Multi-stage stochastic programming approach for a lot-sizing problem with remanufacturing

Franco Quezada¹

joint work with

Céline Gicquel² and Safia Kedad-Sidhoum³

¹University of Santiago of Chile, Industrial Engineering Department, Chile ²Université Paris Saclay, LISN, France ³Conservatoire national des arts et métiers, CEDRIC, France

December 13, 2024

<ロト < 同ト < 三ト <

Problem description

- Remanufacturing production system
- 2 Multi-stage stochastic programming approach
- 3 Cutting-plane generation approach
- Stochastic dual dynamic programming approach
- 5 Conclusion and Perspectives

< D > < A >

A three-echelon remanufacturing system

A three-echelon remanufacturing system

Industrial applications: mobile phones, electrical equipment...

Jayaraman [2006], Franke et al. [2006], Han et al. [2013], Ahn et al. [2011]

æ

< □ > < □ > < □</p>

a single type of product

æ

Image: A math a math

a single type of product П 2

identical bill-of-materials

э

a single type of product

- identical bill-of-materials
- Incapacitated production processes

э

a single type of product

discard items

- identical bill-of-materials
- Incapacitated production processes

3

æ

A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

æ

A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

æ

A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

æ

O > <
 O >

Ilgin and Gupta [2010], Lage Junior and Filho [2012], Lage Junior and Filho [2016]

O > <
 O >

Problem description

- 2 Multi-stage stochastic programming approach
 - Multi-stage decision process
 - Extensive formulation
- Outting-plane generation approach
- Stochastic dual dynamic programming approach
- 5 Conclusion and Perspectives

Assumption

- Not all decisions have to be made before uncertainty realization.
- Some can be postponed to a future point in time.

Dynamic multi-stage decision process

<ロト < 同ト < 三ト <

Assumption

- Not all decisions have to be made before uncertainty realization.
- Some can be postponed to a future point in time.

Dynamic multi-stage decision process

Observation of random parameters for stage 1

Assumption

- Not all decisions have to be made before uncertainty realization.
- Some can be postponed to a future point in time.

Dynamic multi-stage decision process

Multi-stage decision process

Multi-stage stochastic programming

Assumption

- Not all decisions have to be made before uncertainty realization.
- Some can be postponed to a future point in time.

Dynamic multi-stage decision process

• • • • • • • • • • • •

Assumption

- Not all decisions have to be made before uncertainty realization.
- Some can be postponed to a future point in time.

Dynamic multi-stage decision process

<ロト < 同ト < 三ト <

Assumption

- Not all decisions have to be made before uncertainty realization.
- Some can be postponed to a future point in time.

Dynamic multi-stage decision process

2

•

Scenario tree

1 2 3 4

2

3

3

æ

メロト メタト メヨト メヨト

æ

æ

Scenario tree is defined by a set of $\ensuremath{\mathcal{V}}$ nodes.

2

< ロ > < 回 > < 回 > < 回 > < 回 >

for every node $n \in \mathcal{V}$:

Extensive formulation

MILP formulation

$$\min \sum_{n \in \mathcal{V}} \left(\sum_{p \in \mathcal{J}} f_p^n Y_p^n + \sum_{i \in \mathcal{I}} h_i^n S_i^n + l^n L^n + \sum_{i \in \mathcal{I}_r \cup \{0\}} q_i^n W_i^n + g^n X_0^n \right)$$

setup/inventory/discarding/lost sales costs

subject to:

æ
MILP formulation

$$\min \sum_{n \in \mathcal{V}} \left(\sum_{p \in \mathcal{J}} f_p^n Y_p^n + \sum_{i \in \mathcal{I}} h_i^n S_i^n + l^n L^n + \sum_{i \in \mathcal{I}_r \cup \{0\}} q_i^n W_i^n + g^n X_0^n \right)$$

setup/inventory/discarding/lost sales costs

subject to:

$$X_p^n \le M_p^n Y_p^n$$
 $\forall p \in \mathcal{J}, \forall n \in \mathcal{V}$ Setup-production

æ

< ロ > < 回 > < 回 > < 回 > < 回 >

MILP formulation

$$\min \sum_{n \in \mathcal{V}} \left(\sum_{p \in \mathcal{J}} f_p^n Y_p^n + \sum_{i \in \mathcal{I}} h_i^n S_i^n + l^n L^n + \sum_{i \in \mathcal{I}_r \cup \{0\}} q_i^n W_i^n + g^n X_0^n \right)$$

setup/inventory/discarding/lost sales costs

subject to:

$$\begin{split} X_{\rho}^{n} &\leq M_{\rho}^{n} Y_{\rho}^{n} & \forall p \in \mathcal{J}, \forall n \in \mathcal{V} \\ S_{0}^{n} &= S_{0}^{n-1} + r^{n} - X_{0}^{n} - W_{0}^{n} & \forall n \in \mathcal{V} \end{split}$$

Inventory balance

< ロ > < 回 > < 回 > < 回 > < 回 >

MILP formulation

$$\min \sum_{n \in \mathcal{V}} \left(\sum_{p \in \mathcal{J}} f_p^n Y_p^n + \sum_{i \in \mathcal{I}} h_i^n S_i^n + l^n L^n + \sum_{i \in \mathcal{I}_r \cup \{0\}} q_i^n W_i^n + g^n X_0^n \right)$$

setup/inventory/discarding/lost sales costs

subject to:

$$\begin{split} X_{\rho}^{n} &\leq M_{\rho}^{n} Y_{\rho}^{n} & \forall p \in \mathcal{J}, \forall n \in \mathcal{V} \\ S_{0}^{n} &= S_{0}^{n-1} + r^{n} - X_{0}^{n} - W_{0}^{n} & \forall n \in \mathcal{V} \\ S_{i}^{n} &= S_{i}^{n-1} + \pi_{i}^{n} \alpha_{i} X_{0}^{n} - X_{i}^{n} - W_{i}^{n} & \forall i \in \mathcal{I}_{r}, \forall n \in \mathcal{V} \\ \end{split}$$
 Inventory balance

æ

< ロ > < 回 > < 回 > < 回 > < 回 >

MILP formulation

$$\min \sum_{n \in \mathcal{V}} \left(\sum_{p \in \mathcal{J}} f_p^n Y_p^n + \sum_{i \in \mathcal{I}} h_i^n S_i^n + l^n L^n + \sum_{i \in \mathcal{I}_r \cup \{0\}} q_i^n W_i^n + g^n X_0^n \right)$$

setup/inventory/discarding/lost sales costs

subject to:

$$\begin{split} X_{\rho}^{n} &\leq M_{\rho}^{n} Y_{\rho}^{n} & \forall p \in \mathcal{J}, \forall n \in \mathcal{V} \\ S_{0}^{n} &= S_{0}^{n-1} + r^{n} - X_{0}^{n} - W_{0}^{n} & \forall n \in \mathcal{V} \\ S_{i}^{n} &= S_{i}^{n-1} + \pi_{i}^{n} \alpha_{i} X_{0}^{n} - X_{i}^{n} - W_{i}^{n} & \forall i \in \mathcal{I}_{r}, \forall n \in \mathcal{V} \\ S_{i}^{n} &= S_{i}^{n-1} + X_{i-l}^{n} - \alpha_{i} X_{l+1}^{n} & \forall i \in \mathcal{I}_{s}, \forall n \in \mathcal{V} \\ \end{split}$$
 Inventory balance

æ

$$\min \sum_{n \in \mathcal{V}} \left(\sum_{p \in \mathcal{J}} f_p^n Y_p^n + \sum_{i \in \mathcal{I}} h_i^n S_i^n + l^n L^n + \sum_{i \in \mathcal{I}_r \cup \{0\}} q_i^n W_i^n + g^n X_0^n \right)$$

setup/inventory/discarding/lost sales costs

subject to:

$$\begin{split} & X_p^n \leq M_p^n Y_p^n & \forall p \in \mathcal{J}, \forall n \in \mathcal{V} \\ & S_0^n = S_0^{n-1} + r^n - X_0^n - W_0^n & \forall n \in \mathcal{V} \\ & S_i^n = S_i^{n-1} + \pi_i^n \alpha_i X_0^n - X_i^n - W_i^n & \forall i \in \mathcal{I}_r, \forall n \in \mathcal{V} \\ & S_i^n = S_i^{n-1} + X_{l-l}^n - \alpha_i X_{l+1}^n & \forall i \in \mathcal{I}_s, \forall n \in \mathcal{V} \\ & S_{2l+1}^n = S_{2l+1}^{n-1} + X_{l+1}^n - d^n + L^n & \forall n \in \mathcal{V} \end{split}$$
 Inventory balance

æ

MILP formulation

$$\min \sum_{n \in \mathcal{V}} \left(\sum_{p \in \mathcal{J}} f_p^n Y_p^n + \sum_{i \in \mathcal{I}} h_i^n S_i^n + l^n L^n + \sum_{i \in \mathcal{I}_r \cup \{0\}} q_i^n W_i^n + g^n X_0^n \right)$$

setup/inventory/discarding/lost sales costs

subject to:

$X_{ ho}^n \leq M_{ ho}^n Y_{ ho}^n$	$\forall p \in \mathcal{J}, \forall n \in \mathcal{V}$	Setup-production
$S_0^n = S_0^{n-1} + r^n - X_0^n - W_0^n$	$\forall n \in \mathcal{V}$	
$S_i^n = S_i^{n-1} + \pi_i^n \alpha_i X_0^n - X_i^n - W_i^n$	$\forall i \in \mathcal{I}_r, \forall n \in \mathcal{V}$	Inventory balance
$S_{i}^{n} = S_{i}^{n-1} + X_{i-I}^{n} - \alpha_{i}X_{I+1}^{n}$	$\forall i \in \mathcal{I}_s, \forall n \in \mathcal{V}$	inventory balance
$S_{2l+1}^n = S_{2l+1}^{n-1} + X_{l+1}^n - d^n + L^n$	$\forall n \in \mathcal{V}$	
$S_{i}^{0} = 0$	$\forall i \in \mathcal{I}$	
$S_i^n, W_i^n, L^n \geq 0$	$\forall i \in \mathcal{I}, \forall n \in \mathcal{V}$	
$X_p^n\geq 0,Y_p^n\in\{0,1\}$	$\forall p \in \mathcal{J}, \forall n \in \mathcal{V}$	

