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Operations Research Games

(P. Borm, H. Hamers, and R. Hendrickx. Operations research games: A
survey. Top, 9 (2001): 139-199.)

Cooperative games based on a (discrete) structure that underlies a
combinatorial optimisation problem.

Players control parts of the underlying system (e.g., vertices, edges,
resource bundles, jobs)

In working together the players can possibly create extra gains or save
costs.

how to share the extra revenues or cost savings?
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Population Monotonic Allocation Schemes

(Y. Sprumont (1990) Population monotonic allocation schemes for
cooperative games with transferable utility. Games and Economic behavior
2.4: 378-394.).

Objective of a PMAS: providing a condition of dynamic stability to
guarantee that once a coalition S has decided upon an allocation of
u(S), no player wish to form a coalition included in S

our goal: prove whether a PMAS exists (or not) for many ORGs.
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1 Cooperative games in short
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Basics

A Transferable Utility (TU) game is a tuple (N, v) where

• N = {1, 2, ..., n} is the set of players

• v : 2N → R is its characteristic function

By convention, v(∅) = 0.
A game (N, v) is called

• monotonic if v(S) ≤ v(T ) for all S ,T ∈ 2N with S ⊆ T ;

• superadditive if v(S) + v(T ) ≤ v(S ∪ T ) for all S ,T ∈ 2N with

S ∩ T = ∅.

The subgame corresponding to some coalition T ⊆ N is the game

(T , vT )

with vT (S) = v(S) for all S ⊆ T .
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Basics

The core of a TU game (N, v) is the set

C (v) := {x ∈ RN :
∑
i∈N

xi = v(N),
∑
i∈S

xi ≥ v(S) for all S ⊂ N}

A game (N, v) is called

• balanced if it has a nonempty core;

• totally balanced if the core of every subgame is nonempty;

• convex if v(S ∪ {i})− v(S) ≤ v(T ∪ {i})− v(T ) for all S ⊆ T and

i ∈ N\T , or, equivalently,

supermodular if

v(S ∪ T ) + v(S ∩ T ) ≥ v(S) + v(T )

for all S ,T ∈ 2N .

SM On the existence of population monotonic allocation schemes for families of operations research games23-10-2023 6 / 40



PMAS

Given a TU game (N, v), the table

x = (xSi )∅6=S∈2N ,i∈S

is said to be a Population Monotonic Allocation Scheme (PMAS)
(Sprumont (1990)) if

(i) e�ciency: For all S ⊆ N, S 6= ∅,
∑

i∈S x
S
i = v(S).

(ii) monotonicity: For all S ⊆ T and for all i ∈ S , xSi ≤ xTi .

Observe that each row (xSi ) of a PMAS is in the core of the subgame vS
for all S .

So, a game with a PMAS is also a totally balanced game.
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Convex games and PMAS

Convex games have PMAS (Sprumont (1990); see also Ichiishi (1981),
Shapley (1971)).

Example

Consider the game ({1, 2, 3}, v) such that v(1) = v(3) = 0, v(2) =
3, v(1, 2) = 3, v(1, 3) = 1, v(2, 3) = 4, v(1, 2, 3) = 5.

S φσ1 (v) φσ2 (v) φσ3 (v)

{1, 2, 3} 0 3 2

{1, 2} 0 3 *

{1, 3} 0 * 1

{2, 3} * 3 1

{1} 0 * *

{2} * 3 *

{3} * * 0
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Convex games and PMAS

Convex games have PMAS (Sprumont (1990); direct consequences of
previous results Ichiishi (1981), Shapley (1971)).

Example

Consider the game ({1, 2, 3}, v) such that v(1) = v(3) = 0, v(2) =
3, v(1, 2) = 3, v(1, 3) = 1, v(2, 3) = 4, v(1, 2, 3) = 5.

S φσ1 (v) φσ2 (v) φσ3 (v)

{1, 2, 3} 1
2

7
2

1

{1, 2} 0 3 *

{1, 3} 1
2

* 1
2

{2, 3} * 7
2

1
2

{1} 0 * *

{2} * 3 *

{3} * * 0

The Shapley value of convex games is PMAS extendible.
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A totally balanced (ToBa) game without PMAS

Consider ({1, 2, 3, 4}, v) such that v(1, 2, 3, 4) = 2, v(S) = 1 if |S | = 3,
v(1, 3) = v(1, 4) = v(2, 3) = v(2, 4) = 1 and v(S) = 0 otherwise (check it
is ToBa; Sprumont (1990)). Suppose the following scheme:
Suppose a PMAS exists:

