Modeling and solving problems with SAT

Jean-Marie Lagniez
14" December 2023
GDR ROD & RADIA

Ul

UNIVERSITE D’ARTOIS

cr il

Outline

@ Introduction

2/37

Introduction

o SAT solvers are generally efficient when it comes to tackle
NP-hard problems and beyond NP problems

o To do so, we have to write our lovely problems into a set of clauses
o But sometimes that does not work as expected :'(

o Two different case studies where such a situation occurs will be
presented and discussed:

o MUS extraction
o Team Formation

3/37

The SAT problem

o Propositional variables: a, b, ¢

o Literals: a,—a

Y= (-aV-bV-c)
A (aVc) o Clauses: aV —b (the constraints)
A (aV b) o CNF formula: X
A (=bV =c)

o SAT problem: can we find an interpretation Z of
the variables that satisfies the formula?

4/37

The SAT problem

o Propositional variables: a, b, c

o Literals: a,—a

Y =(-aV-bV-c)
A (a Vi C) o Clauses: aV —b (the constraints)
A (aV b) o CNF formula: ¥
a|bjc o SAT problem: can we find an interpretation Z of
1L L the variables that satisfies the formula?

4/37

The SAT problem

o Propositional variables: a, b, c

o Literals: a,—a

Y =(-aV-bV-c)
A (a Vi C) o Clauses: aV —b (the constraints)
A (aV b) o CNF formula: ¥
a|bjc o SAT problem: can we find an interpretation Z of
T L | L the variables that satisfies the formula?

4/37

R RRRERERRESSBERBEEBE=DBDR
The SAT problem

Y =(-aV-bV-c)

A (aVc)

A (aV b)
a|b|c
T L] L

Propositional variables: a, b, c
Literals: a,—-a

Clauses: aV —b (the constraints)
CNF formula: X

SAT problem: can we find an interpretation Z of
the variables that satisfies the formula?

Try all the possibility: illusory!

Number of instructions ‘ Time needed
23 =38 immediate
237 = 80 x 10° 1 second
256 — 8 x 1016 ~ 277 hours
260 — 1018 166 days
2128 — 340 x 1038 > 3 billion of years

437

R iSRS
What is a CDCL SAT solver?

o Extend DPLL SAT solver with:

o Clause learning and non-chronological backtracking

o Exploit UIPs
o Minimize learned clauses
o Opportunistically delete clauses

o Can restart the current search

o Lazy data structures
o Watched literals

o Conflict-quiding branching

o Lightweight branching heuristics
o Phase saving

5/37

B
CDCL SAT solver ingredients

o Affectation, unit propagation

o heuristic to choose the next variable to assign
o heuristic to choose its polarity
o unit propagation

= {o:aVd) —|a

o Conflict analysis and learning

o implication graph
o learning
o back-jumping

Constructing and analyzing the implication graph

6/37

Conflict graph construction

ay:avd az:aV-ocV-f az:—~dVjVf
ag:bVh as:cV-oeVi ag:—iV—ojV-og
ar7:eV -k ag:eV-hVk ag:—cV-oeVaiVg

Affectation, Propagation

7137

Conflict graph construction

ay:avd az:aV-ocV-f az:—~dVjVf
ag:bVh as:cV-oeVi ag:—iV—ojV-og
ar7:eV -k ag:eV-hVk ag:—cV-oeVaiVg

Affectation, Propagation

—|31

7137

Conflict graph construction

ay:avd az:aV-ocV-f az:—~dVjVf
ag:bVh as:cV-oeVi ag:—iV—ojV-og
ar7:eV -k ag:eV-hVk ag:—cV-oeVaiVg

Affectation, Propagation

—|31

7137

Conflict graph construction

ay:avd az:aV-ocV-f az:—~dVjVf
ag:bVh as:cV-oeVi ag:—iV—ojV-og
ar7:eV -k ag:eV-hVk ag:—cV-oeVaiVg

Affectation, Propagation

_‘al

7137

Conflict graph construction

ay:avd az:aV-ocV-f az:—~dVjVf
ag:bVh as:cV-oeVi ag:—iV—ojV-og
ar7:eV -k ag:eV-hVk ag:—cV-oeVaiVg