æ

Difficulties:

MILP formulation

$$\min \sum_{n \in \mathcal{V}} \left(\sum_{p \in \mathcal{J}} f_p^n Y_p^n + \sum_{i \in \mathcal{I}} h_i^n S_i^n + l^n L^n + \sum_{i \in \mathcal{I}_r \cup \{0\}} q_i^n W_i^n + g^n X_0^n \right)$$

subject to:

$$\begin{split} X_{p}^{n} &\leq M_{p}^{n} Y_{p}^{n} & \forall p \in \mathcal{J}, \forall n \in \mathcal{V} \\ S_{0}^{n} &= S_{0}^{n-1} + r^{n} - X_{0}^{n} - W_{0}^{n} & \forall n \in \mathcal{V} \\ S_{i}^{n} &= S_{i}^{n-1} + \pi_{i}^{n} \alpha_{i} X_{0}^{n} - X_{i}^{n} - W_{i}^{n} & \forall i \in \mathcal{I}_{r}, \forall n \in \mathcal{V} \\ S_{i}^{n} &= S_{i}^{n-1} + X_{i-1}^{n} - \alpha_{i} X_{i+1}^{n} & \forall i \in \mathcal{I}_{s}, \forall n \in \mathcal{V} \\ S_{2l+1}^{n} &= S_{2l+1}^{n-1} + X_{l+1}^{n} - d^{n} + L^{n} & \forall n \in \mathcal{V} \\ S_{i}^{0} &= 0 & \forall i \in \mathcal{I} \\ S_{i}^{n}, W_{i}^{n}, L^{n} \geq 0 & \forall i \in \mathcal{I}, \forall n \in \mathcal{V} \\ X_{p}^{n} \geq 0, Y_{p}^{n} \in \{0, 1\} & \forall p \in \mathcal{J}, \forall n \in \mathcal{V} \end{split}$$

3

$$\min \sum_{n \in \mathcal{V}} \left(\sum_{p \in \mathcal{J}} f_p^n Y_p^n + \sum_{i \in \mathcal{I}} h_i^n S_i^n + l^n L^n + \sum_{i \in \mathcal{I}_r \cup \{0\}} q_i^n W_i^n + g^n X_0^n \right)$$

Difficulties:

subject to:

$$\begin{split} X_{\rho}^{n} &\leq M_{\rho}^{n} Y_{\rho}^{n} & \forall p \in \mathcal{J}, \forall n \in \mathcal{V} \\ S_{0}^{n} &= S_{0}^{n-1} + r^{n} - X_{0}^{n} - W_{0}^{n} & \forall n \in \mathcal{V} \\ S_{i}^{n} &= S_{i}^{n-1} + \pi_{i}^{n} \alpha_{i} X_{0}^{n} - X_{i}^{n} - W_{i}^{n} & \forall i \in \mathcal{I}_{r}, \forall n \in \mathcal{V} \\ S_{i}^{n} &= S_{i}^{n-1} + X_{i-1}^{n} - \alpha_{i} X_{i+1}^{n} & \forall i \in \mathcal{I}_{s}, \forall n \in \mathcal{V} \\ S_{2l+1}^{n} &= S_{2l+1}^{n-1} + X_{l+1}^{n} - d^{n} + L^{n} & \forall n \in \mathcal{V} \\ S_{i}^{0} &= 0 & \forall i \in \mathcal{I} \\ S_{i}^{n}, W_{i}^{n}, L^{n} \geq 0 & \forall i \in \mathcal{I}, \forall n \in \mathcal{V} \\ X_{\rho}^{n} \geq 0, Y_{\rho}^{n} \in \{0, 1\} & \forall p \in \mathcal{J}, \forall n \in \mathcal{V} \end{split}$$

 $\begin{array}{l} \mbox{Dependent demand} \\ \rightarrow \mbox{ Dependence between} \\ \mbox{echelons} \end{array}$

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

$$\min \sum_{n \in \mathcal{V}} \left(\sum_{p \in \mathcal{J}} f_p^n Y_p^n + \sum_{i \in \mathcal{I}} h_i^n S_i^n + l^n L^n + \sum_{i \in \mathcal{I}_r \cup \{0\}} q_i^n W_i^n + g^n X_0^n \right) \quad \text{Difficulties:}$$

subject to:

$X_p^n \le M_p^n Y_p^n$	$\forall p \in \mathcal{J}, \forall n \in \mathcal{V}$
$S_0^n = S_0^{n-1} + r^n - X_0^n - W_0^n$	$\forall n \in \mathcal{V}$
$S_i^n = S_i^{n-1} + \pi_i^n \alpha_i X_0^n - X_i^n - W_i^n$	$\forall i \in \mathcal{I}_r, \forall n \in \mathcal{V}$
$S_{i}^{n} = S_{i}^{n-1} + X_{i-l}^{n} - \alpha_{i} X_{l+1}^{n}$	$\forall i \in \mathcal{I}_s, \forall n \in \mathcal{V}$
$S_{2l+1}^n = S_{2l+1}^{n-1} + X_{l+1}^n - d^n + L^n$	$\forall n \in \mathcal{V}$
$S_i^0 = 0$	$\forall i \in \mathcal{I}$
$S_i^n, W_i^n, L^n \geq 0$	$\forall i \in \mathcal{I}, \forall n \in \mathcal{V}$
$X_p^n\geq 0,Y_p^n\in\{0,1\}$	$\forall p \in \mathcal{J}, \forall n \in \mathcal{V}$

Setup constraints

 \rightarrow Poor linear relaxation

Dependent demand

< ロ > < 回 > < 回 > < 回 > < 回 >

 \rightarrow Dependence between echelons

$$\min \sum_{n \in \mathcal{V}} \left(\sum_{p \in \mathcal{J}} f_p^n Y_p^n + \sum_{i \in \mathcal{I}} h_i^n S_i^n + l^n L^n + \sum_{i \in \mathcal{I}_r \cup \{0\}} q_i^n W_i^n + g^n X_0^n \right) \quad \text{Difficulties:}$$

subject to:

$$\begin{split} & X_p^n \leq M_p^n Y_p^n & \forall p \in \mathcal{J}, \forall n \in \mathcal{V} \\ & S_0^n = S_0^{n-1} + r^n - X_0^n - W_0^n & \forall n \in \mathcal{V} \\ & S_i^n = S_i^{n-1} + \pi_i^n \alpha_i X_0^n - X_i^n - W_i^n & \forall i \in \mathcal{I}_r, \forall n \in \mathcal{V} \\ & S_i^n = S_i^{n-1} + X_{i-1}^n - \alpha_i X_{i+1}^n & \forall i \in \mathcal{I}_s, \forall n \in \mathcal{V} \\ & S_{2l+1}^n = S_{2l+1}^{n-1} + X_{l+1}^n - d^n + L^n & \forall n \in \mathcal{V} \\ & S_i^0 = 0 & \forall i \in \mathcal{I} \\ & S_i^n, W_i^n, L^n \geq 0 & \forall i \in \mathcal{I}, \forall n \in \mathcal{V} \\ & X_p^n \geq 0, Y_p^n \in \{0, 1\} & \forall p \in \mathcal{J}, \forall n \in \mathcal{V} \end{split}$$

Setup constraints

 \rightarrow Poor linear relaxation

Dependent demand

 \rightarrow Dependence between echelons

Solutions:

Echelon stock = Total inventory of an item in the system, as such or as a component of other items.

Pochet and Wolsey [2006]

New valid inequalities

э

Problem description

2 Multi-stage stochastic programming approach

Outting-plane generation approach

- Echelon stock reformulation
- Path and Tree Inequalities
- Numerical results

4 Stochastic dual dynamic programming approach

5 Conclusion and Perspectives

Echelon stock reformulation

$$\min \sum_{n \in \mathcal{V}} \left(\sum_{p \in \mathcal{J}} f_p^n Y_p^n + \sum_{i \in \mathcal{I}} h_i^n S_i^n + l^n L^n + \sum_{i \in \mathcal{I}_r \cup \{0\}} q_i^n W_i^n + g^n X_0^n \right)$$

subject to:

$$\begin{split} & X_p^n \leq M_p^n Y_p^n & \forall p \in \mathcal{J}, \forall n \in \mathcal{V} \\ & S_0^n = S_0^{n-1} + r^n - X_0^n - W_0^n & \forall n \in \mathcal{V} \\ & E_i^n = E_i^{n-1} + \pi_i^n \alpha_i X_0^n - d^n + L^n - W_i^n & \forall i \in \mathcal{I}_r, \forall n \in \mathcal{V} \\ & E_i^n = E_i^{n-1} + X_{i-1}^n - d^n + L^n & \forall i \in \mathcal{I}_s, \forall n \in \mathcal{V} \\ & E_{2l+1}^n = E_{2l+1}^{n-1} + X_{l+1}^n - d^n + L^n & \forall n \in \mathcal{V} \end{split}$$

æ

< ロ > < 回 > < 回 > < 回 > < 回 >

Echelon stock reformulation

$$\min \sum_{n \in \mathcal{V}} \left(\sum_{p \in \mathcal{J}} f_p^n Y_p^n + \sum_{i \in \mathcal{I}} h_i^n S_i^n + l^n L^n + \sum_{i \in \mathcal{I}_r \cup \{0\}} q_i^n W_i^n + g^n X_0^n \right)$$

subject to:

$$\begin{split} X_p^n &\leq M_p^n Y_p^n & \forall p \in \mathcal{J}, \forall n \in \mathcal{V} \\ S_0^n &= S_0^{n-1} + r^n - X_0^n - W_0^n & \forall n \in \mathcal{V} \\ E_i^n &= E_i^{n-1} + \pi_i^n \alpha_i X_0^n - d^n + L^n - W_i^n & \forall i \in \mathcal{I}_r, \forall n \in \mathcal{V} \\ E_i^n &= E_i^{n-1} + X_{i-1}^n - d^n + L^n & \forall i \in \mathcal{I}_s, \forall n \in \mathcal{V} \\ E_{2l+1}^n &= E_{2l+1}^{n-1} + X_{l+1}^n - d^n + L^n & \forall n \in \mathcal{V} \\ E_i^n &- E_{i+l}^n \geq 0 & \forall i \in \mathcal{I} \\ E_{i+l}^n - E_{2l+1}^n \geq 0 & \forall i \in \mathcal{I} \\ E_i^n &\geq 0 & \forall i \in \mathcal{I}, \forall n \in \mathcal{V} \\ E_i^0 &= 0 & \forall i \in \mathcal{I}, \forall n \in \mathcal{V} \\ E_i^n &\geq 0 & \forall i \in \mathcal{I}, \forall n \in \mathcal{V} \\ W_i^n, L^n \geq 0 & \forall i \in \mathcal{I}, \forall n \in \mathcal{V} \\ X_p^n &\geq 0, Y_p^n \in \{0, 1\} & \forall p \in \mathcal{J}, \forall n \in \mathcal{V} \end{split}$$

