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1 Introduction

When studying controlled continuous-time Markov chains, two approaches are known. If the
(randomised) action can be changed only at the jump epochs, the model is called ESMDP
[5, 8, 15]. Starting from [15], another construction based on the article by Jacod [14] became more
popular [6, 9, 10, 16, 19]. The latter model is currently called continuous-time MDP (CTMDP).
What is important, CTMDP does not cover ESMDP in the sense that randomised, but constant
during the sojourn times, actions cannot be described in the framework of traditional CTMDP.
The deep connection between CTMDP and ESMDP for the total discounted cost was studied
in [5], but again the author had to introduce those models separately. It looks more appropriate
to build one model, but with wider class of strategies in such way that some strategies (called
below ‘randomised’) correspond to ESMDP, and the others (called ‘relaxed’) correspond to the
standard strategies in CTMDP. This plan was realised in [20], and the current paper provides
some new insights on that model.

It is worth emphasising that the realisations of a relaxed strategy are usually impossible on
practice. For a discussion, see [6, p.78]. Roughly speaking, if the decision maker wants to use
two actions with non-zero probabilities at each time moment, then the trajectories of the control
process are not measurable. On the opposite, randomised strategies are clearly implementable.

In difference from [5, 6], we consider the total undiscounted cost which transforms to the
discounted cost in a special case. What is new and important, the simple randomised strategies
(called below ‘Markov standard ξ-strategies’) are no more sufficient in general even if there
are no constraints (see Section 5 ‘Example’). At the same time, the new class of randomised
strategies (called below ‘Poisson-related’) turns to be sufficient without any restrictions in the
framework of constrained optimisation. This makes it possible to prove the equivalence of the
continuous-time problem with the corresponding discrete-time MDP, where transitions to the
same state (loops) are allowed. Remember that in simple cases that equivalence was known
long ago through the so called uniformisation technique [22] which is not directly applicable
if the transition rate is unbounded. In the case of discounted cost, the transformation to the
discrete-time MDP was justified in [6] without any restrictive conditions.

In Section 2, we introduce the model under study and describe the general and particular
classes of strategies. Note that the transition rate may be arbitrarily unbounded and non-
conservative. The process is studied up to the accumulation of jumps (if it takes place). In
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Sections 3 and 4, the main theoretical results regarding to occupation measures are presented.
An example illustrating the theoretical issues is given in Section 5. In Section 6, we show how
one can use the modern theory of discrete-time MDP for solving the underlying (constrained)
continuous-time problems. The proofs are postponed to Appendix.

2 Model Description

The following notations are frequently used throughout this paper. N is the set of natural
numbers including zero; δx(·) is the Dirac measure concentrated at x, we call such distributions
degenerate; I{·} is the indicator function. B(E) is the Borel σ-algebra of the Borel space E, P(E)
is the Borel space of probability measures on E. F1

∨
F2 is the smallest σ-algebra containing

the two σ-algebras F1 and F2. R+
△
= (0,∞), R0

+
△
= [0,∞), R̄ = [−∞,+∞], R̄+ = (0,∞],

R̄0
+ = [0,∞]. The abbreviation w.r.t. (resp. a.s.) stands for “with respect to” (resp. “almost

surely”); for b, d ∈ R̄, b ∧ d = min{b, d}, b+ △
= max{b, 0} and b−

△
= min{b, 0}. Capital letters

denote random variables, and little letters are for their values.
The primitives of a continuous-time Markov decision process (CTMDP) are the following

elements.

• State space: (X,B(X)) (arbitrary Borel).

• Action space: (A,B(A)) (arbitrary Borel), A(x) ∈ B(A) is the non-empty space of ad-

missible actions in state x ∈ X. It is supposed that K △
= {(x, a) ∈ X ×A : a ∈ A(x)} ∈

B(X×A) and this set contains the graph of a measurable function from X to A.

• Transition rate: q(dy|x, a), a signed kernel on B(X) given (x, a) ∈ K, taking nonneg-
ative values on ΓX \ {x} with ΓX ∈ B(X). We assume that q(X|x, a) ≤ 0 and q̄x =

supa∈A(x) qx(a) < ∞, where qx(a)
△
= −q({x}|x, a).

• Cost rates: measurable R̄-valued functions ci(x, a) on K, i = 0, 1, 2, . . . , N .

• Initial distribution: γ(·), a probability measure on (X,B(X)).

• Additional Borel space (Ξ,B(Ξ)), the source of the control randomness.

Actually, the space (Ξ,B(Ξ)) can be chosen by the decision maker (see Definition 1), but it is
convenient to introduce it immediately, in order to describe the sample space. The role of the
space Ξ will become clear after the description of control strategies.

We introduce the artificial isolated point (cemetery) ∆, put X∆
△
= X∪{∆}, Ξ∆ = Ξ∪{∆},

and define A(∆)
△
= A, q(Γ|∆, a)

△
= 0 for all Γ ∈ B(X∆), α(x, a)

△
= q({∆}|x, a) △

= qx(a)− q(X \
{x}|x, a) ≥ 0 for (x, a) ∈ K. The state ∆ means, the process is over, i.e. escaped from the state
space. We also put ci(∆, a) = 0.

Given the above primitives, let us construct the underlying (measurable) sample space (Ω,F).

Having firstly defined the measurable space (Ω0,F0)
△
= (Ξ× (X×Ξ× R+)

∞,B(Ξ× (X×Ξ×
R+)

∞)), let us adjoin all the sequences of the form

(ξ0, x0, ξ1, θ1, x1, ξ2, . . . , θm−1, xm−1, ξm, θm, ∆, ∆, ∞, ∆, ∆, . . . )

to Ω0, where m ≥ 1 is some integer, ξm ∈ Ξ, θm ∈ R̄+, θl ∈ R+ , xl ∈ X, ξl ∈ Ξ for all
nonnegative integers l ≤ m − 1. After the corresponding modification of the σ-algebra F0, we
obtain the basic sample space (Ω,F).
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Below,
ω = (ξ0, x0, ξ1, θ1, x1, ξ2, θ2, x2, . . .).

For n ∈ N \ {0}, introduce the mapping Θn : Ω → R̄+ by Θn(ω) = θn; for n ∈ N, the mappings
Xn : Ω → X∆ and Ξn : Ω → Ξ∆ are defined by Xn(ω) = xn and Ξn(ω) = ξn. As usual, the
argument ω will be often omitted. The increasing sequence of random variables Tn, n ∈ N is
defined by Tn =

∑n
i=1Θi; T∞ = limn→∞ Tn. Here, Θn (resp. Tn, Xn) can be understood as the

sojourn times (resp. the jump moments, the states of the process on the intervals [Tn, Tn+1)).
We do not intend to consider the process after T∞; the isolated point ∆ will be regarded as
absorbing; it appears when θm = ∞ or when θm < ∞ and the jump xm−1 → ∆ is realized with
intensity α(x, a). The meaning of the ξn components will be described later. Finally, for n ∈ N,

Hn = (Ξ0, X0,Ξ1,Θ1, X1, . . . ,Ξn,Θn, Xn)

is the n-term (random) history.
The random measure µ is a measure on R+ ×Ξ×X∆ with values in N ∪ {∞}, defined by

µ(ω; ΓR × ΓΞ × ΓX) =
∑
n≥1

I{Tn(ω) < ∞}δ(Tn(ω),Ξn(ω),Xn(ω))(ΓR × ΓΞ × ΓX);

the right continuous filtration (Ft)t∈R0
+
on (Ω,F) is given by

Ft = σ{H0} ∨ σ{µ(]0, s]×B) : s ≤ t, B ∈ B(Ξ×X∆)}.