Affectation, Propagation

_‘al

7137

Conflict graph construction

ay:avd az:aV-cV-f az:~dVjVf
ag:bVh as:cV-oeVi ag:—iV—jV-og
ar7:eV -k ag:eV-hVk ag:—cV-oeV-iVg

Affectation, Propagation

_‘al

7137

Conflict graph construction

ay:avd az:aV-ocV-f az:~dVjVTF
ag:bVh as:cV-oeVi ag:—iV—jV-og
ar7:eV -k ag:eV-hVk ag:—cV-oeV-iVg

Affectation, Propagation

_‘al

7137

Conflict graph construction

ay:avd az:aV-cV-f az:~dVj VT
ag:bVh as:cV-oeVi ag:—iV—jV-og
ar7:eV -k ag:eV-hVk ag:—cV-oeV-iVg

Affectation, Propagation

7137

Conflict graph construction

az:aV-cV-f az:~dVj VT
as:—cV-eVi ag:iV-jV-og

ar7:eV -k ag:eV-hVk ag:—cV-oeV-iVg

Affectation, Propagation

—|al

-b3

7137

Conflict graph construction

az:aV-cV-f az:~dVj VT
as:—cV-eVi ag:iV-jV-og

ar7:eV -k ag:eV-hVk ag:—cV-oeV-iVg

Affectation, Propagation

—|al

-b3

7137

Conflict graph construction

ay:avd az:aV-cV-f az:~dVj VT
ag:bVh as:cV-oeVi ag:—iV—jV-og
a7:eV—-k ag:eV—-hVk ay:-cV-eV-iVg

Affectation, Propagation

—|al

-b3

7137

Conflict graph construction

ay:avd az:aV-cV-f az:~dVj VT
ag:bVh as:cV-oeVi ag:—iV—jV-og
ar7:eV -k ag:eV-hVk ag:—cV-oeV-iVg

Affectation, Propagation

—|al

7137

Conflict graph construction

ay:avd az:aV-cV-f az:~dVj VT
ag:bVh as:cV-oeVi ag:—iV—jV-og
a7:eV—-k ag:eV—-hVk ag:-cV-eV-aiVg

Affectation, Propagation

—|al

7137

Conflict graph construction

ay:avd az:aV-cV-f az:~dVj VT
ag:bVh as:cV-oeVi ag:—iV—jV-og
ar7:eV -k ag:eV-hVk ag:—cV-eV-aiVg

Affectation, Propagation

—|al

@

7137

Conflict graph construction

ay:avd az:aV-cV-f az:~dVj VT
ag:bVh as:—cV-oeVi ag:—iV-ojV-og
ar7:eV -k ag:eV-hVk g :cV-eVaiVg

Affectation, Propagation

—|al

4
@

@

7137

Conlflict graph construction

ay:avd az:aV-cV-f az:~dVj VT
agq:bVh as:—cV-oeVi ag:—iV-ojV-og
ar7:eV -k ag:eV-hVk g :cV-eVaiVg

Affectation, Propagation

7137

Conlflict graph construction

ay:avd az:aV-cV-f az:~dVj VT
agq:bVh as:—cV-oeVi ag:—iV-ojV-og
ar7:eV -k ag:eV-hVk g :cV-eVaiVg

Affectation, Propagation

7137

Conlflict graph construction

ay:avd az:aV-cV-f az:~dVj VT
ag:bVh as:—cV-oeVi ag:—iV-ojV-og
ar7:eV -k ag:eV-hVk g :cV-eVaiVg

Affectation, Propagation

@

cz)

@~0@

w

-b

7137

Conlflict graph construction

ay:avd az:aV-cV-f az:~dVj VT
agq:bVh as:—cV-oeVi ag:—iV-ojV-og
ar7:eV -k ag:eV-hVk g :cV-eVaiVg

Affectation, Propagation

7137

Conlflict graph construction

ay:avd az:aV-cV-f az:~dVj VT
agq:bVh as:—cV-oeVi ag:—iV-ojV-og
ar7:eV -k ag:eV-hVk g :cV-eVaiVg