æ

< ロ > < 回 > < 回 > < 回 > < 回 >

v v

ν

v v

I I V I V V

Echelon stock reformulation

$$\min \sum_{n \in \mathcal{V}} \left(\sum_{p \in \mathcal{J}} f_p^n Y_p^n + \sum_{i \in \mathcal{I}} h_i^n S_i^n + l^n L^n + \sum_{i \in \mathcal{I}_r \cup \{0\}} q_i^n W_i^n + g^n X_0^n \right)$$

subject to:

$$\begin{split} & X_{p}^{n} \leq M_{p}^{n} Y_{p}^{n} & \forall p \in \mathcal{J}, \forall n \in \\ & S_{0}^{n} = S_{0}^{n-1} + r^{n} - X_{0}^{n} - W_{0}^{n} & \forall n \in \\ & E_{i}^{n} = E_{i}^{n-1} + \pi_{i}^{n} \alpha_{i} X_{0}^{n} - d^{n} + L^{n} - W_{i}^{n} & \forall i \in \mathcal{I}_{r}, \forall n \in \\ & E_{i}^{n} = E_{i}^{n-1} + X_{i-1}^{n} - d^{n} + L^{n} & \forall i \in \mathcal{I}_{s}, \forall n \in \\ & E_{2l+1}^{n} = E_{2l+1}^{n-1} + X_{l+1}^{n} - d^{n} + L^{n} & \forall n \in \\ & E_{i+l}^{n} - E_{i+l}^{n} \geq 0 & \forall i \in \\ & E_{i+l}^{n} - E_{2l+1}^{n} \geq 0 & \forall i \in \\ & E_{i}^{n} = 0 & \forall i \in \\ & E_{i}^{n} = 0 & \forall i \in \\ & U_{i}^{n}, L^{n} \geq 0 & \forall i \in \mathcal{I}, \forall n \in \\ & W_{i}^{n}, L^{n} \geq 0, Y_{p}^{n} \in \{0, 1\} & \forall p \in \mathcal{J}, \forall n \in \\ & \end{split}$$

P+1 independent single-item single-echelon lot-sizing problems with lost sales

Linking constraints

<ロト < 同ト < 三ト <

Given k = 1 and a subset $U = \{2, 20\}$.

-

Given k = 1 and a subset $U = \{2, 20\}$.

$$E^1 + X^2 + X^7 + X^{20} \ge (d^2 - L^2) + (d^{20} - L^{20})$$

-

Given k = 1 and a subset $U = \{2, 20\}$.

$$E^1 + X^2 + X^7 + X^{20} \ge (d^2 - L^2) + (d^{20} - L^{20})$$

$$E^{k} + Y^{2}(d^{2} + d^{20}) + Y^{7}(d^{20}) + Y^{20}(d^{20}) \geq \sum_{t \in U} (d^{n} - L^{n})$$

-

Given k = 1 and a subset $U = \{2, 20\}$.

$$E^1 + X^2 + X^7 + X^{20} \ge (d^2 - L^2) + (d^{20} - L^{20})$$

$$E^{k} + Y^{2}(d^{2} + d^{20}) + Y^{7}(d^{20}) + Y^{20}(d^{20}) \ge \sum_{t \in U} (d^{n} - L^{n})$$
$$E^{k} + \sum_{k+1 \le t \le t^{*}} Y^{n} \sum_{v \in U: v \ge t} d^{v} \ge \sum_{t \in U} (d^{n} - L^{n})$$

Given k = 1 and a subset $U = \{2, 20\}$.

$$E^1 + X^2 + X^7 + X^{20} \ge (d^2 - L^2) + (d^{20} - L^{20})$$

$$E^{k} + Y^{2}(d^{2} + d^{20}) + Y^{7}(d^{20}) + Y^{20}(d^{20}) \ge \sum_{t \in U} (d^{n} - L^{n})$$
$$E^{k} + \sum_{k+1 \le t \le t^{*}} Y^{n} \sum_{v \in U: v \ge t} d^{v} \ge \sum_{t \in U} (d^{n} - L^{n})$$

Image: A math a math

Loparic et al. [2001]

æ

Let k be a non-leaf node and l be a leaf node. Let $U \in \mathcal{P}(k, l)$.

$$E_{p+l}^k \geq \sum_{n \in U} \left[d^n (1 - \sum_{\nu \in \mathcal{P}(k,n)} Y_p^{\nu} - L^n) \right]$$

where:

• $\mathcal{P}(n, m)$: path between node *n* and *m* in the scenario tree

< □ > < □ > < 三

Let k be a non-leaf node and l be a leaf node. Let $U \in \mathcal{P}(k, l)$.

$$E_{p+l}^k \geq \sum_{n \in U} \left[d^n (1 - \sum_{\nu \in \mathcal{P}(k,n)} Y_p^{\nu} - L^n) \right]$$

where:

• $\mathcal{P}(n, m)$: path between node *n* and *m* in the scenario tree

Image: A math a math

Separation Polynomial in $\mathcal{O}(|\mathcal{V}|^2)$

Let k be a non-leaf node and l be a leaf node. Let $U \in \mathcal{P}(k, l)$.

$$E_{p+l}^k \geq \sum_{n \in U} \left[d^n (1 - \sum_{\nu \in \mathcal{P}(k,n)} Y_p^{\nu} - L^n) \right]$$

where:

• $\mathcal{P}(n, m)$: path between node *n* and *m* in the scenario tree

Separation Polynomial in $\mathcal{O}(|\mathcal{V}|^2)$

Key point in practice

Careful selection of the valid inequalities to be added to the formulation

<ロト < 同ト < 三ト <

Two main ingredients:

э

・ロト ・回 ト ・ ヨト ・

Two main ingredients:

For each $k \in \mathcal{V}$, we search for:

< □ > < □ > < 三

Two main ingredients:

For each $k \in \mathcal{V}$, we search for:

 \rightarrow the most violated valid inequality.

Two main ingredients:

For each $k \in \mathcal{V}$, we search for:

 \rightarrow the most violated valid inequality.

Two main ingredients:

For each $k \in \mathcal{V}$, we search for:

 \rightarrow the most violated valid inequality.

Two main ingredients:

For each $k \in \mathcal{V}$, we search for:

- $\rightarrow\,$ the most violated valid inequality.
- \rightarrow avoiding the addition of inequalities involving similar subsets of set-up variables.

Two main ingredients:

For each $k \in \mathcal{V}$, we search for:

- $\rightarrow\,$ the most violated valid inequality.
- $\rightarrow\,$ avoiding the addition of inequalities involving similar subsets of set-up variables.

Advantages:

Two main ingredients:

For each $k \in \mathcal{V}$, we search for:

- $\rightarrow\,$ the most violated valid inequality.
- \rightarrow avoiding the addition of inequalities involving similar subsets of set-up variables.

Advantages:

 $\rightarrow\,$ all valid inequalities are still potentially considered for inclusion in the formulation.

Two main ingredients:

For each $k \in \mathcal{V}$, we search for:

- $\rightarrow\,$ the most violated valid inequality.
- \rightarrow avoiding the addition of inequalities involving similar subsets of set-up variables.

Advantages:

 $\rightarrow\,$ all valid inequalities are still potentially considered for inclusion in the formulation.

 \rightarrow the separation problem is solved exactly.

2

・ロト ・回 ト ・ ヨト ・

We follow the procedure proposed by Guan et al. [2009]

• • • • • • • •

We follow the procedure proposed by Guan et al. [2009]

Let $k \in \mathcal{V}$ be a non-leaf node and $U \in \mathcal{V}(k)$.

$$EI^{k} + \sum_{\nu \in U} L^{\nu} + \sum_{\mu \in \mathcal{V}(k) \setminus \{k\}} \phi^{\mu} Y^{\mu} \ge \sum_{\nu \in U_{\sigma_{|\mathcal{L}(k)|}}} d^{\nu}$$

We follow the procedure proposed by Guan et al. [2009]

Let $k \in \mathcal{V}$ be a non-leaf node and $U \in \mathcal{V}(k)$.

$$EI^{k} + \sum_{\nu \in U} L^{\nu} + \sum_{\mu \in \mathcal{V}(k) \setminus \{k\}} \phi^{\mu} Y^{\mu} \ge \sum_{\nu \in U_{\sigma_{|\mathcal{L}(k)|}}} d^{\nu}$$

Separation

Exact separation: very long computation times

We follow the procedure proposed by Guan et al. [2009]

Let $k \in \mathcal{V}$ be a non-leaf node and $U \in \mathcal{V}(k)$.

$$EI^{k} + \sum_{\nu \in \bigcup} L^{\nu} + \sum_{\mu \in \mathcal{V}(k) \setminus \{k\}} \phi^{\mu} Y^{\mu} \ge \sum_{\nu \in \bigcup_{\sigma \mid \mathcal{L}(k) \mid}} d^{\nu}$$

Separation

Exact separation: very long computation times

 \rightarrow Heuristic separation algorithm based on a neighborhood search
Random generation based on the numerical values used by [Ahn *et al*, 2011] and [Jayaraman, 2006]

Random generation based on the numerical values used by [Ahn *et al*, 2011] and [Jayaraman, 2006]

• All the parameters are defined by discrete uniform distribution $DU(L_j, U_j)$

< □ > < 同 > < 三 > <

Random generation based on the numerical values used by [Ahn *et al*, 2011] and [Jayaraman, 2006]

- All the parameters are defined by discrete uniform distribution $DU(L_j, U_j)$
- 16 different structures of scenario tree resulting in a total of 1440 instances
- Time limit of 900 seconds.