The controlled process of our interest

X(ω, t)
△
=
∑
n≥0

I{Tn ≤ t < Tn+1}Xn + I{T∞ ≤ t}∆

takes values in X∆ and is right continuous and adapted. The filtration {Ft}t≥0 gives rise to the

predictable σ-algebra on Ω×R0
+ defined by P △

= σ{Γ×{0} (Γ ∈ F0),Γ×(s,∞) (Γ ∈ Fs−, s > 0)},
where Fs−

△
=
∨

t<sFt.

Definition 1 A control strategy is defined as follows

S = {Ξ, p0, ⟨pn, πn⟩, n = 1, 2, . . .},

where p0(dξ0) is a probability distribution on Ξ; for xn−1 ∈ X, pn(dξn|hn−1) is a stochastic kernel
on Ξ given Hn−1 (the space of (n − 1)-component histories); πn(da|hn−1, ξn, s) is a stochastic
kernel on A(xn−1) given Hn−1 × Ξ × R+. If xn−1 = ∆, then we assume that pn(dξn|hn−1) =
δ∆(dξn) and πn(da|hn−1,∆, s) = δ∆(da).

The pn components mean the randomizations of controls; the πn components mean relax-
ations.

If the randomizations are absent, that is, the kernels πn do not depend on the ξ-components,
then we deal with a relaxed strategy. One can omit the ξn components; as a result we obtain
the standard control strategy {πn, n = 1, 2, . . .}. Such models were built and investigated by
many authors [5, 6, 16, 19].

On the other hand, if the relaxations are absent, that is, all kernels πn are degenerate and
concentrated at singletons

φn(ξ0, x0, θ1, . . . , xn−1, ξn, s) ∈ A(xn−1), (1)
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then the control process A(t) can be defined like follows

A(ω, t) =
∑
n≥1

I{Tn−1 < t ≤ Tn}φn(Ξ0, X0,Ξ1,Θ1, . . . , Xn−1,Ξn, t− Tn−1)

+I{T∞ ≤ t}∆. (2)

Below, we call such (purely randomized) strategies as ξ-strategies; they are defined by sequences
{Ξ, p0, ⟨pn, φn⟩, n = 1, 2, . . .}. According to (2), after the history Hn−1 is realized, the decision
maker flips a coin resulting in the value of Ξn having the distribution pn. Afterwards, up to the
next jump epoch Tn, the control A(t) is just a (deterministic measurable) function φn.

Definition 2 ξ-strategies were defined just above. Purely relaxed strategies introduced earlier
will be called π-strategies. General strategies S can be called π-ξ-strategies. If πn(da|x0, θ1, x1, θ2, . . . , xn−1, s) =

πM
n (da|xn−1, s) for all n = 1, 2, . . . then the π-strategy is called Markov.

Suppose a π-ξ-strategy S is fixed. The dynamics of the controlled process can be described
like follows. First of all, Ξ0 = ξ0 is realized based on the chosen distribution p0(dξ0). If p0 is a
combination of two Dirac measures, then in the future this or that control will be applied: p0 is
responsible for the mixtures of simpler control strategies. After that, the initial state X0, having
the distribution γ(dx), is realized. Later, when the realized state xn−1 ∈ X becomes known at
the realized jump epoch tn−1 (n = 1, 2, . . .), the dynamics is controlled in the following way. The
decision maker flips a coin resulting in the Ξn = ξn component having distribution pn(dξn|hn−1);
after that the stochastic kernel πn(da|hn−1, ξn, s) gives rise to the jumps intensity λn(Γ|hn−1, s)
from the current state xn−1 to Γ ∈ B(X∆), where

λn(Γ|hn−1, ξn, s) =

∫
A
πn(da|hn−1, ξn, s)q(Γ \ {xn−1}|xn−1, a); (3)

parameter s > 0 is the time interval passed after the jump epoch tn−1. After the corresponding
interval θn, the new state xn ∈ X∆ of the process X(t) is realized at the jump epoch tn =
tn−1+ θn. The joint distribution of (Θn, Xn) is given below. And so on. If θn = ∞ then xn = ∆
and actually the process is over: the triples (θ = ∞,∆,∆) will be repeated endlessly. The same
happens if θn < ∞ and xn = ∆. Along with the intensity λn, we need the following integral

Λn(Γ, hn−1, ξn, t) =

∫
(0,t]

λn(Γ|hn−1, ξn, s)ds. (4)

Note that, in case qx(a) ≥ ε > 0, Λn(X∆|hn−1, ξn,∞) = ∞ if xn−1 ̸= ∆.
Now, the distribution of H0 = (Ξ0, X0) is given by p0(dξ0) · γ(dx0) and, for any n ∈ N \ {0},

the stochastic kernel Gn on R̄+ ×Ξ∆ ×X∆ given Hn−1 is defined by formulae

Gn({∞} × {∆} × {∆}|hn−1) = δxn−1({∆});

Gn({∞} × ΓΞ × {∆}|hn−1) = δxn−1(X)

∫
ΓΞ

e−Λ(X∆,hn−1,ξn,∞)pn(dξn|hn−1);

Gn(ΓR × ΓΞ × ΓX|hn−1) = δxn−1(X)

∫
ΓΞ

∫
ΓR

λn(ΓX|hn−1, ξn, t) (5)

×e−Λn(X∆,hn−1,ξn,t)dt pn(dξn|hn−1);

Gn({∞} ×Ξ∆ ×X|hn−1) = Gn(R+ × {∆} ×X∆|hn−1) = 0.

Here ΓR ∈ B(R+), ΓΞ ∈ B(Ξ), ΓX ∈ B(X∆).
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It remains to apply the induction and Ionescu-Tulcea’s theorem [2, Prop.7.28] or [17, p.294]
to obtain the probability measure PS

γ on (Ω,F) called strategic measure. A more detailed
discussion and connection to the martingales, compensator etc [14] can be found in [20].

Below, when γ(·) is a Dirac measure concentrated at x ∈ X, we use the ‘degenerated’ notation
PS
x . Expectations with respect to PS

γ and PS
x are denoted as ES

γ and ES
x , respectively. The set

of all π-ξ-strategies S will be denoted as ΠS ; the collections of all π- and ξ-strategies will be
denoted as Ππ and Πξ correspondingly.

