferences

Machine learning, Artificial intelligence

> JAIR

» Journal of Machine Learning Research (JMLR)

» Transactions on Machine Learning Research (TMLR)
Graph theory, algorithmics

> Advances in Combinatorics

» TheoretiCS

» Theory of Computing

» Innovations in Graph Theory
And many conferences: LIPICs (mainly theoretical CS), and more ...
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Examples of fair journals/conferences

Machine learning, Artificial intelligence

> JAIR

» Journal of Machine Learning Research (JMLR)

» Transactions on Machine Learning Research (TMLR)
Graph theory, algorithmics

> Advances in Combinatorics

» TheoretiCS

» Theory of Computing

» Innovations in Graph Theory
And many conferences: LIPICs (mainly theoretical CS), and more ...

Mathematical optimization
» Open Journal of Mathematical Optimization (OJMO)

> Area editors: G. Bayraksan, R. Luke, J. Malick, S. Pokutta
> indexed in most databases, Q2 at scimago

> fast track for short papers

> enforces reproducibility!
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