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Random generation based on the numerical values used by [Ahn *et al*, 2011] and [Jayaraman, 2006]

- All the parameters are defined by discrete uniform distribution $DU(L_j, U_j)$
- 16 different structures of scenario tree resulting in a total of 1440 instances
- Time limit of 900 seconds.

Branch-and-Cut algorithms:

- CPLEX: the generic branch-and-cut algorithm embedded in CPLEX 12.8.
- Path and Tree: a customized branch-and-cut algorithm using the (k, U) Path inequalities and the newly introduced (k, U) Tree inequalities to strengthen the echelon-stock formulation.

イロト イボト イヨト イヨ

Numerical results

Instances		CPLEX default			Path and Tree				
1	Nodes	Gap _{LP}	<i>Gap_{MIP}</i>	Time	# Opt	Gap _{LP}	Gap _{MIP}	Time	$\# \operatorname{Opt}$
5	381 1022								
10	381 1022 1365								

- Total of 3600 randomly generated instances
- Average values for 720 randomly generated instances
- Resolution with CPLEX 12.6.1 on a PC running under Windows 10, Intel Core i7, 8 GB of RAM
- Time limit : 900s
- Results published in Computers & Operations Research. Quezada et al. [2020].

Numerical results

Instances		CPLEX default			Path and Tree				
1	Nodes	Gap _{LP}	<i>Gap_{MIP}</i>	Time	# Opt	<i>Gap_{LP}</i>	Gap _{MIP}	Time	# Opt
5	381	11.33	0.15	786.34	119				
	1022	11.04	0.45	900.29	0				
	381	7.92	0.30	897.49	9				
10	1022	10.17	3.11	901.38	0				
	1365	15.67	11.02	900.49	0				

- Total of 3600 randomly generated instances

- Average values for 720 randomly generated instances

- Resolution with CPLEX 12.6.1 on a PC running under Windows 10, Intel Core i7, 8 GB of RAM

- Time limit : 900s

- Results published in Computers & Operations Research. Quezada et al. [2020].

Numerical results

Instances		CPLEX default			Path and Tree				
1	Nodes	Gap _{LP}	<i>Gap_{MIP}</i>	Time	# Opt	Gap _{LP}	<i>Gap_{MIP}</i>	Time	# Opt
5	381	11.33	0.15	786.34	119	1.67	0.05	564.96	340
	1022	11.04	0.45	900.29	0	1.71	0.31	900.24	3
	381	7.92	0.30	897.49	9	1.20	0.19	817.73	103
10	1022	10.17	3.11	901.38	0	1.38	0.84	900.91	0
	1365	15.67	11.02	900.49	0	1.84	1.11	900.85	0

- Total of 3600 randomly generated instances

- Average values for 720 randomly generated instances

- Resolution with CPLEX 12.6.1 on a PC running under Windows 10, Intel Core i7, 8 GB of RAM

- Time limit : 900s

- Results published in Computers & Operations Research. Quezada et al. [2020].

Problem description

- 2 Multi-stage stochastic programming approach
- 3 Cutting-plane generation approach
- Stochastic dual dynamic programming approach
 - SDDiP algorithm
 - Extended SDDiP algorithm
 - Illustration of extSDDiP
 - Numerical results
- 5 Conclusion and Perspectives

- First introduced by Pereira and Pinto [1991]

3

・ロト ・回ト ・ヨト ・ヨト

- First introduced by Pereira and Pinto [1991]

- Key assumption: stage-wise independent process

$$\xi_t$$
 is independent of ξ_1, \dots, ξ_{t-1}
for $t = 2, ..., T$

æ

- First introduced by Pereira and Pinto [1991]

- Key assumption: stage-wise independent process

$$\xi_t$$
 is independent of ξ_1, \dots, ξ_{t-1}
for $t = 2, ..., T$

- Recombining scenario tree

э

<ロト < 同ト < 三ト <

- First introduced by Pereira and Pinto [1991]

- Key assumption: stage-wise independent process

$$\xi_t$$
 is independent of ξ_1, \ldots, ξ_{t-1}
for $t = 2, ..., T$

- Recombining scenario tree

- Polyhedral recourse function in LP setting.
- \rightarrow Benders' cuts.

<ロト < 同ト < 三ト <

- First introduced by Pereira and Pinto [1991]

- Key assumption: stage-wise independent process

$$\xi_t$$
 is independent of ξ_1, \dots, ξ_{t-1}
for $t = 2, ..., T$

- Recombining scenario tree

- Polyhedral recourse function in LP setting.

 \rightarrow Benders' cuts.

However, we are trying to solve an MILP. Zou et al. [2019] introduced the SDDiP algorithm.

<ロト < 同ト < 三ト <

- First introduced by Pereira and Pinto [1991]

- Key assumption: stage-wise independent process

$$\xi_t$$
 is independent of ξ_1, \dots, ξ_{t-1}
for $t = 2, ..., T$

- Recombining scenario tree

- Polyhedral recourse function in LP setting.

 \rightarrow Benders' cuts.

However, we are trying to solve an MILP. Zou et al. [2019] introduced the SDDiP algorithm.

- Key Assumption: Binary state variables

- First introduced by Pereira and Pinto [1991]

- Key assumption: stage-wise independent process

 ξ_t is independent of ξ_1,\ldots,ξ_{t-1} for t=2,...,T

- Recombining scenario tree

- Polyhedral recourse function in LP setting.

 \rightarrow Benders' cuts.

However, we are trying to solve an MILP. Zou et al. [2019] introduced the SDDiP algorithm.

- Key Assumption: Binary state variables

-Our contribution:

 \rightarrow We propose a new extension of the SDDiP algorithm for solving multistage stochastic lot-sizing problems.

(日) (日) (日) (日) (日)

Dynamic programming formulation: a full decomposition

For each node $n \in \mathcal{V}$:

Dynamic programming formulation: a full decomposition

For each node $n \in \mathcal{V}$:

$$Q^{n}(s^{a^{n}}) := \min \sum_{p \in \mathcal{J}} f_{p}^{n} Y_{p}^{n} + \sum_{i \in \mathcal{I}} h_{i}^{n} S_{i}^{n} + I^{n} L^{n} + \sum_{i \in \mathcal{I}_{r} \cup \{0\}} q_{i}^{n} W_{i}^{n} + g^{n} X_{0}^{n} + \sum_{m \in \mathcal{C}(n)} \rho^{nm} Q^{m}(S^{n})$$

For each node $n \in \mathcal{V}$:

$$Q^{n}(s^{a^{n}}) := \min \sum_{p \in \mathcal{J}} f_{p}^{n} Y_{p}^{n} + \sum_{i \in \mathcal{I}} h_{i}^{n} S_{i}^{n} + I^{n} L^{n} + \sum_{i \in \mathcal{I}_{r} \cup \{0\}} q_{i}^{n} W_{i}^{n} + g^{n} X_{0}^{n} + \sum_{m \in \mathcal{C}(n)} \rho^{nm} Q^{m}(S^{n})$$

subject to:

$$\begin{split} X_p^n &\leq M_p^n Y_p^n & \forall p \in \mathcal{J} \\ S_0^n &= S_0^{a^n} + r^n - X_0^n - W_0^n \\ S_i^n &= S_i^{a^n} + \pi_i^n \alpha_i X_0^n - X_i^n - W_i^n & \forall i \in \mathcal{I}_r \\ S_i^n &= S_i^{a^n} + X_{i-l}^n - \alpha_i X_{l+1}^n & \forall i \in \mathcal{I}_s \end{split}$$

$$S_{2l+1}^{n} = S_{2l+1}^{a^{n}} + X_{l+1}^{n} - d^{n} + L^{n}$$

$$S_{i}^{n} > 0 \qquad \forall i \in \mathcal{I}$$

$$L^n \ge 0$$

$$X^n \ge 0, X^n \in \{0, 1\}$$

$$\forall n \in \mathcal{I}$$

$$X_p^n \ge 0, Y_p^n \in \{0, 1\} \qquad \qquad \forall p \in \mathcal{J}$$

For each node $n \in \mathcal{V}$: $Q^{n}(s^{a^{n}}) := \min \sum_{p \in \mathcal{J}} f_{p}^{n} Y_{p}^{n} + \sum_{i \in \mathcal{I}} h_{i}^{n} S_{i}^{n} + l^{n} L^{n} + \sum_{i \in \mathcal{I}_{r} \cup \{0\}} q_{i}^{n} W_{i}^{n} + g^{n} X_{0}^{n} + \sum_{m \in \mathcal{C}(n)} \rho^{nm} Q^{m}(S^{n})$ $m \in \overline{C}(n)$ subject to: \mathcal{Q}^n $X_n^n \leq M_n^n Y_n^n$ $\forall p \in \mathcal{J}$ $S_0^n = S_0^{a^n} + r^n - X_0^n - W_0^n$ $S_i^n = S_i^{a^n} + \pi_i^n \alpha_i X_0^n - X_i^n - W_i^n$ $\forall i \in \mathcal{I}_r$ $S_{i}^{n} = S_{i}^{a^{n}} + X_{i-1}^{n} - \alpha_{i} X_{l+1}^{n}$ $\forall i \in \mathcal{I}_{\epsilon}$ $S_{2l+1}^n = S_{2l+1}^{a^n} + X_{l+1}^n - d^n + L^n$ $S_{i}^{n} > 0$ $\forall i \in \mathcal{I}$ $L^n > 0$ $X_n^n > 0, Y_n^n \in \{0, 1\}$ $\forall p \in \mathcal{J}$