We aim to study several classes of control strategies and the associated measures. That is
important for stochastic optimal control. For example, one can consider the following problem:

W0(S) = ES
γ

[ ∞∑
n=1

∫
(Tn−1,Tn]

∫
A
πn(da|Hn−1,Ξn, t− Tn−1)c

+
0 (Xn−1, a)dt

]

+ES
γ

[ ∞∑
n=1

∫
(Tn−1,Tn]

∫
A
πn(da|Hn−1,Ξn, t− Tn−1)c

−
0 (Xn−1, a)dt

]

= ES
γ

[∫
(0,T∞)

∫
A
π(da|t)c0(X(t), a) dt

]
→ inf

S∈ΠS

(6)

subject to

Wi(S) ≤ di, i = 1, 2, . . . , N,

where all the objectives Wi(S) have the form similar to W0(S) with function c0 being replaced

with other given cost rates ci; di are given numbers. Here and below, ∞−∞ △
= +∞ and

π(da|t) =
∞∑
n=1

I{Tn−1 < t ≤ Tn}πn(da|Hn−1,Ξn, t− Tn−1)

is the P(A)-valued random process. The notions of optimal and ε-optimal strategies are con-
ventional.

Remark 1 Suppose a strategy S is such that, for some m ≥ 0, all kernels {πn}∞n=1 for xn−1 ̸= ∆
do not depend on the ξm-component. Then one can omit ξm ∈ Ξ∆ and Ξm ∈ Ξ∆ from the
consideration. In this case, instead of the strategic measure PS

γ (dω), we can everywhere use the

marginal P̃S
γ (dω̃) = PS

γ (dω̃ ×Ξ). Here

ω̃ = (ξ0, x0, ξ1, θ1, . . . , xm−1, θm, xm, ξm+1, θm+1, . . .)

and ω̃ × Ξ = (ξ0, x0, ξ1, θ1, . . . , xm−1,Ξ, θm, xm, ξm+1, θm+1, . . .). Below, we omit the tilde and
hope this will not lead to a confusion.

For example, for a purely relaxed strategy S ∈ Ππ, the strategic measure is defined on the
space of sequences

ω = (x0, θ1, x1, . . .),

and that is standard for CTMDP [5, 6, 16, 19].

As was mentioned, the space Ξ can be chosen by the decision maker. Let us look at several
possibilities.

Definition 3 Suppose Ξ = A, the relaxations are absent, and the functions φn in (2) have
the form φn(hn−1, ξn, s) = ξn, so that the argument ξ0 never appears and thus can be omitted.
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Then such a strategy will be called a standard ξ-strategy. It will be denoted as S = {A, pn, n =
1, 2, . . .} and below we usually write An (or an) instead of Ξn (or ξn), n = 1, 2, . . .. If we
consider only such strategies then we deal with the so called exponential semi-Markov decision
process [5, p.498]. In case pn(dξn|hn−1) = pn(dan|hn−1) = pMn (dan|xn−1) (n = 1, 2, . . .), the
standard ξ-strategy will be called Markov. The collection of all Markov standard ξ-strategies will
be denoted as ΠM

ξ , they are often denoted as pm.

According to Remark 1, slightly modified sample spaces are associated with different types
of strategies which are again denoted in different ways. For the reader’s convenience, we sum-
marize the main notations in the following table.

Strategy Sample space

General (π-ξ-strategy)
S = {Ξ, p0, ⟨pn, πn⟩, n = 1, 2, . . .} ∈ ΠS Ω = {(ξ0, x0, ξ1, θ1, x1, ξ2, θ2, . . .)}

Purely randomized (ξ-strategy)
S = {Ξ, p0, ⟨pn, φn⟩, n = 1, 2, . . .} ∈ Πξ Ω = {(ξ0, x0, ξ1, θ1, x1, ξ2, θ2, . . .)}

Purely relaxed (π-strategy)
S = {πn, n = 1, 2, . . .} ∈ Ππ Ω = {(x0, θ1, x1, θ2, . . .)}

Markov standard ξ-strategy
S = {A, pMn (dan|xn−1), n = 1, 2, . . .} Ω = {(x0, a1, θ1, x1, a2, θ2, . . .)}
= pM ∈ ΠM

ξ

We introduced the new, richer set of strategies ΠS , and one of the targets is to establish the
sufficiency of smaller classes Ππ and Πξ. More about the model in [20].

3 Occupation Measures and Sufficient Classes of Strategies

Definition 4 Following [5, 6], for a fixed strategy S ∈ ΠS, we introduce the occupation measures
for n = 1, 2, . . .:

ηSn (ΓX × ΓA) = ES
γ

[∫
(Tn−1,Tn]∩R+

I{Xn−1 ∈ ΓX}πn(ΓA|Hn−1,Ξn, t− Tn−1)dt

]
,

where ΓX ∈ B(X),ΓA ∈ B(A).

Remark 2 If S is a standard ξ-strategy then, for n = 1, 2, . . .

ηSn (ΓX × ΓA) = ES
γ [I{Xn−1 ∈ ΓX}I{An ∈ ΓA}Θn] = ES

γ [δXn−1(ΓX)δAn(ΓA)Θn],

and ∫
ΓX

∫
ΓA

qx(a)η
S
n (dx, da)

= ES
γ

[
I{Xn−1 ∈ ΓX}I{An ∈ ΓA}I{qXn−1(An) > 0}ES

γ [Θn|Xn−1, An]
]

= ES
γ [I{Xn−1 ∈ ΓX}I{An ∈ ΓA}]
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confirming that, e.g., if S is Markov standard then
∑∞

n=1 qx(a)η
S
n coincides with the (total)

occupation measure on K in the discrete-time MDP with the same state and action spaces X∆

and A and transition probability

Q(ΓX|x, a) = I{qx(a) = 0}I{ΓX ∋ ∆}+ I{qx(a) > 0}q(ΓX \ {x}|x, a)
qx(a)

,

under the control strategy pMn (da|xn−1). We discuss the relations to the discrete-time MDP in
Section 6.

For any non-negative function r, for any S ∈ ΠS ,

ES
γ

[ ∞∑
n=1

∫
(Tn−1,Tn]∩R+

∫
A
πn(da|Hn−1,Ξn, t− Tn−1)r(Xn−1, a)dt

]
(7)

=

∞∑
n=1

∫
X×A

r(x, a)ηSn (dx, da).

Now, after we introduce the sets
DS = { {ηSn}∞n=1, S ∈ ΠS},
Dπ = { {ηSn}∞n=1, S ∈ Ππ, S is Markov} and
Dξ = { {ηSn}∞n=1, S ∈ Πξ with Ξ = A, ξ-strategy S is Markov standard},
the problem (6) can be reformulated as

∞∑
n=1

∫
X×A

c0(x, a)ηn(dx, da) → inf
{ηn}∞n=1∈DS

subject to
∞∑
n=1

∫
X×A

ci(x, a)ηn(dx, da) ≤ di, i = 1, 2, . . . , N.


Condition 1 (a) qx(a) > 0 for all (x, a) ∈ K. (b) ∃ε > 0 : ∀x ∈ X
infa∈A(x) qx(a) ≥ ε.