Affectation, Propagation

7137

Conflict graph analysis

ay:avd az:aV-cV-f az:~dVj VT
ag:bVh as:—cV-oeVi ag:—iV-ojV-og
ar7:eV -k ag:eV-hVk ag:—cV-eV-iVg

8/37

Conflict graph analysis

ay:avd az:aV-cV-f az:~dVj VT
ag:bVh as:—cV-oeVi ag:—iV-ojV-og
ar7:eV -k ag:eV-hVk ag:—cV-eV-iVg

8/37

Conflict graph analysis

ay:avd az:aV-cV-f az:~dVj VT
ag:bVh as:—cV-oeVi ag:—iV-ojV-og
ar7:eV -k ag:eV-hVk ag:—cV-eV-iVg

8/37

Conflict graph analysis

ay:avd az:aV-cV-f az:~dVj VT
ag:bVh as:—cV-oeVi ag:—iV-ojV-og
ar7:eV -k ag:eV-hVk ag:—cV-eV-iVg

§=-c?v-etvaitvg

8/37

Conflict graph analysis

ay:avd az:aV-cV-f az:~dVj VT
ag:bVh as:—cV-oeVi ag:—iV-ojV-og
ar7:eV -k ag:eV-hVk ag:—cV-eV-iVg

§=-c?V 2V et v it

8/37

Conflict graph analysis

ay:avd az:aV-cV-f az:~dVj VT
ag:bVh as:—cV-oeVi ag:—iV-ojV-og
ar7:eV -k ag:eV-hVk ag:—cV-eV-iVg

8/37

Conlflict graph analysis

ay:avd az:aV-cV-f az:~dVj VT
agq:bVh as:—cV-oeVi ag:—iV-ojV-og
ar7:eV -k ag:eV-hVk g :cV-eVaiVg

@ Stops as soon as the resolvant has a unique literal from the last
decision level (FUIP)

@ J is added to the clauses databases (ensure a systematic search)
8/37

.,
Back-jumping

a1 :avd az:aV-ocV-f az:—~dVj VT
agq:bVh as:cV-eVi ag:i VoV g
a7:eV—-k ag:eV—-hVk ag:-cV-eV-aiVg

@ 61 =-c?V—j3, Vet

A 9/37

Back-jumping

a1 :avd az:aV-ocV-f az:—~dVj VT
agq:bVh as:cV-oeVi ag:iV-ojVog
a7:eV—-k ag:eV—-hVk ay:—-cV-eV-iVg

@ 61 =—c?V 2, Ve

9/37

Back-jumping

a1 :avd az:aV-ocV-f az:—~dVj VT
agq:bVh as:cVoeVi ag:iV-ojVog
a7:eV—-k ag:eV-hVk ay:-cV-oeV-aiVg

2

9/37

Back-jumping

a1 :avd az:aV-ocV-f az:—~dVj VT
agq:bVh as:cVoeVi ag:iV-ojVog
a7:eV—-k ag:eV-hVk ag:-cV-eV-aiVg

2

9/37

Back-jumping

a1 :avd az:aV-ocV-f az:—~dVj VT
agq:bVh as:cVoeVi ag:iV-ojVog
a7:eV -k a«ag:eV-hVk ag:—cV-oeVaiVg

9/37

Back-jumping

a1 :avd az:aV-ocV-f az:—~dVj VT
agq:bVh as:cVoeVi ag:iV-ojVog
a7:eV -k a«ag:eV-hVk ag:—cV-oeVaiVg

2

9/37

Back-jumping

a1 :avd az:aV-ocV-f az:—~dVj VT
agq:bVh as:cVoeVi ag:iV-ojVog
a7:eV -k a«ag:eV-hVk ag:—cV-oeVaiVg

2

9/37

Back-jumping

a1 :avd az:aV-ocV-f az:—~dVj VT
agq:bVh as:cV-eVi ag:i VoV og
ar:eV—-k ag:eV-hVk ag:-cV—-eV-iVg

SATISFIABILITY PROVED

9/37

Watched Literals

@ Unit propagation fires when all but one literal is assigned false

o Idea: If two variables are either unassigned or one is assigned
true, no need to do anything