< □ > < 同 > < 三 > < 三 >

For each node $n \in \mathcal{V}$: $Q^{n}(s^{a^{n}}) := \min \sum_{p \in \mathcal{J}} f_{p}^{n} Y_{p}^{n} + \sum_{i \in \mathcal{I}} h_{i}^{n} S_{i}^{n} + l^{n} L^{n} + \sum_{i \in \mathcal{I}_{r} \cup \{0\}} q_{i}^{n} W_{i}^{n} + g^{n} X_{0}^{n} + \sum_{m \in \mathcal{C}(n)} \rho^{nm} Q^{m}(S^{n})$ $m \in \mathcal{C}(n)$ subject to: $\mathcal{O}^n = \mathcal{O}^t$ $X_n^n \leq M_n^n Y_n^n$ $\forall p \in \mathcal{J}$ $S_0^n = S_0^{a^n} + r^n - X_0^n - W_0^n$ $S_i^n = S_i^{a^n} + \pi_i^n \alpha_i X_0^n - X_i^n - W_i^n$ $\forall i \in \mathcal{I}_r$ $S_{i}^{n} = S_{i}^{a^{n}} + X_{i-1}^{n} - \alpha_{i} X_{l+1}^{n}$ $\forall i \in \mathcal{I}_{\epsilon}$ $S_{2l+1}^n = S_{2l+1}^{a^n} + X_{l+1}^n - d^n + L^n$ $S_{i}^{n} > 0$ $\forall i \in \mathcal{I}$ $L^n > 0$ $X_n^n \ge 0, Y_n^n \in \{0, 1\}$ $\forall p \in \mathcal{J}$

< □ > < 同 > < 三 > < 三 >

For each node $n \in \mathcal{V}$: $Q^{n}(s^{a^{n}}) := \min \sum_{p \in \mathcal{J}} f_{p}^{n} Y_{p}^{n} + \sum_{i \in \mathcal{I}} h_{i}^{n} S_{i}^{n} + l^{n} L^{n} + \sum_{i \in \mathcal{I}_{r} \cup \{0\}} q_{i}^{n} W_{i}^{n} + g^{n} X_{0}^{n} + \sum_{m \in \mathcal{C}(n)} \rho^{nm} Q^{m}(S^{n})$ $\underbrace{m\in\mathcal{C}(n)}$ subject to: $Q^n = O^t$ $X_n^n \leq M_n^n Y_n^n$ $\forall p \in \mathcal{J}$ $S_0^n = S_0^{a^n} + r^n - X_0^n - W_0^n$ $S_i^n = S_i^{a^n} + \pi_i^n \alpha_i X_0^n - X_i^n - W_i^n$ $\forall i \in \mathcal{I}_r$ $S_{i}^{n} = S_{i}^{a^{n}} + X_{i}^{n} - \alpha_{i} X_{i+1}^{n}$ $\forall i \in \mathcal{I}_{\epsilon}$ $S_{2l+1}^n = S_{2l+1}^{a^n} + X_{l+1}^n - d^n + L^n$ $S_{i}^{n} > 0$ $\forall i \in \mathcal{I}$ $L^n \ge 0$ $X_{n}^{n} > 0, Y_{n}^{n} \in \{0, 1\}$ $\forall p \in \mathcal{J}$

Decomposes the original problem into a series of single-node sub-problems

イロト 不得 トイヨト イヨト

For each node $n \in \mathcal{V}$: $Q^{n}(s^{a^{n}}) := \min \sum_{p \in \mathcal{J}} f_{p}^{n} Y_{p}^{n} + \sum_{i \in \mathcal{I}} h_{i}^{n} S_{i}^{n} + I^{n} L^{n} + \sum_{i \in \mathcal{I}_{r} \cup \{0\}} q_{i}^{n} W_{i}^{n} + g^{n} X_{0}^{n} + \sum_{m \in \mathcal{C}(n)} \rho^{nm} Q^{m}(S^{n})$ $m \in \mathcal{C}(n)$ subject to: $\mathcal{O}^n = \mathcal{O}^t$ F^n $\forall p \in \mathcal{J}$ $X_n^n \leq M_n^n Y_n^n$ $S_0^n = S_0^{a^n} + r^n - X_0^n - W_0^n$ $S_i^n = S_i^{a^n} + \pi_i^n \alpha_i X_0^n - X_i^n - W_i^n$ $\forall i \in \mathcal{I}_r$ $S_{i}^{n} = S_{i}^{a^{n}} + X_{i}^{n} - \alpha_{i} X_{i+1}^{n}$ $\forall i \in \mathcal{I}_{\epsilon}$ $S_{2l+1}^n = S_{2l+1}^{a^n} + X_{l+1}^n - d^n + L^n$ $S_{i}^{n} > 0$ $\forall i \in \mathcal{I}$ $L^n > 0$ $X_{n}^{n} > 0, Y_{n}^{n} \in \{0, 1\}$ $\forall p \in \mathcal{J}$

Decomposes the original problem into a series of single-node sub-problems

For each node $n \in \mathcal{V}$: $Q^{n}(s^{a^{n}}) := \min \sum_{p \in \mathcal{J}} f_{p}^{n} Y_{p}^{n} + \sum_{i \in \mathcal{I}} h_{i}^{n} S_{i}^{n} + l^{n} L^{n} + \sum_{i \in \mathcal{I}_{r} \cup \{0\}} q_{i}^{n} W_{i}^{n} + g^{n} X_{0}^{n} + \sum_{m \in \mathcal{C}(n)} \rho^{nm} Q^{m}(S^{n})$ subject to: $Q^n = O^t$ F^n $\begin{pmatrix} F^n \\ X_p^n \le M_p^n Y_p^n \\ S_0^n = S_0^{a^n} + r^n - X_0^n - W_0^n \end{pmatrix}$ $\forall p \in \mathcal{J}$ $\mathcal{X}^{n} \left\langle \begin{array}{c} S_{i}^{n} = S_{i}^{a^{n}} + \pi_{i}^{n}\alpha_{i}X_{0}^{n} - X_{i}^{n} - W_{i}^{n} \\ S_{i}^{n} = S_{i}^{a^{n}} + X_{i-l}^{n} - \alpha_{i}X_{l+1}^{n} \\ S_{2l+1}^{n} = S_{2l+1}^{a^{n}} + X_{l+1}^{n} - d^{n} + L^{n} \end{array} \right.$ $\forall i \in \mathcal{I}_r$ $\forall i \in \mathcal{I}_{\epsilon}$ $\left|\begin{array}{c}S_i^n\geq 0\\L^n\geq 0\\X_p^n\geq 0,Y_p^n\in\{0,1\}\end{array}\right|$ $\forall i \in \mathcal{I}$ $\forall p \in \mathcal{J}$

Decomposes the original problem into a series of single-node sub-problems

For each node $n \in \mathcal{V}$:

$$Q^n(u^{a^n}) := \min F^n(X^n, Y^n, S^n, W^n, L^n) + \mathcal{Q}^t(u^n)$$

subject to:

$$(X^n, Y^n, S^n, W^n, L^n) \in \mathcal{X}^n$$

2

< ロ > < 回 > < 回 > < 回 > < 回 >

For each node $n \in \mathcal{V}$:

$$Q^n(u^{a^n}) := \min F^n(X^n, Y^n, S^n, W^n, L^n) + \mathcal{Q}^t(u^n)$$

subject to:

$$\begin{aligned} & (X^n, Y^n, S^n, W^n, L^n) \in \mathcal{X}^n \\ & S_i^n = \sum_{\lambda \in \mathcal{B}} 2^\lambda u_i^{n,\lambda} \\ & S_i^{a^n} = \sum_{\lambda \in \mathcal{B}} 2^\lambda z_i^{n,\lambda} \end{aligned} \qquad \begin{array}{l} \text{Binary approximation} \\ & \forall i \in \mathcal{I} \\ & \forall i \in \mathcal{I} \end{aligned} \\ & u_i^{n,\lambda} \in \{0,1\} \end{aligned} \qquad \qquad \forall i \in \mathcal{I}, \forall \lambda \in \mathcal{B} \end{aligned}$$

$$z_i^{n,\lambda} \in (0,1)$$
 $orall i \in \mathcal{I}, orall \lambda \in \mathcal{B}$

3

For each node $n \in \mathcal{V}$:

$$Q^n(u^{a^n}) := \min F^n(X^n, Y^n, S^n, W^n, L^n) + \mathcal{Q}^t(u^n)$$

subject to:

$(X^n, Y^n, S^n, W^n, L^n) \in$	\mathcal{X}^n					
$S_i^n = \sum_{\lambda \in \mathcal{B}} 2^{\lambda} u_i^{n,\lambda}$	$= \sum_{\lambda \in \mathcal{B}} 2^{\lambda} u_i^{n,\lambda}$ Piper (approximation)					
$S_i^{a^n} = \sum_{\lambda \in \mathcal{B}} 2^{\lambda} z_i^{n,\lambda}$		$\forall i \in \mathcal{I}$				
$z_i^{n,\lambda} = u_i^{a^n,\lambda}$	Copy Constraint	$\forall \lambda \in \mathcal{B}$				
$u_i^{n,\lambda} \in \{0,1\}$		$\forall i \in \mathcal{I}, \forall \lambda \in \mathcal{B}$				
$z_i^{n,\lambda}\in(0,1)$		$\forall i \in \mathcal{I}, \forall \lambda \in \mathcal{B}$				

2

< ロ > < 回 > < 回 > < 回 > < 回 >

For each node $n \in \mathcal{V}$:

$$Q^n(u^{a^n}) := \min F^n(X^n, Y^n, S^n, W^n, L^n) + \mathcal{Q}^t(u^n)$$

subject to:

$(X^n, Y^n, S^n, W^n, L^n) \in$	\mathcal{X}^n	
$S_i^n = \sum_{\lambda \in \mathcal{B}} 2^{\lambda} u_i^{n,\lambda}$	Binary approxim	$\forall i \in \mathcal{I}$
$S_i^{a^n} = \sum_{\lambda \in \mathcal{B}} 2^{\lambda} z_i^{n,\lambda}$		$\forall i \in \mathcal{I}$
$z_i^{n,\lambda} = u_i^{a^n,\lambda}$	Copy Constraint	$\forall \lambda \in \mathcal{B}$
$u_i^{n,\lambda} \in \{0,1\}$		$\forall i \in \mathcal{I}, \forall \lambda \in \mathcal{B}$
$z_i^{n,\lambda}\in(0,1)$		$\forall i \in \mathcal{I}, \forall \lambda \in \mathcal{B}$