It is clear that the possible gap

α(x, a)
△
= qx(a)− q(X \ {x}|x, a) = q({∆}|x, a) ≥ 0

can be understood as the discount factor depending on the current state and action. More about
this in [20]. If α > 0 is a constant then we deal with the classical discounted model [5, 6, 10, 19]
satisfying the requirement 1-(b). Certainly, if qx(a) = 0 for some (x, a) ∈ K, and that state x
cannot be reached under any control strategy S, then one can consider the state space X \ {x}.
Similarly, if qx(a) ≡ 0 for all a ∈ A(x) and ∀i = 0, 1, 2, . . . , N , ∀n = 1, 2, . . . ci(x, a) ≡ 0 for all
a ∈ A(x), then one can denote that state x as ∆ (meaning, the process escaped from the state
space X). The situation, when qx(a) = 0 and ci(x, a) ̸= 0 for a reachable state x and for some i
and a ∈ A(x), is more delicate.

Theorem 1 Suppose Condition 1-(a) is satisfied. Then, for any π-ξ-strategy S, there is a

Markov standard ξ-strategy Sξ such that η
Sξ
n ≥ ηSn for all n = 1, 2, . . .. Hence, Markov standard

ξ-strategies are sufficient for solving optimization problem (6) with negative costs ci.
If Condition 1-(b) is satisfied, then DS = Dξ. Hence, Markov standard ξ-strategies are

sufficient in the problem (6).
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Theorem 2 DS = Dπ. Thus, Markov π-strategies are sufficient in the problem (6).

The proofs will appear in [20].
If ηS1

n = ηS2
n for all n = 1, 2, . . . then, for any cost rate c0, the expected total costs

W0(S1) = W0(S2) are the same. But other important objectives (e.g. the variances) may
be different. Consider the following simple example: X = {1}, A = A(1) = {a1, a2}, γ(1) = 1,
q1(a1) = λ1, q1(a2) = λ2, N = 0. Note that q(X \ {1}|1, a) = 0 and q(X|1, a) = −q1(a) < 0.
After introducing the cemetery ∆ with α(1, a) = q({∆}|1, a) = q1(a), we obtain the standard
conservative transition rate q. In this model, we have a single sojourn time Θ = T , so that
the n index is omitted. Suppose the cost rate c0(1, a) = ca is given. Let S1 be the stationary
π-strategy with the values πs(a1|x) = β = 1−πs(a2|1). Then ηS1 = ηS2 for the Markov standard
ξ-strategy S2 defined by p(a1|1) = βλ1

βλ1+(1−β)λ2
= 1 − p(a2|1): see the proof of Theorem 1 in

[20]. For S1, the sample space contains only the pairs (x0 = 1, θ), the (random) total cost is
C = [βca1 + (1− β)ca2 ]θ,

ES1
γ [C] =

βca1 + (1− β)ca2

βλ1 + (1− β)λ2
and ES1

γ [C2] =
2[βca1 + (1− β)ca2 ]2

[βλ1 + (1− β)λ2]2
.

For S2, the sample space contains the triplets (x0 = 1, ξ = a, θ), the total (random) cost is
C = I{a = a1}ca1θ + I{a = a2}ca2θ,

ES2
γ [C] =

βλ1

βλ1 + (1− β)λ2
· c

a1

λ1
+

(1− β)λ2

βλ1 + (1− β)λ2
· c

a2

λ2
= ES1

γ [C],

but

ES2
γ [C2] =

βλ1

βλ1 + (1− β)λ2
· 2(c

a1)2

λ2
1

+
(1− β)λ2

βλ1 + (1− β)λ2
· 2(c

a2)2

λ2
2

.

The difference

ES2
γ [C2]− ES2

γ [C2] =
2

βλ1 + (1− β)λ2

{
β(ca1)2

λ1
+

(1− β)(ca2)2

λ2

− [βca1 + (1− β)ca2 ]2

βλ1 + (1− β)λ2

}
=

2β(1− β)[λ2c
a1 − λ1c

a2 ]2

λ1λ2[βλ1 + (1− β)λ2]2

is non-negative, so that the variance of the total cost is bigger for the ξ-strategy S2.

4 Sufficiency of ξ-strategies, General Case

Example presented in Section 5 shows that, if Condition 1 is not satisfied, then it can happen
that, for a π-strategy S, there is no equivalent Markov standard ξ-strategy having the same
occupation measures. Below, we describe a more general class of ξ-strategies which turns to be
sufficient in the general case.

Definition 5 A Poisson-related ξ-strategy

S = {Ξ, ε, p̃n,k(da|xn−1), n = 1, 2, . . . , k = 1, 2, . . .}

is defined by a constant ε > 0 and a sequence of stochastic kernels p̃n,k(da|x) from X∆ to A
with p̃n,k(A(x)|x) = 1. Here Ξ = (A × R)∞ = {(α1, τ1, α2, τ2, . . .)}, and for n = 1, 2, . . . the
distribution pn of Ξn = (An

1 , T
n
1 , A

n
2 , . . .) given Hn−1 is defined as follows:

8



• for all k ≥ 1, pn(A
n
k ∈ ΓA|hn−1) = p̃n,k(ΓA|xn−1);

• for all k ≥ 1, pn(T
n
k ≤ t|hn−1) = 1− e−εt; random variables Tn

k are mutually independent
and also independent of FTn−1 = B(Hn−1);

• finally,

φn(ξ0, x0, ξ1, θ1, . . . , xn−1, ξn, s) =
∞∑
k=1

I{τn1 + . . .+ τnk−1 < s ≤ τn1 + . . .+ τnk }αn
k ,

and the mapping φn in fact depends only on ξn.

The Ξ0 component plays no role and is omitted.

Such a strategy means that, after any jump of the controlled process X(t), we simulate a
Poisson process and apply different randomized controls during the different sojourn times of
that Poisson process.

Theorem 3 For any control strategy S, there is a Poisson-related ξ-strategy SP such that
{ηSn}∞n=1 = {ηSP

n }∞n=1. The value of ε > 0 can be chosen arbitrarily.

The proof can be found in [20]. The explicit form of the SP strategy is given by the following
expressions. Suppose S = {Ξ, p0, ⟨pn, πn⟩, n = 1, 2, . . .} ∈ ΠS is a given control strategy and fix
an arbitrary ε > 0. The (standard) space Ξ̃ = (A × R)∞ which appears in the definition of a
Poisson-related strategy, is equipped with tilde. It has no concern to the calculations. For a
fixed n ≥ 1, we introduce random functions Qk(w) depending on ω ∈ Ω:

Qk(w)
△
=

ε(εw)k−1

(k − 1)!
e−εw−Λn(X∆,Hn−1,Ξn,w), k = 1, 2, . . . , w ∈ R0

+

and (random) function fw(t):

fw(t)
△
= [λn(X∆|Hn−1,Ξn, w + t) + ε]e−Λn(X∆,Hn−1,Ξn,w+t)+Λn(X∆,Hn−1,Ξn,w)−εt,

w, t ∈ R0
+.