@ So just find two variables which satisfy this condition

a1 :—aVbVec apy:—-aV-cV-b az:—aVcV-b

10 /37

Watched Literals

@ Unit propagation fires when all but one literal is assigned false

o Idea: If two variables are either unassigned or one is assigned
true, no need to do anything

@ So just find two variables which satisfy this condition

a1 :aVvVbVe apy:—aV-cV-b az:—aVcV-b

10 /37

Watched Literals

Unit propagation fires when all but one literal is assigned false

o ldea: If two variables are either unassigned or one is assigned
true, no need to do anything

So just find two variables which satisfy this condition

a1 :aVvVbVe apy:—aV-cV-b az:—aVcV-b

o Mapping between sentinel literals and the clauses they watch
a:{} b:{a1} c:{az}
—a:{ay, a3} =b: {as} —c: {an}

10 /37

Qairoducion) T Mus eam Formation T Condusion
Watched Literals

Unit propagation fires when all but one literal is assigned false

o ldea: If two variables are either unassigned or one is assigned
true, no need to do anything

So just find two variables which satisfy this condition

a1 :aVvVbVe apy:—aV-cV-b az:—aVcV-b

Mapping between sentinel literals and the clauses they watch

a:{} b:{a1} c:{az}

—a:{ag, a3} =b: {as} —c: {an}

When a literal x is propagated to true it is enough to consider the
clauses observed by —x and search another watched literal

Let us suppose that a is assigned to true

10 /37

Qairoducion) T Mus eam Formation T Condusion
Watched Literals

Unit propagation fires when all but one literal is assigned false

o ldea: If two variables are either unassigned or one is assigned
true, no need to do anything

So just find two variables which satisfy this condition

a1 :—aVvVbVe apy:—aV-cV-b az:—aVcV-b

Mapping between sentinel literals and the clauses they watch

a:{} b:{a1} c:{az}

—a:{ag, a3} =b: {as} —c: {an}

When a literal x is propagated to true it is enough to consider the
clauses observed by —x and search another watched literal

Let us suppose that a is assigned to true

10 /37

Qairoducion) T Mus eam Formation T Condusion
Watched Literals

Unit propagation fires when all but one literal is assigned false

o ldea: If two variables are either unassigned or one is assigned
true, no need to do anything

So just find two variables which satisfy this condition

a1 :—aVbVe apy:—aV-cV-b az:—aVcV-b

Mapping between sentinel literals and the clauses they watch

a:{} b:{a1} c:{az}

—a:{ag, a3} =b: {as} —c: {an}

When a literal x is propagated to true it is enough to consider the
clauses observed by —x and search another watched literal

Let us suppose that a is assigned to true

10 /37

Qairoducion) T Mus eam Formation T Condusion
Watched Literals

Unit propagation fires when all but one literal is assigned false

o ldea: If two variables are either unassigned or one is assigned
true, no need to do anything

So just find two variables which satisfy this condition

ar:—aVbVec apy:—aV-cV-b az:—aVcV-b

Mapping between sentinel literals and the clauses they watch

a:{} b:{a1} c:{az}

—a:{ag, a3} =b: {as} —c: {an}

When a literal x is propagated to true it is enough to consider the
clauses observed by —x and search another watched literal

Let us suppose that a is assigned to true

10 /37

Qairoducion) T Mus eam Formation T Condusion
Watched Literals

Unit propagation fires when all but one literal is assigned false

o ldea: If two variables are either unassigned or one is assigned
true, no need to do anything

So just find two variables which satisfy this condition

ar:—aVbVec apy:—aV-cV-b az:—aVcV-b

Mapping between sentinel literals and the clauses they watch

a:{} b:{a1} c:{az, a1}

—a:{ag, a3} =b: {as} —c: {an}

When a literal x is propagated to true it is enough to consider the
clauses observed by —x and search another watched literal

Let us suppose that a is assigned to true

10 /37

Qairoducion) T Mus eam Formation T Condusion
Watched Literals

Unit propagation fires when all but one literal is assigned false

o ldea: If two variables are either unassigned or one is assigned
true, no need to do anything