S 1 2 3 4

{1, 2, 3, 4} x1 x2 x3 x4
{1, 2, 3} 0 0 1 *

{1, 2, 4} 0 0 * 1

{1, 3, 4} 1 * 0 0

{2, 3, 4} * 1 0 0

. . . . . . . . . . . .

x1 ≥ 1, x2 ≥ 1, x3 ≥ 1, x4 ≥ 1 ⇒ x1 + x2 + x3 + x4 ≥ 4 > v(1, 2, 3, 4)

Impossible!
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A game with PMAS that is not convex

Consider ({1, 2, 3}, v) such that v(1, 2, 3) = v(1, 3) = v(2, 3) = 1 and
v(S) = 0 otherwise This game is not convex: v(1, 2, 3)− v(2, 3) = 1− 1
and v(1, 3)− v(3) = 1− 0.
The unique PMAS is:

S φσ1 (v) φσ2 (v) φσ3 (v)

{1, 2, 3} 0 0 1

{1, 2} 0 0 *

{1, 3} 0 * 1

{2, 3} * 0 1

{1} 0 * *

{2} * 0 *

{3} * * 0
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TU-games

Totally balanced games

games with a PMAS

Convex games
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Generalized Additive Games (Cesari et al. IJGT(2017))

De�nition

We shall call Generalized Additive Situation (GAS) any triple 〈N,w ,M〉,
where:

N is a set of players;

w ∈ RN
+ a vector of positive real numbers;

M : 2N → 2N , is a coalitional map, which assigns a coalitionM(S)
to each coalition S ⊆ N of players (withM(∅) = ∅).

De�nition

Given the GAS 〈N,w ,M〉, the associated Generalized Additive Game

(GAG) is the TU-game (N, vM,w ) such that vM,w (∅) = 0 and for S 6= ∅:

vM,w (S) =
∑

i∈M(S)

wi
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Many ORGs from the literature are GAGs

Examples

airport games (Littlechild and Owen (1973); Littlechild and Thompson
(1977)); generalized airport games (Norde et al. (2002))

maintenance games (Koster (1999))

peer games (Branzei et al. 2002)

link-connection games (Nagamochi et al. (1997), Moretti (2017))

minimum coloring games (Deng et al. (2000), Hamers et al. (2014))

games on mountain situations (Moretti et al. 2002)

argumentation games (Bonzon et al. 2014)

connectivity games (Amer and Giménez 2004; Lindelauf et al. 2013

�centrality� games (Michalak et al. (2013))

Simple mcst games (Norde et al. (2004))

many other TU-games (simple games, weighted glove games, etc...)
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Properties for coalitional maps

A coalitional mapM : 2N → 2N such thatM(∅) = ∅ is called:

1) monotonic ifM(S) ⊆M(T ) for every S ,T ∈ 2N with S ⊆ T ;

2) proper ifM(S) ∩M(T ) = ∅ for every S ,T ∈ 2N with S ∩ T = ∅;
3) veto-rich if for every i ∈ N we either have i /∈M(S) for every S ∈ 2N

or i ∈M(N) and ∩{S : i ∈M(S)} 6= ∅;
4) supermodular ifM(S) ∩M(T ) =M(S ∩ T ) for every S ,T ∈ 2N .
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Characterization for PMAS

Moretti, S., Norde, H. (2021) Some new results on generalized additive
games. Int J Game Theory. https://doi.org/10.1007/s00182-021-00786-w

Theorem

The following statements are equivalent:

I) M is veto-rich and monotonic;

II) (N, vM,w ) admits a pmas for every w ∈ IRN
+;

III) (N, vM,w ) is totally balanced for every w ∈ IRN
+.
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Euler diagram

(a) sets of coalitonal maps M
All colitional mapsM
.M8

Proper

.M7

Veto-rich

.M4
Supermodular

.M2

.M5

.M3

.M6

Monotonic

(b) corresponding classes of GAGs GM
All classes of GAGs GM

Balanced

Supermodular

Monotonic

Superadditive

Totally balanced
PMAS-admissible

.GM
8

.GM
7

.GM
4

.GM
2

.GM
5

.GM
3

.GM
6
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Weighted glove games

Glove games

Ingredients:

a partition {L,R} of the set of players N

a weight vector w ∈ IRN
+ (each player i in L owns wi left gloves, each

player j in R owns wj right ones)

a characteristic function v(S) = min{
∑

i∈S∩L wi ,
∑

j∈S∩R wj}
representing the pro�t obtained by members in S selling their pairs of
gloves (sold at selling price of 1)

Note that players are allowed to have a non-integer number of gloves

If wi = 1 for every i ∈ N the game is a standard glove game.