Subproblems involve a larger number of binary variables

э

イロト イボト イヨト イヨ

Approximate subproblems

For each node $n \in \mathcal{V}$:

$$Q^n(S^{a^n}) := \min F^n(X^n, Y^n, S^n, W^n, L^n) + \mathcal{Q}^t(S^n)$$

subject to:

$$(X^n, Y^n, S^n, W^n, L^n) \in \mathcal{X}^n$$

$$\sigma_i^n = S_i^{a^n} \qquad \forall i \in \mathcal{I}$$

$$\sigma_i^n \ge 0 \qquad \forall i \in \mathcal{I}$$

$$X^{n}, S^{n}, W^{n}, L^{n} \geq 0; Y_{n} \in \{0, 1\}$$

2

< ロ > < 回 > < 回 > < 回 > < 回 >

Approximate subproblems

For each node $n \in \mathcal{V}$:

$$Q^n(S^{a^n}) := \min F^n(X^n, Y^n, S^n, W^n, L^n) + \mathcal{Q}^t(S^n)$$

subject to:

$$\begin{aligned} & (X^n, Y^n, S^n, W^n, L^n) \in \mathcal{X}^n \\ & \sigma_i^n = S_i^{a^n} & \forall i \in \mathcal{I} \\ & \sigma_i^n \ge 0 & \forall i \in \mathcal{I} \\ & X^n, S^n, W^n, L^n \ge 0; Y_n \in \{0, 1\} \end{aligned}$$

Approximation of $Q^t(\cdot)$ by Strengthened Benders' Cuts

æ

Extended SDDiP algorithm

Strengthened Benders' Cuts

For each node $n \in \mathcal{V}$:

$$\hat{R}^n(S^{a^n}) := \min_{y,x,s,\sigma} F^n(X^n,Y^n,S^n,W^n,L^n) + \sum_{i\in\mathcal{I}}\pi^n_i(S^{a^n}_i-\sigma^n_i) + \psi^t(S^n)$$

subject to:

$$\begin{aligned} (X^n, Y^n, S^n, X^n, L^n) &\in \mathcal{X}^n \\ \sigma_i^n &\ge 0 \\ \psi_i^n(u^n) &:= \min\{\theta^n : \theta^n \ge \sum_{m \in \mathcal{C}(n)} \rho^{nm}(v_i^m + (\pi_i^m)^{\mathsf{T}} \sigma^n)\} \\ &\forall i \in \mathcal{I} \\ \mathcal{X}^n, S^n, W^n, L^n \ge 0; Y_n \in \{0, 1\} \end{aligned}$$

2

< ロ > < 回 > < 回 > < 回 > < 回 >

・ロト ・回 ト ・ ヨト ・

-Set of root nodes \mho

-Subtree defined by a set of

æ

<ロト < 回 > < 回 > < 三 > < 三 >

For each node $\eta \in \mho$:
For each node $\eta \in \mho$:

$$Q^{\eta}(s^{a^{\eta}}) := \min \sum_{n \in \mathcal{W}^{\eta}} \rho^{n} F^{n}(X^{n}, Y^{n}, S^{n}, W^{n}, L^{n}) + \sum_{\ell \in \mathfrak{L}(\eta)} \sum_{m \in \mathcal{C}(\ell)} \rho^{nm} Q^{m}(S^{\ell})$$

For each node $\eta \in \mho$:

$$Q^{\eta}(s^{\mathfrak{s}^{\eta}}) := \min \sum_{n \in \mathcal{W}^{\eta}} \rho^{n} F^{n}(X^{n}, Y^{n}, S^{n}, W^{n}, L^{n}) + \sum_{\ell \in \mathfrak{L}(\eta)} \sum_{m \in \mathcal{C}(\ell)} \rho^{nm} Q^{m}(S^{\ell})$$

subject to:

$$\begin{aligned} & (X^n, Y^n, S^n, W^n, L^n) \in \mathcal{X}^n & \forall n \in \mathcal{W}^\eta \\ & X^n, S^n, W^n, L^n \geq 0 \geq 0, Y_p^n \in \{0, 1\} & \forall p \in \mathcal{J}, n \in \mathcal{W}^\eta \end{aligned}$$

For each node $\eta \in \mho$:

$$Q^{\eta}(s^{a^{\eta}}) := \min \sum_{n \in \mathcal{W}^{\eta}} \rho^{n} F^{n}(X^{n}, Y^{n}, S^{n}, W^{n}, L^{n}) + \sum_{\ell \in \mathfrak{L}(\eta)} \sum_{\substack{m \in \mathcal{C}(\ell) \\ m \in \mathcal{C}(\ell)}} \rho^{nm} Q^{m}(S^{\ell})$$
subject to:

$$Q^{t}$$

$$\forall n \in \mathcal{W}^{\eta}$$

$$X^{n}, S^{n}, W^{n}, L^{n} \ge 0 \ge 0, Y^{n}_{n} \in \{0, 1\}$$

$$\forall p \in \mathcal{J}, n \in \mathcal{W}^{\eta}$$

æ

For each node $\eta \in \mho$:

$$Q^{\eta}(s^{a^{\eta}}) := \min \sum_{n \in \mathcal{W}^{\eta}} \rho^{n} F^{n}(X^{n}, Y^{n}, S^{n}, W^{n}, L^{n}) + \sum_{\ell \in \mathfrak{L}(\eta)} \sum_{\substack{m \in \mathcal{C}(\ell) \\ m \in \mathcal{C}(\ell)}} \rho^{nm} Q^{m}(S^{\ell})$$
subject to:

$$(X^{n}, Y^{n}, S^{n}, W^{n}, L^{n}) \in \mathcal{X}^{n}$$

$$\forall n \in \mathcal{W}^{\eta}$$

$$X^{n}, S^{n}, W^{n}, L^{n} \ge 0 \ge 0, Y^{n}_{\rho} \in \{0, 1\}$$

$$\forall p \in \mathcal{J}, n \in \mathcal{W}^{\eta}$$

Decomposes the original problem into a series of small stochastic sub-problems

• • • • • • • • • • • • •

Extended SDDiP algorithm

Dynamic programming formulation: a partial decomposition

For each node $\eta \in \mathcal{O}$:

Decomposes the original problem into a series of small stochastic sub-problems

Advantages:

- Reduced number of expected cost-to-go functions to approximate.
- Forward solution of better guality.

For each node $\eta \in \mathcal{O}$:

Decomposes the original problem into a series of small stochastic sub-problems

Advantages:

- Reduced number of expected cost-to-go functions to approximate.
- Forward solution of better guality.

Disadvantages:

Larger size of subproblems.

Additional Strengthened Benders' Cuts

イロト イヨト イヨト イ

2

Additional Strengthened Benders' Cuts

For each node $\eta \in \mho$:

$$\hat{R}^n(S^{a^n}) := \min \sum_{n \in \mathcal{W}^\eta}
ho^n F^n(X^n, Y^n, S^n, W^n, L^n) + \sum_{\ell \in \mathfrak{L}(\eta)} \psi^t(S^\ell)$$

subject to:

$$(X^n, Y^n, S^n, W^n, L^n) \in \mathcal{X}^n$$
 $\forall n \in \mathcal{W}^\eta$

$$\sigma_{\rho}^{\eta} = S_{\rho}^{a^{\eta}} \qquad \qquad \forall \rho \in \mathcal{I} \\ \sigma_{\rho}^{\eta} \ge 0 \qquad \qquad \forall \rho \in \mathcal{I}$$

$$\begin{split} \psi^{\ell}(S^{\ell}) &:= \min\{\theta^{\ell} : \theta^{\ell} \ge \sum_{m \in \mathcal{C}(n)} \rho^{nm} (v_{l}^{m} + (\pi_{l}^{m})^{\mathsf{T}} \sigma^{\ell})\} \\ X^{n}, S^{n}, W^{n}, L^{n} \ge 0; Y^{n} \in (0, 1) \\ \forall p \in \mathcal{I}, n \in \mathcal{W}^{\eta} \end{split}$$

æ

<ロト < 回 > < 回 > < 三 > < 三 >

Additional Strengthened Benders' Cuts

For each node $\eta \in \mho$:

$$\hat{R}^n(S^{a^n}) := \min \sum_{n \in \mathcal{W}^\eta} \rho^n F^n(X^n, Y^n, S^n, W^n, L^n) + \sum_{\ell \in \mathfrak{L}(\eta)} \psi^t(S^\ell)$$

subject to:

$$(X^n, Y^n, S^n, W^n, L^n) \in \mathcal{X}^n$$
 $\forall n \in \mathcal{W}^\eta$

$$\sigma_{p}^{\eta} = S_{p}^{a^{\eta}} \qquad \qquad \forall p \in \mathcal{I}$$

$$\sigma_p^{\eta} \ge 0 \qquad \qquad \forall p \in \mathcal{I}$$

$$S_p^k \ge \sum_{n \in U} \left[d^n (1 - \sum_{\nu \in \mathcal{P}(k,n)} Y_p^{\nu} - L^n) \right] \qquad \forall U \in \mathcal{P}(k,l), k, l \in \mathcal{W}^{\eta}$$

$$\psi^{\ell}(S^{\ell}) := \min\{\theta^{\ell} : \theta^{\ell} \ge \sum_{m \in \mathcal{C}(n)} \rho^{nm}(v_{l}^{m} + (\pi_{l}^{m})^{\mathsf{T}}\sigma^{\ell})\} \qquad \forall l = 1, ..., i$$
$$X^{n}, S^{n}, W^{n}, L^{n} \ge 0; Y^{n} \in (0, 1) \qquad \forall p \in \mathcal{I}, n \in \mathcal{W}^{\eta}$$