So just find two variables which satisfy this condition

a1 :—aVvVbVe apy:—aV-cV-b az:—aVcV-b

Mapping between sentinel literals and the clauses they watch

a:{} b:{a1} c:{az, a1}

—a:{ag, a3} =b: {as} —c: {an}

When a literal x is propagated to true it is enough to consider the
clauses observed by —x and search another watched literal

Let us suppose that a is assigned to true

10 /37

Qairoducion) T Mus eam Formation T Condusion
Watched Literals

Unit propagation fires when all but one literal is assigned false

o ldea: If two variables are either unassigned or one is assigned
true, no need to do anything

So just find two variables which satisfy this condition

ai:—aVvVbVec ay:—aV-cV-b az:—aVcV-b

Mapping between sentinel literals and the clauses they watch

a:{} b:{a1} c:{az, a1}

—a:{ag, a3} =b: {as} —c: {an}

When a literal x is propagated to true it is enough to consider the
clauses observed by —x and search another watched literal

Let us suppose that a is assigned to true

10 /37

Qairoducion) T Mus eam Formation T Condusion
Watched Literals

Unit propagation fires when all but one literal is assigned false

o ldea: If two variables are either unassigned or one is assigned
true, no need to do anything

So just find two variables which satisfy this condition

ai:—aVvVbVec ay:—aV-cV-b az:—aVcV-b

Mapping between sentinel literals and the clauses they watch

a:{} b:{a1} c:{az, a1}

—a:{ag, a3} =b: {as, a3} —c: {an}

When a literal x is propagated to true it is enough to consider the
clauses observed by —x and search another watched literal

Let us suppose that a is assigned to true

10 /37

Qairoducion) T Mus eam Formation T Condusion
Watched Literals

Unit propagation fires when all but one literal is assigned false

o ldea: If two variables are either unassigned or one is assigned
true, no need to do anything

So just find two variables which satisfy this condition

ai:—aVvVbVec ay:—aV-cV-b az:—aVcV-b

Mapping between sentinel literals and the clauses they watch

a:{} b:{ar} c:{az, a1}
—a:{} =b: {az, a3} —c: {an}

When a literal x is propagated to true it is enough to consider the
clauses observed by —x and search another watched literal

Let us suppose that a is assigned to true

10 /37

Heavy-Tailed Phenomena

o Depth-first search procedures often exhibit a remarkable
variability in the time required to solve any problem instance

o Heavy-tailed behavior arises from the fact that wrong branching
decisions may lead to explore an exponentially large subtree that
contains no solutions

o Restarts provide good mechanisms to avoid such an issue

11737

Restarts

o Often it a good strategy to abandon what you do and restart

o for satisfiable instances the solver may get stuck in the unsatisfiable
part

o for unsatisfiable instances focusing on one part might miss short
proofs

= restart after the number of conflicts reached a restart limit

o Avoid to run into the same dead end

o by randomization (either on the decision variable or its phase)
o and/or just keep all the learned clauses

o For completeness dynamically increase restart limit

o arithmetically, geometrically, Luby, Inner/Outer, Glucose restart

12737

Reducing learned clauses

o CDCL SAT solvers learn clauses at each conflict

o Keeping all these clauses can slow down the unit propagation process

13737

Reducing learned clauses

o CDCL SAT solvers learn clauses at each conflict

o Keeping all these clauses can slow down the unit propagation process

o “Useless” learned clauses are periodically deleted (tp, t1 ... tk,...)

[aa]oz]as]as]as] - [erfan]

13737

Reducing learned clauses

o CDCL SAT solvers learn clauses at each conflict

o Keeping all these clauses can slow down the unit propagation process

o “Useless” learned clauses are periodically deleted (tp, t1 ... tk,...)

[ak]os[az]enfan] - -[as]ad]

13737

Reducing learned clauses

o CDCL SAT solvers learn clauses at each conflict

o Keeping all these clauses can slow down the unit propagation process

o “Useless” learned clauses are periodically deleted (tp, t1 ... tk,...)

[ax]as]az]or]an]

13737

Reducing learned clauses

o CDCL SAT solvers learn clauses at each conflict

Keeping all these clauses can slow down the unit propagation process

o “Useless” learned clauses are periodically deleted (tp, t1 ... tk,...)