Now, the Poisson-related ξ-strategy SP of our interest is defined by

p̃n,1(ΓA|xn−1)
△
= ES

γ

[∫
(0,∞)

f0(t)

∫
(0,t]

∫
ΓA

πn(da|Hn−1,Ξn, u)

× [qXn−1(a) + ε]du dt|Xn−1 = xn−1

]
;

p̃n,k(ΓA|xn−1)
△
=

1

ES
γ

[ ∫
(0,∞)

Qk−1(w)dw|Xn−1 = xn−1

]

×ES
γ

 ∫
(0,∞)

Qk−1(w)

∫
(0,∞)

fw(t)

∫
(0,t]

∫
ΓA

πn(da|Hn−1,Ξn, w + u)

× [qXn−1(a) + ε]du dt dw|Xn−1 = xn−1

 ,

9



for k ≥ 2.

By the way, the normalizing denominator ES
γ

 ∫
(0,∞)

Qk−1(w)dw|Xn−1 = xn−1

 equals the PS
γ -

probability and also the PSP

γ -probability that Θn is bigger than the Erlang(ε, k − 1) RV, i.e.

that the action Ak is actually applied when using the SP strategy.

5 Example

This example illustrates that Markov standard strategies (as well as stationary standard ξ-
strategies and stationary π-strategies) are not sufficient in optimization problems.

Consider the following CTMDP, very similar to the one described in [9, Ex.3.1]. X = {1},
A = A(1) = (0, 1], γ({1}) = 1, q1(a) = a, c0(x, a) = a, N = 0. Note that q(X\{1}|1, a) = 0 and
q(X|1, a) = −q1(a) = −a < 0. After introducing the cemetery ∆ with α(1, a) = q({∆}|1, a) =
q1(a), we obtain the standard conservative transition rate q. In this model, we have a single
sojourn time Θ = T , so that the n index is omitted.

It is obvious that, for any Markov standard ξ-strategy pM (which is also stationary),

ηp
M
({1} × ΓA) = EpM

γ

[∫
(0,T ]∩R+

I{A(t) ∈ ΓA}dt

]
=

∫
ΓA

pM (da|1) · 1
a

and

W0(p
M ) = EpM

γ

[∫
(0,T ]∩R+

A(t)dt

]
=

∫
A
a ηp

M
({1} × da) =

∫
A
a
1

a
pM (da|1) = 1.

For an arbitrary stationary π-strategy Sπ, we similarly obtain

ηSπ({1} × ΓA) = π(ΓA)

/∫
A
a π(da)

and

W0(Sπ) =

∫
A
a ηSπ({1} × da) = 1.

On the other hand, under an arbitrarily fixed κ > 0, for the purely deterministic strategy
φ(1, s) = e−κs, the (first) sojourn time Θ = T has the cumulative distribution function (CDF)

1− e
−1+e−κθ

κ , so that Pφ
γ (Θ = ∞) = e−

1
κ . Under an arbitrarily fixed U ∈ (0, 1] we have

ηφ({1} × (U, 1]) =

∫ 1

U

e
−1+a

κ

κa
da. (8)

The detailed calculation is given in [20]. The measure ηφ({1} × da) is absolutely continuous

w.r.t. the Lebesgue measure, the density being e
−1+a

κ

κa and

W0(φ) =

∫
A
a ηφ({1} × da) = 1− e−

1
κ . (9)

It is clear that infS∈ΠS
W0(S) = 0: see (9) with κ → ∞, but the optimal strategy does not exist

because Θ > 0 and c0(x, a) > 0. Note also that, if we extend the action space to [0, 1] and keep
q1 and c0 continuous, i.e., q1(0) = c0(0) = 0, then stationary deterministic strategy φ∗(x) = 0 is
optimal with W0(φ

∗) = 0.

10



According to Theorem 1, there is a Markov standard ξ-strategy Sξ such that ηSξ ≥ ηφ. It is
given by the following formula:

PM ((U, 1]|1) =
Eφ

γ

[∫
(0,Θ] I{e

−κt ∈ (U, 1]}e−κtdt
]

Eφ
γ

[∫
(0,Θ] e

−κtdt
] .

After the change of variables y = e−κt, the numerator becomes

Eφ
γ

[∫
[e−κΘ,1)

I{y ∈ (U, 1]}dy
κ

]
= 1− e

U−1
κ

and

PM ((U, 1]|1) = 1− e
U−1
κ

1− e−
1
κ

=

∫ 1

U

1
κe

a−1
κ

1− e−
1
κ

da.

Now, since for any a ∈ A the expectation of Θ is 1
a ,

ηSξ({1} × ΓA) =

∫
ΓA

1
κae

a−1
κ

1− e−
1
κ

da ≥
∫
ΓA

e
a−1
κ

1

κa
da = ηφ({1} × ΓA).

Let us construct the Poisson-related ξ-strategy SP such that ηS
P
= ηφ, using the expressions

given at the end of Section 4.
As usual, we omit index n = 1. Now Λ(X∆, h0, ξ0, t) =

∫ t
0 e

−κsds = 1−e−κt

κ and, using the
formulae for Qk(w) and fw(t), we obtain

p̃1((U, 1]|1) =

∫ ∞

0

[∫ t

0
I{e−κs ∈ (U, 1]}[e−κs + ε]ds

]
(e−κt + ε)e

−1+e−κt

κ
−εtdt

=

∫ − lnU
κ

0

[
1

κ
(1− e−κt) + εt

]
(e−κt + ε)e

−1+e−κt

κ
−εtdt

+
1

κ

∫ ∞

− lnU
κ

[1− U − ε lnU ](e−κt + ε)e
−1+e−κt

κ
−εtdt,

and the density of the p̃1 distribution is given by

−dp̃1((u, 1]|1)
du

=
1

κ

(
1 +

ε

u

)
u

ε
κ e

−1+u
κ .

The starting point for the description of the desired Poisson-related strategy SP is as follows.

• On the interval (0, T1] one should choose the action A1 using the CDF a
ε
κ e

−1+a
κ , a ∈

(0, 1] = A.

• The expected cost on the interval (0, T1 ∧Θ] equals

1

κ

∫ 1

0

(
1 +

ε

a

)
a

ε
κ e

a−1
κ · a

a+ ε
da =

1

κ

∫ 1

0
a

ε
κ e

a−1
κ da.

11



For k ≥ 2, we have

p̃k((U, 1]|1) =

∫ − lnU
κ

0
ε(εw)k−2

(k−2)! e−εwe
−1+e−κw

κ [1− e
U−e−κw

κ
+εw+ ε

κ
lnU ]dw∫∞

0
ε(εw)k−2

(k−2)! e−εwe
−1+e−κw

κ dw
,

and the desired Poisson-related strategy SP is as follows.

• On the interval
(∑k−1

i=1 Ti,
∑k

i=1 Ti

]
one should choose the action Ak using probability

density

−dp̃k((a, 1]|1)
da

=
ε
∫ − ln a

κ
0

(εw)k−2

(k−2)! e
− 1

κ

(
1
κ + ε

κa

)
e

a
κ
+ ε

κ
ln adw∫∞

0
ε(εw)k−2

(k−2)! e−εwe
−1+e−κw

κ dw

=

a+ε
aκ(k−1)!