We can represent this game as a GAG vM,w by assigning by de�ning a
coalitional mapM such that for each coalition S ∈ 2N :

M(S) =

{
S ∩ L if

∑
i∈S∩L wi ≤

∑
i∈S∩R wi ;

S ∩ R otherwise.

SM On the existence of population monotonic allocation schemes for families of operations research games23-10-2023 18 / 40



Weighted glove games

Glove games

Ingredients:

a partition {L,R} of the set of players N

a weight vector w ∈ IRN
+ (each player i in L owns wi left gloves, each

player j in R owns wj right ones)

a characteristic function v(S) = min{
∑

i∈S∩L wi ,
∑

j∈S∩R wj}
representing the pro�t obtained by members in S selling their pairs of
gloves (sold at selling price of 1)

Note that players are allowed to have a non-integer number of gloves

If wi = 1 for every i ∈ N the game is a standard glove game.

We can represent this game as a GAG vM,w by assigning by de�ning a
coalitional mapM such that for each coalition S ∈ 2N :

M(S) =

{
S ∩ L if

∑
i∈S∩L wi ≤

∑
i∈S∩R wi ;

S ∩ R otherwise.

SM On the existence of population monotonic allocation schemes for families of operations research games23-10-2023 18 / 40



Proposition

Let (N, v) be a weighted glove game with positive weight vector w (so

wi > 0 for every i ∈ N) and let {L,R} be the partition of N in `left glove'

and `right glove' players. Then (N, v) is supermodular if and only if L
contains precisely one player l∗ and wl∗ ≥

∑
j∈R wj or R contains precisely

one player r∗ and wr∗ ≥
∑

i∈L wi .

See
Moretti, S., Norde, H. (2021) A note on weighted multi-glove games. Soc
Choice Welf. https://doi.org/10.1007/s00355-021-01337-8
for a generalisation of this results to weighted multi-glove games.
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Using GAGs to prove the if part

M(S) =

{
S ∩ L if

∑
i∈S∩L wi ≤

∑
j∈S∩R wj

S ∩ R otherwise,
(1)

Suppose {L,R} is a partition of the player set N with |L| = 1 (the case
|R| = 1 can be treated in a similar way).

Let l∗ be the unique element of L.

Observe thatM(S) = S ∩ R if l∗ ∈ S andM(S) = ∅ otherwise.

It is straightforward to check thatM is supermodular:
M(S) ∩M(T ) =M(S ∩ T )
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From costs to revenues

Given a cost game (N, c), with cost function c : 2N → IR, one can also
consider the corresponding cost saving game (N, v c) such that

v c(S) =
∑
i∈S

c({i})− c(S),

for each coalition S ∈ 2N , where the di�erence v c(S) between the total
cost in the situation where all members of S work alone and the cost in the
situation where all members of S cooperate is interpreted as a pro�t of
coalition S .
In alternative, one can also de�ne the corresponding dual game (N, c∗)
such that

c∗(S) = c(N)− c(N \ S),

for each coalition S ∈ 2N , where the rest c∗(S) obtained from the cost of
the grand coalition N after the complement of coalition S pays its entire
cost in the original game is also interpreted as a pro�t of coalition S .
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Some well-known facts

Proposition

Let (N, c) be a cost game and let (N, v c) be the corresponding cost saving

game. Then the following statements hold true:

(i) c is submodular i� v c is supermodular;

(ii) c is subadditive i� v c is superadditive;

(iii) c is (totally) balanced i� v c is (totally) balanced;

(iv) c admits a PMAS i� v c admits a PMAS.

Proposition

Let (N, c) be a cost (pro�t) game and let its dual (N, c∗) be a pro�t (cost)

game. Then the following statements hold true:

i) c is monotonic i� c∗ is monotonic;

ii) C (c) = C (c∗) (c and c∗ have the same core);

iii) c is submodular i� c∗ is supermodular.
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Link connection games
Let Γ = (N,E ) be an undirected graph and w ∈ INN a nonnegative integer
weight vector. Edges will be denoted by ij instead of {i , j}

De�nition

The link connection game associated with (V ,E ) and w is the cost game
(E , c), such that

c(S) = min{W (T ) | T ⊆ S and PT = PS} (2)

for every S ⊆ E , where

W (T ) =
∑

e∈T we and

PT denotes the set of all connected components in graph (VS ,T ) for
any T ⊆ S (here, VS is the set of all nodes of edges in S).