3

Extended SDDiP algorithm

Additional Strengthened Benders' Cuts

For each node $\eta \in \mho$:

$$\hat{R}^n(S^{a^n}) := \min \sum_{n \in \mathcal{W}^\eta} \rho^n F^n(X^n, Y^n, S^n, W^n, L^n) + \sum_{p \in \mathcal{I}} \pi_p^n(S^{a^n}_p - \sigma_p^n) + \sum_{\ell \in \mathfrak{L}(\eta)} \psi^t(S^\ell)$$

subject to:

$$(X^n, Y^n, S^n, W^n, L^n) \in \mathcal{X}^n$$
 $\forall n \in \mathcal{W}^\eta$

$$\sigma_{p}^{\eta} \geq 0 \qquad \qquad \forall p \in \mathcal{I}$$

$$S_{\rho}^{k} \geq \sum_{n \in U} \left[d^{n} (1 - \sum_{\nu \in \mathcal{P}(k,n)} Y_{\rho}^{\nu} - L^{n}) \right] \qquad \qquad \forall U \in \mathcal{P}(k,l), k, l \in \mathcal{W}^{\eta}$$

$$\psi^{\ell}(S^{\ell}) := \min\{\theta^{\ell} : \theta^{\ell} \ge \sum_{m \in \mathcal{C}(n)} \rho^{nm} (v_l^m + (\pi_l^m)^{\mathsf{T}} \sigma^{\ell})\} \qquad \forall l = 1, ..., i$$

$$X^{n}, S^{n}, W^{n}, L^{n} \geq 0; Y^{n} \in \{0, 1\} \qquad \qquad \forall p \in \mathcal{I}, n \in \mathcal{W}^{\eta}$$

æ

<ロト < 回 > < 回 > < 三 > < 三 >

 $m \in \mathcal{C}(n)$

Extended SDDiP algorithm

Additional Strengthened Benders' Cuts

For each node $\eta \in \mho$:

$$\hat{R}^n(S^{a^n}) := \min \sum_{n \in \mathcal{W}^\eta} \rho^n F^n(X^n, Y^n, S^n, W^n, L^n) + \sum_{p \in \mathcal{I}} \pi_p^n(S_p^{a^n} - \sigma_p^n) + \sum_{\ell \in \mathfrak{L}(\eta)} \psi^t(S^\ell)$$

subject to:

$$(X^n, Y^n, S^n, W^n, L^n) \in \mathcal{X}^n$$
 $\forall n \in \mathcal{W}^\eta$

$$\begin{split} \sigma_{\rho}^{n} &\geq 0 & \forall \rho \in \mathcal{I} \\ S_{\rho}^{k} &\geq \sum_{n \in U} \left[d^{n} (1 - \sum_{\nu \in \mathcal{P}(k,n)} Y_{\rho}^{\nu} - L^{n}) \right] & \forall U \in \mathcal{P}(k,l), k, l \in \mathcal{W}^{\eta} \\ \psi^{\ell}(S^{\ell}) &:= \min\{\theta^{\ell} : \theta^{\ell} \geq \sum_{\nu \in \mathcal{P}(k,n)} \rho^{nm}(v_{l}^{m} + (\pi_{l}^{m})^{\mathsf{T}}\sigma^{\ell}) \} & \forall l = 1, ..., i \end{split}$$

$$X^{n}, S^{n}, W^{n}, L^{n} \geq 0; Y^{n} \in \{0, 1\}$$

$$\forall p \in \mathcal{I}, n \in \mathcal{W}^{\eta}$$

Leads to a better approximation of the expected cost-to-go functions in practice.

Illustrative example

Figure: Illustration of different SB cuts.

< □ > < □ > < □</p>

3

メロト メタト メヨト メヨト

At each iteration *i*:

• Sampling step

イロト イヨト イヨト イ

æ

At each iteration *i*:

- Sampling step
- Forward step

$$\begin{aligned} \underline{Q}_{i}^{\eta}(S_{i}^{a^{\eta}}) &:= \\ \min \sum_{n \in \mathcal{W}^{\eta}} \rho^{n} F^{n}(X^{n}, Y^{n}, S^{n}, W^{n}, L^{n}) \\ &+ \sum \psi_{i}^{t}(S^{\ell}) \end{aligned}$$

$$+\sum_{\ell\in\mathcal{L}(\eta)}\psi_i^\iota(S)$$

Image: A math a math

э

At each iteration *i*:

- Sampling step
- Forward step

$$\begin{split} \underline{Q}_{i}^{\eta}(S_{i}^{a^{\eta}}) &:= \\ \min \sum_{n \in \mathcal{W}^{\eta}} \rho^{n} \mathcal{F}^{n}(X^{n}, Y^{n}, S^{n}, W^{n}, L^{n}) \\ &+ \sum_{\ell \in \mathcal{L}(\eta)} \psi_{i}^{t}(S^{\ell}) \end{split}$$

Image: A math a math

- Backward step
- \rightarrow Cutting-plane generation phase.

At each iteration *i*:

- Sampling step
- Forward step

$$\begin{split} \underline{Q}_{i}^{\eta}(S_{i}^{a^{\eta}}) &:= \\ \min \sum_{n \in \mathcal{W}^{\eta}} \rho^{n} \mathcal{F}^{n}(X^{n}, Y^{n}, S^{n}, W^{n}, L^{n}) \\ &+ \sum_{\ell \in \mathcal{L}(\eta)} \psi_{i}^{t}(S^{\ell}) \end{split}$$

Image: A math a math

- Backward step
- \rightarrow Cutting-plane generation phase.

At each iteration *i*:

- Sampling step
- Forward step

$$\begin{aligned} \underline{Q}_{i}^{\eta}(S_{i}^{a^{\eta}}) &:= \\ \min \sum_{n \in \mathcal{W}^{\eta}} \rho^{n} F^{n}(X^{n}, Y^{n}, S^{n}, W^{n}, L^{n}) \\ &+ \sum_{\ell \in \mathcal{L}(\eta)} \psi_{i}^{t}(S^{\ell}) \end{aligned}$$

• • • • • • • •

- Backward step
- \rightarrow Cutting-plane generation phase.

$$\begin{split} \psi_i^t(S^\ell) &:= \min\{\theta^\ell : \\ \theta^\ell \geq \sum_{m \in \mathcal{C}(\ell)} \rho^{\ell m} (v_i^m + (\pi_i^m)^\intercal S^\ell) \} \end{split}$$

At each iteration *i*:

- Sampling step
- Forward step

$$\begin{aligned} \underline{Q}_{i}^{\eta}(S_{i}^{a^{\eta}}) &:= \\ \min \sum_{n \in \mathcal{W}^{\eta}} \rho^{n} F^{n}(X^{n}, Y^{n}, S^{n}, W^{n}, L^{n}) \\ &+ \sum_{\ell \in \mathcal{L}(\eta)} \psi_{i}^{t}(S^{\ell}) \end{aligned}$$

- Backward step
- \rightarrow Cutting-plane generation phase.

$$\psi_i^t(S^\ell) := \min\{\theta^\ell : \\ \theta^\ell \ge \sum_{m \in \mathcal{C}(\ell)} \rho^{\ell m} (\mathsf{v}_i^m + (\pi_i^m)^\intercal S^\ell)\}$$

Output: Lower and Upper bound

Image: A math a math

Instances Generation and SDDiP algorithms

Random generation based on the numerical values used by Guan et al. [2009]

Instances Generation and SDDiP algorithms

Random generation based on the numerical values used by Guan et al. [2009]

• All the parameters are defined by discrete uniform distribution $DU(L_i, U_i)$

Instances Generation and SDDiP algorithms

Random generation based on the numerical values used by Guan et al. [2009]

- All the parameters are defined by discrete uniform distribution $DU(L_i, U_i)$
- 6 different structures of scenario tree leading to scenario trees involving between 1000 and 3.2 million scenarios
- A total of 480 instances.
- Time limit of 7200 seconds.

• • • • • • • • • •

Instances Generation and SDDiP algorithms

Random generation based on the numerical values used by Guan et al. [2009]

- All the parameters are defined by discrete uniform distribution $DU(L_i, U_i)$
- 6 different structures of scenario tree leading to scenario trees involving between 1000 and 3.2 million scenarios
- A total of 480 instances.
- Time limit of 7200 seconds.

SDDiP algorithms:

 SDDiP: SDDiP algorithm proposed by Zou et al. [2019].

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Instances Generation and SDDiP algorithms

Random generation based on the numerical values used by Guan et al. [2009]

- All the parameters are defined by discrete uniform distribution $DU(L_j, U_j)$
- 6 different structures of scenario tree leading to scenario trees involving between 1000 and 3.2 million scenarios.
- A total of 480 instances.
- Time limit of 7200 seconds.

SDDiP algorithms:

- SDDiP: SDDiP algorithm proposed by Zou et al. [2019].
- AppSDDiP: SDDiP algorithm using a full decomposition with continuous state variables.

• • • • • • • • • • • •

Instances Generation and SDDiP algorithms

Random generation based on the numerical values used by Guan et al. [2009]

- All the parameters are defined by discrete uniform distribution $DU(L_j, U_j)$
- 6 different structures of scenario tree leading to scenario trees involving between 1000 and 3.2 million scenarios.
- A total of 480 instances.
- Time limit of 7200 seconds.

SDDiP algorithms:

- SDDiP: SDDiP algorithm proposed by Zou et al. [2019].
- AppSDDiP: SDDiP algorithm using a full decomposition with continuous state variables.
- ExtSDDiP: The proposed extended SDDiP algorithm using a partial dynamic decomposition.