(−ε ln a
κ

)k−1
e

a
κ
+ ε ln a

κ
− 1

κ∫∞
0

ε(εw)k−2

(k−2)! e−εwe
−1+e−κw

κ dw
.

• If the action Ak is actually applied then the duration T̃k is the smallest RV between the
sojourn time (in state 1 under the action Ak) and the independent exp(ε) random variable
Tk. If Ak is not applied, we put T̃k = 0. The expected length of that interval T̃k (if

positive, that is, with probability
∫∞
0

ε(εw)k−2

(k−2)! e−εwe
−1+e−κw

κ dw: see the proof of Th.5 in

[20]) equals 1
Ak+ε and

ESP

γ

[∫
(0,T̃k]

I{Ak ∈ (U, 1]}dt

]
=

∫ 1

U

1

κa
e

−1+ε ln a+a
κ

(−ε ln a
κ

)k−1

(k − 1)!
da.

• The expected cost on that interval equals

∫ 1

0

1

κ
e

−1+ε ln a+a
κ

(−ε ln a
κ

)k−1

(k − 1)!
da.

One can easily compute

ηS
P
({1} × (U, 1]) =

∞∑
k=1

ESP

γ

[∫
(0,T̃k]

I{Ak ∈ (U, 1]}dt

]

=

∫ 1

U

1

κ
a

ε
κ
−1e

a−1
κ da+

∫ 1

U

1

κ
a

ε
κ
−1e

a−1
κ

(
a−

ε
κ − 1

)
da

=

∫ 1

U

e
a−1
κ

κa
da = ηφ({1} × (U, 1]) :

see (8).
Similarly,

W0(S
P ) =

1

κ

∫ 1

0
a

ε
κ e

a−1
κ da+

∫ 1

0

1

κ
a

ε
κ e

a−1
κ

(
a−

ε
κ − 1

)
da

=

∫ 1

0

1

κ
e

a−1
κ da = 1− e−

1
κ = W0(φ) :

see (9).
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6 Continuous and Discrete-Time MDP

6.1 Non-Zero Jumps Intensity

Suppose Condition 1-(b) is satisfied (or Condition 1-(a) if the cost rates ci are negative). Then,
according to Theorem 1, Markov standard ξ-strategies are sufficient in problem (6). Formula
(6) takes the form

W0(S) =

∞∑
n=1

ES
γ

[
I{Xn−1 ̸= ∆}ES

γ

[
c0(Xn−1, An)Θn|FTn−1

]]
(10)

=

∞∑
n=1

ES
γ

[
I{Xn−1 ̸= ∆}

∫
A

c0(Xn−1, a)

qXn−1(a)
pMn (da|Xn−1)

]
→ inf

S∈ΠM
ξ

.

It remains to notice that ∀ΓX ∈ B(X∆)

PS
γ (Xn ∈ ΓX|FTn−1) =

∫
A

q(ΓX \ {Xn−1}|Xn−1, a)

qXn−1(a)
pMn (da|Xn−1) (11)

to deduce that actually we deal with a discrete-time MDP in the class of randomized Markov
control strategies pM . Indeed, at any one time moment n, having the current state xn−1 ∈ X
and choosing action a ∈ A(xn−1), we face the one-step cost c0(xn−1, a)/qxn−1(a), and the process
moves to a state xn ∈ ΓX ∈ B(X∆) with probability q(ΓX \ {xn−1}|xn−1, a)/qxn−1(a). State ∆
is absorbing with zero one-step cost. It is known that randomized Markov control strategies are
sufficient for solving discrete-time problems with the total expected cost [17, Lemma 2].

The optimality equation looks as follows

inf
a∈A(x)

{
c0(x, a)/qx(a) +

∫
X\{x}

v(y)q(dy|x, a)/qx(a)− v(x)

}
= 0, x ∈ X∆, (12)

and all the theory of discrete-time MDP is applicable.

Remark 3 If c0(x, a) ≥ 0 and the model is semi-continuous (see [2, Def.8.7], or [3, Ass.2.1],
or [17, Con.5]) then the Bellman function v(x) = infpM∈ΠM

ξ
W0(p

M ), where x is the initial state

(i.e. γ(dy) = δx(dy) ), is the minimal non-negative solution to (12). Moreover, there exists
a stationary deterministic uniformly (or persistently) optimal strategy φ∗, that is, a strategy
satisfying v(x) = W0(φ

∗) for all initial states x ∈ X. The (measurable) mapping φ∗ : X∆ → A
provides the infimum in (12) [2, Prop.9.12, Cor.9.17.2]. One can find more about the total-cost
MDP in [1, 2, 7, 13] and other monographs and articles.

Note that MDP with total (undiscounted) expected cost is a challenging area, full of unex-
pected: strategy and value iterations may be unsuccessful, a conserving strategy (providing the
infimum in (12)) may be not optimal, and so on: see the corresponding counter-examples in [18,
Ch.2]. At the same time, particular cases, like transient and discounted models are well studied
[1, 2, 13, 17]. For instance, in the standard discounted case, if α(x, a) = α > 0, the model
is semi-continuous, and the cost rate c0 is bounded, then equation (12) has a single bounded
solution on X with v(∆) = 0, and the stationary conserving strategy exists and is optimal. By
the way, here equation (12) takes the form

inf
a∈A(x)

{
c0(x, a) +

∫
X\{x}

v(y)q(dy|x, a)− q(X \ {x}|x, a)v(x)− αv(x)

}
= 0,

x ∈ X,
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coincident with the Bellman equation investigated in many works on CTMDP [10, 19, 21]. Note
that the discount factor was state
-dependent in [23]. One can investigate also the case when the cost rate c0 is not necessar-
ily bounded, working in the spaces with ‘weighted’ norms. Similar approach was demonstrated
in [10, 19, 21] for CTMDP and in [1, 13], [22, §6.10] for discrete-time MDP.

In the cited works on CTMDP, many efforts were made to ensure that the controlled process
is non-explosive, that is, PS

γ (T∞ = ∞) = 1 for all strategies S. We underline here that explosions
are not excluded in the current article: we simply consider the X(t) process up to the moment
T∞ which may be finite.

Let us apply the recent results on constrained discrete-time MDP with total expected cost
[4] to the problem (6).

Condition 2 (a) There exists a dominating probability measure m on X:
∀(x, a) ∈ K q(·|x, a) ≪ m. (Here the measure q(·|x, a) is considered to be defined on X \ {x} for
(x, a) ∈ K.)

(b) A is compact, ∀x ∈ X A(x) = A; for any ΓX ∈ B(X∆) and x ∈ X function q(ΓX \
{x}|x, ·)/qx(·) is continuous on A; functions ci(x, ·), i = 0, 1, 2, . . . , N are continuous on A for
any x ∈ X.