The corresponding cost saving game (E , v c) is de�ned as follows:

v c(S) =
∑
e∈S

we − c(S), (3)

for every S ⊆ E .SM On the existence of population monotonic allocation schemes for families of operations research games23-10-2023 23 / 40



Link connection games

Example

A graph (V ,E ) with V = {1, 2, 3, 4} and E = {12, 23, 14, 24}:

1

2

3

4

62

4

4

The corresponding link connection game game is

S ∅ {12} {23} {14} {24} {12, 23} {12, 14} {12, 24} {23, 14} {23, 24} {14, 24}
c(S) 0 2 6 4 4 8 6 6 10 10 8

S {12, 23, 24} {12, 23, 14} {12, 14, 24} {23, 14, 24} E
c(S) 12 12 6 14 12
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Coalitional map for cost saving game

Start with listing the edges in E in some order
E = {e1, e2, e3, . . . , e|E |} (not yet having a cost vector w ∈ IRE

+ in
mind).

For every S ⊆ E an edge ek ∈ S , (k ∈ {1, . . . , |E |}) is called
super�uous in S if it forms a cycle with its predecessors in S , more
precisely, if (V , {e1, . . . , ek−1} ∩ S) and (V , {e1, . . . , ek} ∩ S) have the
same connected components.

Selects the collection of super�uous edges in any coalition:

M(S) = {e ∈ S : e is super�uous in S}, (4)

for every S ⊆ E .

Proposition

LetM be the coalitional map as de�ned in (4). ThenM is monotonic,

proper and veto-rich.
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Choose the ordering of the edges in E according to increasing costs,
i.e. E = {e1, e2, e3, . . . , e|E |} such that we1 ≤ we2 ≤ · · · ≤ we|E |

Let S ⊆ E . The graph (V ,S) partitions the vertex set V into
components. Some components may be singletons, some may be trees
and the other components are connected components containing
cycles.

In order to �nd a subset T ⊆ S of minimal cost that results in the
same partition of V into components we can use the well-known
algorithm of Prim: reduce any component in (V , S) with a cycle to a
tree by removing edges that form a cycle with the cheaper edges in S .

Since we have chosen the order of E with respect to increasing costs
this process boils down to removing the super�uous edges in S , i.e.
removing the edges inM(S). So an optimal network for coalition S is
(V ,S\M(S)) and the cost saving, going from (V ,S) to
(V ,S\M(S)), is equal to

∑
e∈M(S) we = vM,w (S).

As this is true for every S ⊆ E we get (E , v c) = (E , vM,w ).
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Consider a graph with set of edges E :
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Take a coalition S ⊆ E
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If edges are ordered in increasing way, super�uous edges are those who
form a cycle with cheaper ones

The sum of the weights of super�uous give the total saving for coalition S .
So, (E , v c) = (E , vM,w ).

SM On the existence of population monotonic allocation schemes for families of operations research games23-10-2023 29 / 40



Link connection games

Example

A graph (V ,E ) with V = {1, 2, 3, 4} and E = {12, 23, 14, 24}:

1

2

3

4

62

4

4

The corresponding link connection game game is

S ∅ {12} {23} {14} {24} {12, 23} {12, 14} {12, 24} {23, 14} {23, 24} {14, 24}
c(S) 0 2 6 4 4 8 6 6 10 10 8

M(S) 0 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
vc (S) 0 0 0 0 0 0 0 0 0 0 0

S {12, 23, 24} {12, 23, 14} {12, 14, 24} {23, 14, 24} E
c(S) 12 12 6 14 12

M(S) ∅ ∅ {24} ∅ {24}
vc (S) 0 0 4 0 4
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Proposition

Let (V ,E ) be an undirected graph andM the coalitional map as de�ned

in (4). Then (E , vM,w ) is monotonic, superadditive, (totally) balanced and

PMAS-admissible for every w ∈ IRE
+.

Proposition

Cost saving games corresponding to link connection games are monotonic,

superadditive, (totally) balanced and PMAS-admissible.

Proposition

Link connection games are subadditive, (totally) balanced and

PMAS-admissible.
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Weighted minimum coloring games
Let Γ = (N,E ) be an undirected graph and w ∈ INN a nonnegative integer
weight vector.