• • • • • • • • • • • • • •

	I	nsta	nce	CPLEX	SDDiP	AppSDDiP	ExtSDDiP
Σ	R	b	#Scen	Gap (Time)	Gap (Time)	Gap (Time)	Gap (Time)
4	10	1	1,000				
	20	1	8,000				
6	10	1	100,000				
	20	1	3,200,000				
8	5	2	78,125				
	5	5	78,125				
12	3	1	177,000				
	3	3	177,000				
Average							

- Total of 480 randomly generated instances
- Average values for 60 randomly generated instances
- Resolution with CPLEX 12.8
- Time limit : 7200s
- Results published in International Journal of Production Research. [Quezada et al., 2023]

Instance				CPLEX	SDDiP	AppSDDiP	ExtSDDiP
Σ	R	b	#Scen	Gap (Time)	Gap (Time)	Gap (Time)	Gap (Time)
4	10	1	1,000	0.24 (6,513)			
	20	1	8,000	1.57 (7,201)			
6	10	1	100,000	68.27 (7,217)			
	20	1	3,200,000	- (-)			
8	5	2	78,125	93,48 (7,236)			
	5	5	78,125	- (-)			
12	3	1	177,000	91,33 (7,243)			
	3	3	177,000	- (-)			
Average				50.98 (5,638)			

- Total of 480 randomly generated instances

- Average values for 60 randomly generated instances

- Resolution with CPLEX 12.8
- Time limit : 7200s

- Results published in International Journal of Production Research. [Quezada et al., 2023]

Instance				CPLEX	SDDiP	AppSDDiP	ExtSDDiP
Σ	R	b	#Scen	Gap (Time)	Gap (Time)	Gap (Time)	Gap (Time)
4	10	1	1,000	0.24 (6,513)	23.55 (4,306)		
	20	1	8,000	1.57 (7,201)	22.88 (4,202)		
6	10	1	100,000	68.27 (7,217)	30.37 (5,641)		
	20	1	3,200,000	- (-)	35.67 (5,608)		
8	5	2	78,125	93,48 (7,236)	47.76 (7,151)		
	5	5	78,125	- (-)	41.74 (7,222)		
12	3	1	177,000	91,33 (7,243)	51.04 (7,207)		
	3	3	177,000	- (-)	55.60 (7,230)		
Average 50				50.98 (5,638)	38.57 (6,071)		

- Total of 480 randomly generated instances

- Average values for 60 randomly generated instances

- Resolution with CPLEX 12.8

- Time limit : 7200s

- Results published in International Journal of Production Research. [Quezada et al., 2023]

Instance				CPLEX	SDDiP	AppSDDiP	ExtSDDiP
Σ	R	b	#Scen	Gap (Time)	Gap (Time)	Gap (Time)	Gap (Time)
4	10	1	1,000	0.24 (6,513)	23.55 (4,306)	7.46 (1,358)	
	20	1	8,000	1.57 (7,201)	22.88 (4,202)	6.98 (1,974)	
6	10	1	100,000	68.27 (7,217)	30.37 (5,641)	8.81 (2,513)	
	20	1	3,200,000	- (-)	35.67 (5,608)	9.83 (3,664)	
8	5	2	78,125	93,48 (7,236)	47.76 (7,151)	9.11 (3,929)	
	5	5	78,125	- (-)	41.74 (7,222)	6.68 (3,815)	
12	3	1	177,000	91,33 (7,243)	51.04 (7,207)	11.00 (3,313)	
	3	3	177,000	- (-)	55.60 (7,230)	9.72 (3,607)	
Average			age	50.98 (5,638)	38.57 (6,071)	8.70 (3021)	

- Total of 480 randomly generated instances

- Average values for 60 randomly generated instances

- Resolution with CPLEX 12.8
- Time limit : 7200s

- Results published in International Journal of Production Research. [Quezada et al., 2023]

Instance				CPLEX	SDDiP	AppSDDiP	ExtSDDiP
Σ	R	b	#Scen	Gap (Time)	Gap (Time)	Gap (Time)	Gap (Time)
4	10	1	1,000	0.24 (6,513)	23.55 (4,306)	7.46 (1,358)	1.18 (1,956)
	20	1	8,000	1.57 (7,201)	22.88 (4,202)	6.98 (1,974)	4.70 (3,463)
6	10	1	100,000	68.27 (7,217)	30.37 (5,641)	8.81 (2,513)	5.61 (4,579)
	20	1	3,200,000	- (-)	35.67 (5,608)	9.83 (3,664)	7.59 (4,814)
8	5	2	78,125	93,48 (7,236)	47.76 (7,151)	9.11 (3,929)	5.64 (4,579)
	5	5	78,125	- (-)	41.74 (7,222)	6.68 (3,815)	4.11 (5,884)
12	3	1	177,000	91,33 (7,243)	51.04 (7,207)	11.00 (3,313)	6.29 (3,595)
	3	3	177,000	- (-)	55.60 (7,230)	9.72 (3,607)	5.65 (5.987)
Average			age	50.98 (5,638)	38.57 (6,071)	8.70 (3021)	5.10 (4357)

- Total of 480 randomly generated instances

- Average values for 60 randomly generated instances

- Resolution with CPLEX 12.8
- Time limit : 7200s

- Results published in International Journal of Production Research. [Quezada et al., 2023]

Problem description

- 2 Multi-stage stochastic programming approach
- 3 Cutting-plane generation approach
- 4 Stochastic dual dynamic programming approach
- 5 Conclusion and Perspectives

1

• Branch-and-cut algorithm

 \rightarrow New sets of effective valid inequalities

æ

イロト イヨト イヨト イヨ

- Branch-and-cut algorithm
 - \rightarrow New sets of effective valid inequalities

Advantages:

- $\rightarrow\,$ Exact solution for small-size scenarios trees.
- $\rightarrow\,$ No assumptions on the stochastic parameters.

- Branch-and-cut algorithm
 - \rightarrow New sets of effective valid inequalities

Advantages:

- $\rightarrow\,$ Exact solution for small-size scenarios trees.
- $\rightarrow\,$ No assumptions on the stochastic parameters.

Disadvantages:

 \rightarrow Poor performance (or impractical) for large-size scenario trees.

- Branch-and-cut algorithm
 - \rightarrow New sets of effective valid inequalities

Advantages:

- $\rightarrow\,$ Exact solution for small-size scenarios trees.
- $\rightarrow\,$ No assumptions on the stochastic parameters.

Disadvantages:

- \rightarrow Poor performance (or impractical) for large-size scenario trees.
- Stochastic dual dynamic programming algorithm.
 - \rightarrow New dynamic programming decomposition
 - \rightarrow New cuts strategy to approximate expected cost-to-go functions.
Two approaches:

- Branch-and-cut algorithm
 - \rightarrow New sets of effective valid inequalities

Advantages:

- $\rightarrow\,$ Exact solution for small-size scenarios trees.
- $\rightarrow\,$ No assumptions on the stochastic parameters.

Disadvantages:

- \rightarrow Poor performance (or impractical) for large-size scenario trees.
- Stochastic dual dynamic programming algorithm.
 - \rightarrow New dynamic programming decomposition
 - \rightarrow New cuts strategy to approximate expected cost-to-go functions.

Advantages:

- \rightarrow Near-optimal solutions for large-size scenario trees.
- $\rightarrow\,$ Better approximation of expected cots-to-go functions through additional strengthened Benders' cuts.

イロト イポト イヨト イヨト

Two approaches:

- Branch-and-cut algorithm
 - \rightarrow New sets of effective valid inequalities

Advantages:

- $\rightarrow\,$ Exact solution for small-size scenarios trees.
- $\rightarrow\,$ No assumptions on the stochastic parameters.

Disadvantages:

- \rightarrow Poor performance (or impractical) for large-size scenario trees.
- Stochastic dual dynamic programming algorithm.
 - \rightarrow New dynamic programming decomposition
 - \rightarrow New cuts strategy to approximate expected cost-to-go functions.

Advantages:

- \rightarrow Near-optimal solutions for large-size scenario trees.
- $\rightarrow\,$ Better approximation of expected cots-to-go functions through additional strengthened Benders' cuts.

Disadvantages:

 $\rightarrow\,$ Stage-wise independence assumption.

イロト イポト イヨト イヨト

Acknowledgment

We would like to thank the Programa de Cooperación Científica ECOS-ANID PC23E10-ECOS230013 for their support and funding, which made this research and presentation possible.

<ロト < 同ト < 三ト <

References I

- Hyung-Dae Ahn, Dong-Ho Lee, and Hwa-Joong Kim. Solution algorithms for dynamic lot-sizing in remanufacturing systems. *International Journal of Production Research*, 49(22):6729–6748, 2011.
- C Franke, B Basdere, M Ciupek, and S Seliger. Remanufacturing of mobile phones—capacity, program and facility adaptation planning. *Omega*, 34(6):562–570, 2006.
- Yongpei Guan, Shabbir Ahmed, and George L Nemhauser. Cutting planes for multistage stochastic integer programs. *Operations research*, 57(2):287–298, 2009.
- Shui Hua Han, MY Dong, Shui Xiu Lu, Stephen CH Leung, and Ming Kim Lim. Production planning for hybrid remanufacturing and manufacturing system with component recovery. *Journal of the Operational Research Society*, 64(10):1447–1460, 2013.
- Mehmet Ali Ilgin and Surendra M Gupta. Environmentally conscious manufacturing and product recovery (ecmpro): a review of the state of the art. *Journal of environmental management*, 91(3):563–591, 2010.
- Vaidyanathan Jayaraman. Production planning for closed-loop supply chains with product recovery and reuse: an analytical approach. *International Journal of Production Research*, 44(5):981–998, 2006.

= nar

イロト 不得下 イヨト イヨト

References II

- Muris Lage Junior and Moacir Godinho Filho. Production planning and control for remanufacturing: literature review and analysis. *Production Planning & Control*, 23(6): 419–435, 2012.
- Muris Lage Junior and Moacir Godinho Filho. Production planning and control for remanufacturing: exploring characteristics and difficulties with case studies. *Production Planning & Control*, 27(3):212–225, 2016.
- Marko Loparic, Yves Pochet, and Laurence A Wolsey. The uncapacitated lot-sizing problem with sales and safety stocks. *Mathematical Programming*, 89(3):487–504, 2001.
- Mario VF Pereira and Leontina MVG Pinto. Multi-stage stochastic optimization applied to energy planning. *Mathematical programming*, 52(1-3):359–375, 1991.
- Yves Pochet and Laurence A Wolsey. *Production planning by mixed integer programming.* Springer Science & Business Media, 2006.
- Franco Quezada, Céline Gicquel, Safia Kedad-Sidhoum, and Dong Quan Vu. A multistage stochastic integer programming approach for a multi-echelon lot-sizing problem with returns and lost sales. *Computers & Operations Research*, 116:104865, 2020.

3

イロト 不得下 イヨト イヨト

References III

- Franco Quezada, Céline Gicquel, and Safia Kedad-Sidhoum. A stochastic dual dynamic integer programming based approach for remanufacturing planning under uncertainty. International Journal of Production Research, 61(17):5992–6012, 2023. doi: 10.1080/00207543.2022.2120924. URL https://doi.org/10.1080/00207543.2022. 2120924.
- Jikai Zou, Shabbir Ahmed, and Xu Andy Sun. Stochastic dual dynamic integer programming. *Mathematical Programming*, 175(1):461–502, 2019.

イロト イポト イヨト イヨト