The linear program LP associated with the constrained problem (6) looks as follows:

W0 =

∫
X×A

c0(x, a)

qx(a)
η(dx, da) → inf (13)

subject to η ∈ LC , where LC is the space of (possibly infinite-valued) feasible measures, that is,
satisfying equation

η(ΓX ×A) = γ(ΓX) +

∫
X×A

q(ΓX \ {x}|x, a)
qx(a)

η(dx, da), (14)

and such that, for any i = 0, 1, 2, . . . , N , the integral

Wi =

∫
X×A

ci(x, a)

qx(a)
η(dx, da) (15)

is well defined and satisfies the constraints

Wi ≤ di, i = 1, 2, . . . , N. (16)

Note that, for any Markov standard ξ-strategy pM , the total sum of (slightly modified)

occupation measures
∞∑
n=1

qx(a)η
pM

n (dx, da) satisfies equation (14).

We also need auxiliary linear programs LPi, i = 0, 1, 2, . . . , N

Wi → inf

subject to η ∈ Li, where Li is the space of measures satisfying (14) and such that the integral
(15) is well defined.

Proposition 1 Let Condition 2 be satisfied. Suppose, for any i = 0, 1, 2, . . . , N , the minimal
value of the linear program LPi is finite and let η∗ be the optimal solution of the constrained
linear program LP (13),(14),(15),(16). Then η∗ gives rise to the so called ‘induced’ stochastic
kernel p∗(da|x) which defines the stationary standard ξ-strategy solving problem (6).
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The proof follows from [4, Th.5.2]. Generally speaking, after the measure η∗ is obtained,
the state space X is split into two disjoint parts X = V ∪ V c. The subset V c is the largest (in
some sense) such that the measure η∗(dx, da) is σ-finite on it and hence can be disintegrated:
η∗(dx, da) = p∗(da|x)η∗(dx×A). On the set V , p∗(da|x) = δf(x)(da), where f(x) is a specially
constructed function: see Lemma 5.1, Prop.5.1 and Def.5.1 in [4]. Easier constructions can be
found in [4, §4], where the set A is finite.

Note that in [4] the number of constraints N was not necessarily finite.
If all cost rates ci ≥ 0 are non-negative, then a stronger version of Proposition 1 is valid (see

[3]): if the model is semi-continuous and the objective (13) is finite for some feasible measure η,
then there is a stationary standard ξ-strategy solving problem (6).

6.2 General Case

Now we investigate the general case when Condition 1 is not necessarily fulfilled. For an arbi-
trarily fixed ε > 0, consider the discrete-time MDP M with the same state and action spaces
X∆ and A and the same set K of admissible state-action pairs. Transition probability on X∆

is defined by

Q(ΓX|y, b) = q(ΓX \ {y}|y, b) + εI{ΓX ∋ y}
qy(b) + ε

;

the initial distribution is γ. Here and below, it is convenient to denote the states and actions in
the M model as y and b. The notions of a control strategy p and the corresponding strategic
measure MP p

γ in M are conventional [12, 17]. The (total) occupation measure Mηp on K is
defined by the standard formula (see [13, §9.4]):

Mηp(ΓX × ΓA) =

∞∑
m=1

Mηpm(ΓX × ΓA) =

∞∑
m=1

MEp
γ [I{Ym−1 ∈ ΓX, Bm ∈ ΓA}]. (17)

Let D be the full collection of such occupation measures under different Markov strategies p.
Other strategies do not extend the set D [17, Lemma 2].

Lemma 1 D coincides with the space of all (total) occupation measures
∞∑
n=1

(qx(a) + ε)ηSn under different strategies S ∈ ΠS in the original continuous-time model. (See

Section 3.)

Now it is clear that solving the original constrained problem (6) is equivalent to solving the
corresponding discrete-time MDP with one-step costs
ci(y, b)/[qy(b) + ε]. By the way, in the unconstrained case, the optimality equation takes the
form

inf
b∈A(y)

{
c0(y, b)/[qx(a) + ε] +

∫
X\{y}

v(z)q(dz|y, b)/[qy(b) + ε]

+ εv(y)/[qy(b) + ε]− v(y)

}
= 0, y ∈ X∆

yielding

inf
b∈A(y)

{
c0(y, b) +

∫
X\{y}

v(z)q(dz|y, b)− qy(b)v(y)

}
= 0 (18)
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for such y ∈ X∆ that v(y) ∈ R. The last equation is well known for the problems with total
(undiscounted) cost [11].

All the assertions in Remark 3 hold true. Note also that, for any stationary deterministic
strategy φs Mηφ

s
=
∑∞

n=1(qx(a) + ε)ηφ
s

n : see the proof of Lemma 1.
Under Condition 2 one can investigate the linear program similar to (13),

(14),(15),(16) and apply Proposition 1. If, for instance, the problem is unconstrained (N = 0)
and the value of LP ∫

X×A

c0(x, a)

qx(a) + ε
η(dx, da) → inf

η
(19)

subject to

η̂(ΓX) = η(ΓX ×A) = γ(ΓX) +

∫
X×A

[
q(ΓX \ {x}|x, a) + εI{x ∈ ΓX}

qx(a) + ε

]
η(dx, da)

is finite, then, in case the optimal marginal η̂∗(·) is σ-finite, one can disintegrate the optimal mea-
sure η∗(dx, da) = η̂∗(dx)p∗(da|x) and obtain an optimal stationary Poisson-related ξ-strategy
with (n, k)-independent stochastic kernels p̃n,k(da|x) = p∗(da|x). Here we assumed that the LP
(19) has an optimal solution η∗.

In the example presented in Section 5 all the conditions 2 were satisfied except for the
compactness of the action space A. Remember, the set of Markov standard ξ-strategies was
not sufficient there in the problem W0(S) → infS∈ΠS

. In the corresponding discrete-time MDP,
there is no optimal stationary strategy. The LP looks as follows:∫

(0,1]

a

a+ ε
η({1} × da) → inf

η
(20)

subject to

η̂({1}) = η({1} × (0, 1]) = 1 +

∫
(0,1]

ε

a+ ε
η({1} × da). (21)

If η̂({1}) < ∞ (note that η̂p({1}) < ∞ for any stationary strategy p), one can write η in the
form η({1} × da) = η̂({1})× p(da) and, for any probability measure p, we have

η̂({1}) =

[
1−

∫
(0,1]

ε

a+ ε
p(da)

]−1

=

[∫
(0,1]

a

a+ ε
p(da)

]−1

=⇒ Total cost equals

∫
(0,1]

a

a+ ε
p(da)

[
1−

∫
(0,1]

ε

a+ ε
p(da)

]−1

= 1

as expected. Proposition 1 does not help because the solution to LP (20) does not exist. The

infimum equals zero because, e.g. for the measure η({1} × da) = (a + ε) e
a−1
κ

κa da with κ > 0 we

have that η̂(({1}) = ∞ and

∫
(0,1]

a

a+ ε
η({1} × da) = 1 − e−

1
κ . On the other hand, to obtain

zero in (20) we must have η({1} × da) = 0 which violates the requirement (21).
Let us show that, for any δ > 0, there is a non-stationary Markov strategy in the assiciated

discrete-time MDP M with the total expected cost smaller than δ. Take a1 such that a1
a1+ε < δ

2 ,

take a2 such that a2
a2+ε < δ

4 and so on: take am such that am
am+ε < δ

2m . Then, for this Markov
deterministic non-stationary strategy p∗m(da|x) = δam(da), we have

MEp∗
γ

[ ∞∑
m=1

c0(Xm−1, Am)

qXm−1(Am) + ε

]
=

a1
a1 + ε

+
ε

a1 + ε

[
a2

a2 + ε
+

ε

a2 + ε

×
[

a3
a3 + ε

+ . . .