A k-coloring of graph Γ wrt weight vector w is a function h : N → 2{1,...,k}

that assigns a set of wi di�erent colors to every vertex i ∈ N such that
adjacent vertices receive disjoint sets of colors and at most k colors are
used (|h(i)| = wi for all i ∈ N and h(i) ∩ h(j) = ∅ for all ij ∈ E .

weighted chromatic number χw (Γ): the minimum number k such that a
k-coloring of Γ with respect to w .

De�nition

The weighted minimum coloring game (Hamers et al. 2019) on Γ = (N,E )
with weight vector w ∈ INN is the cost game (N, cΓ,w ) de�ned by

cΓ,w (S) = χwS
(Γ|S)

for every S ∈ 2N .
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The unweighted case (wi = 1 for all i ∈ N)

Example

1

2

3

4

S ∅ {1} {2} {3} {4} {1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}
c(S) 0 1 1 1 1 2 2 2 2 1 2

c∗(S) 0 1 0 1 0 2 2 1 1 1 1

S {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} {1, 2, 3, 4}
c(S) 3 2 3 2 3

c∗(S) 2 2 2 2 3
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The unweighted case for complete multipartite graphs

A graph G = (N,E ) is complete multipartite if there is a partition
{P1,P2, . . . ,Pr} of the vertex set N such that for any two vertices
i ∈ Pk , j ∈ Pl we have {i , j} ∈ E if and only if k 6= l .

For every k ∈ {1, . . . , r} let pk be the element of Pk with the smallest
index. De�ne the coalitional mapM by

M(S) = {pk |k ∈ {1, . . . , r},Pk ⊆ S} (5)

Then, the dual game cΓ∗ coincides with vM,w (S)
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The unweighted case (wi = 1 for all i ∈ N)

Example

1

2

3

4

S ∅ {1} {2} {3} {4} {1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}
c(S) 0 1 1 1 1 2 2 2 2 1 2

c∗(S) 0 1 0 1 0 1 2 1 1 1 1

M(S) ∅ {1} {2} {3} {4} {1} {1, 3} {1} {3} {2} {3}

S {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} {1, 2, 3, 4}
c(S) 3 2 3 2 3

c∗(S) 2 2 2 2 3

M(S) {1, 3} {1, 2} {1, 3} {2, 3} {1, 2, 4}
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Matroids

A matroid is a pair M = (E , I) where E is a �nite set and I ⊆ 2E such
that

I) ∅ ∈ I;
II) if T ∈ I and S ⊆ T , then S ∈ I (independent set);

III) if S ,T ∈ I with |S | < |T |, then there exists i ∈ T \ S such that
S ∪ {i} ∈ I.

As an example of matroid, consider the graphic matroid MG = (EG , IG ) on
a graph (V ,E )

The set EG is de�ned to be E , the set of edges of graph G .

A subset A ⊆ E is an independent set (A ∈ IG ) if and only if the
subgraph GA = (VA,A) forms a forest.
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Minimum base games on matroids

We can add a vector of weights to the elements of E of a matroid
M = (E , I), so we have a weighted matroid.

In Nagamochi, H., Zeng, D. Z., Kabutoya, N., Ibaraki, T. (1997)
Complexity of the minimum base game on matroids. Mathematics of
Operations Research, 22(1), 146-164.

The authors consider a minimum base game on a weighted matroid
where the cost of each coalition S ⊆ E is the total weight of a
minimum base on S , where a base on S is de�ned as a maximal (wrt
inclusion) subset of S that is also independent set.

In the case of a graphic matroid, a minimum base game is a link
connection games.
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Nagamochi et al. (1997) have shown that a minimum base game has
a nonempty core if and only if the weighted matroid has no
all-negative circuits.

Q.: What about PMAS?

Work in progress:
I we generalize the coalitional map for link connection games to

weighted matroids
I so minimum base games are GAGs (note that weights can be negative,

but �super�uous� are positive under the condition of no all-negative
circuits)

I using the machinery of GAGs we can prove that minimum base games
on weighted matroids with no all-negative circuits are subadditive,
(totally) balanced and PMAS-admissible

I and the way around using the result in Nagamochi et al. (1997)
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Thank you for your attention

Moretti, S., Norde, H. (2021) Some new results on generalized
additive games. Int J Game Theory.
https://doi.org/10.1007/s00182-021-00786-w

Moretti, S., Norde, H. (2021) A note on weighted multi-glove games.
Soc Choice Welf. https://doi.org/10.1007/s00355-021-01337-8
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