]]
<

δ

2
+

δ

4
+

δ

8
+ . . . = δ.
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This strategy p∗ gives rise to the corresponding Poisson-related δ-optimal strategy in the original
CTMDP, with degenerate probabilities p̃k:
p̃k(da|1) = δak(da). More examples of discrete-time MDP, where only non-stationary strate-
gies can be δ-optimal, in [18, §2.2.11].

Remark 4 In the case of unconstrained problem with N = 0 and c0 ≥ 0, in the associated
discrete-time MDP M, there is a δ-optimal non-randomized Markov strategy for any δ > 0
[2, Prop.9.19]. That strategy gives rise to the δ-optimal Poisson-related strategy with degenerate
probabilities p̃n,k. Many other known statements from the discrete-time theory can be directly ap-
plied to the Poisson-related strategies in the framework of CTMDP. See for example the transient
and absorbing MDPs in [1].
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8 Appendix

Proof of Lemma 1 (sketch). Assume ε > 0 is fixed.

1. For the proof of inclusion {
∑∞

n=1(qx(a) + ε)ηSn , S ∈ ΠS} ⊂ D, according to Theorem 3,
it is sufficient to consider only Poisson-related strategies SP . Suppose such a strategy SP =
{Ξ, ε, p̃n,k(da|xn−1), n, k = 1, 2, . . .} is given. The elements of ξn ∈ Ξ are denoted as ξn =
(αn

1 , τ
n
1 , α

n
2 , τ

n
2 , . . .). We intend to build a control strategy p = {pm+1(da| Mhm)}∞m=0 in the M

model such that

Mηp(dx, da) =
∞∑
n=1

(qx(a) + ε)ηS
P

n (dx, da). (22)

The elements relevant to the M model are equipped with the left upper index M. It will be
convenient to denote trajectories in M as Mω = (y0, b1, y1, . . .).

For a given history Mhm = (y0, b1, y1, . . . , bm, ym) with ym ̸= ∆we define l1(
Mhm) = min{l ≥

1 : l ≤ m; yl ̸= yl−1} ∧ (m+ 1).
For k ≥ 1, if lk(

Mhm) = m+ 1−
∑k−1

i=1 li(
Mhm) then n(Mhm) = k; otherwise

lk+1(
Mhm) = min

{
l ≥ 1 : l ≤ m−

k∑
i=1

li(
Mhm);

y∑k
i=1 li(

Mhm)+l ̸= y∑k
i=1 li(

Mhm)+l−1

}
∧ (m+ 1−

k∑
i=1

li(
Mhm)).

After that,
∑n(Mhm)

i=1 li(
Mhm) = m+1, and we put k(Mhm)

△
= ln(Mhm)(

Mhm) and apply the
randomized action according to the distribution

pm+1(da|Mhm) = p̃n(Mhm),k(Mhm)(da|ym).

This past-dependent randomized strategy p in M is the desired one. Figure 1 illustrates this
construction and the connection between (random) histories MHm and trajectories of the
original control process X(t).
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For an (infinite) trajectory Mω, the values li(
Mω) ∈ N ∪ {∞}, i = 1, 2, . . . are defined in

the similar way: l1(
Mω) = min{l ≥ 1 : yl ̸= yl−1} and for k ≥ 1 such that lk(

Mω) < ∞ and
y∑k

i=1 li(
Mω)+l−1 ̸= ∆, we put

lk+1(
Mω) = min

{
l ≥ 1 : y∑k

i=1 li(
Mω)+l ̸= y∑k

i=1 li(
Mω)+l−1

}
.

Below, these functions on the sample space of the M model are, as usual, denoted by capital
letters Lk (random variables).

For any n = 1, 2, . . . for arbitrary ΓX ∈ B(X), ΓA ∈ B(A)

∫
ΓX

∫
ΓA

(qx(a) + ε)ηS
P

n (dx, da) = MEp
γ

 ∑n
i=1 Li∑

m=
∑n−1

i=1 Li+1

I{Ym−1 ∈ ΓX}I{Bm ∈ ΓA}

 .

Figure 1: Two scenarios illustrating the construction of the M model:
(a) MH6 = (Y0, B1, Y1, . . . , B6, Y6); l1(

MH6) = 3, l2(
MH6) = 2, l3(

MH6) = 1, l4(
MH6) = 1,

n(MH6) = 4, k(MH6) = 1;
(b) MH4 = (Y0, B1, Y1, . . . , B4, Y4); l1(

MH4) = 1, l2(
MH4) = 2, l3(

MH4) = 2, n(MH4) = 3,
k(MH4) = 2.

This equality is based on the formulae

ESP

γ

[
I{Xn−1 ̸= ∆}

∫
(
∑k

i=1 T
n
i ,

∑k+1
i=1 Tn

i ∧Tn]
(qXn−1(A

n
k+1) + ε)dt

∣∣∣∣∣
k∑

i=1

Tn
i

< Tn, Xn−1, A
n
k+1

]
= ESP

γ [I{Xn−1 ̸= ∆}] ;

18



PSP

γ (Tn < ∞, Xn ∈ ΓX) = MP p
γ

(
n∑

i=1

Li < ∞, Y∑n
i=1 Li

∈ ΓX

)
valid for all n = 1, 2, . . .; k = 0, 1, 2, . . .. Therefore, (22) follows.

2. For the inverse inclusion {
∑∞

n=1(qx(a) + ε)ηSn , S ∈ ΠS} ⊃ D, suppose a Markov strategy
pm(da|x) in M is fixed and construct a past-dependent version S of a Poisson-related strategy
such that

∞∑
n=1

(qx(a) + ε)ηSn (dx, da) =
Mηp(dx, da). (23)

Past-dependent means that the stochastic kernels p̃n,k will depend on the histories hn−1 rather
than on the current states xn−1.

Let p̃1,k(da|x0) = pk(da|x0). For any history hn with xn ̸= ∆ we compute

kn(hn)
△
= min{k ≥ 1 :

k∑
i=1

τni ≥ θn}

and, in case kn(hn) < ∞, we put

p̃n+1,k(da|hn) = p∑n
i=1 ki(hn)+k(da|xn).

If kn(hn) = ∞, the stochastic kernels p̃n+1,k can be defined arbitrarily.
For this strategy S, similarly to the ideas described above, one can prove equality

∫
ΓX

∫
ΓA

(qx(a) + ε)ηSn (dx, da) =
MEp

γ

 ∑n
i=1 Li∑

m=
∑n−1

i=1 Li+1

I{Ym−1 ∈ ΓX}I{Bm ∈ ΓA}


for all n = 1, 2, . . ., ΓX ∈ B(X), ΓA ∈ B(A).

After that, equality (23) is obvious.
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