[ak]os[az]on]an]

Deleting too much clauses make the learning process useless

13737

Reducing learned clauses

o CDCL SAT solvers learn clauses at each conflict

Keeping all these clauses can slow down the unit propagation process

o “Useless” learned clauses are periodically deleted (tp, t1 ... tk,...)

[ak]os[az]on]an]

Deleting too much clauses make the learning process useless

o However, identify if a clause will be useful in the future is a hard task!

13737

Estimate the clauses’ utility

o The VSIDS measure

o Keeping clauses that are often — and recently — used in the conflict
analysis process

o Dynamic measure

o A clause useful in the past will be useful again in the future!

o The LBD measure

o Represent the number of decision-levels in the learned clause
o Static measure
o Keeping clauses with a small LBD

o The PSM measure

o Represent the number of literals assigned to false by Progress
Saving interpretation

o Static measure

o Keeping clauses with a small PSM

14 /37

CDCL algorithm

Input: a CNF formula X
Output: SAT or UNSAT

1 A= // learnt clauses database
2 while (true) do

0 N O U s~ W

10
11
12
13

if (propagate()) then
if ((c = analyzeConflict()) == () then returnUNSAT ;
A=AU{c}
if (timeToRestart() then backtrack to level 0;
else
Lbacktrack to the assertion level of ¢;

else
¢ = decide();
if (¢ == null) then return SAT ;
assert ¢ in a new decision level;
if (timeToReduce()) then clean(A);

15/ 37

CDCL algorithm

Input: a CNF formula X
Output: SAT or UNSAT

1 A= // learnt clauses database
2 while (true) do

0 N O U s~ W

10
11
12
13

if (propagate()) then
if ((c = analyzeConflict()) == 0) then returnUNSAT ;
A=AU{c}
if (timeToRestart() then backtrack to level 0;
else
Lbacktrack to the assertion level of ¢;

else
¢ = decide();
if (¢ == null) then return SAT ;
assert ¢ in a new decision level;
if (timeToReduce()) then clean(A);

15/ 37

Outline

@ MUS

16 /37

+nrodeon e v Famaton T conelton ™
Minimal Unsatisfiable Set (MUS)

xVyVz xV -y xV -z

xVyVz xVw wVzV-y

XV -y XV -z wV xV -z
UNSAT

o The formula is unsatisfiable: why?

o Subset of constraints minimally unsatisfiable
o Two approaches:

— constructive
— destructive

17137

+nesducton s e Famton ™ Condiston ™
Minimal Unsatisfiable Set (MUS)

xVyVz xV -y xV -~z
—xVyVz xVw wVzV-y
—x V oy —xV -z wV xV -z

o The formula is unsatisfiable: why?
o Subset of constraints minimally unsatisfiable

o Two approaches:

— constructive
— destructive

17137

+nrodeon e v Famaton T conelton ™
Minimal Unsatisfiable Set (MUS)

xVyVz xV -y xV -z
xVyVz xVw wVzV-y
XV -y XV -z wV xV -z

o The formula is unsatisfiable: why?
o Subset of constraints minimally unsatisfiable

o Two approaches:

— constructive
— destructive

17137

e T e et ™
Minimal Unsatisfiable Set (MUS)

xV -y xV -z
xVyVz xVw wVzV-y
XV -y XV -z wV xV -z

SAT

o The formula is unsatisfiable: why?

o Subset of constraints minimally unsatisfiable

o Two approaches:

— constructive
— destructive

17137

+nrodeon e v Famaton T conelton ™
Minimal Unsatisfiable Set (MUS)

xVyVz xV -y xV -z
xVyVz xVw wVzV-y
XV -y XV -z wV xV -z

o The formula is unsatisfiable: why?
o Subset of constraints minimally unsatisfiable

o Two approaches:

— constructive
— destructive

17137

+nrodeon e v Famaton T conelton ™
Minimal Unsatisfiable Set (MUS)

xVyVz xV -y xV -z

xVyVz wVzV-y

XV -y XV -z wV xV -z
UNSAT

o The formula is unsatisfiable: why?
o Subset of constraints minimally unsatisfiable

o Two approaches:

— constructive
— destructive

17137

+nrodeon e v Famaton T conelton ™
Minimal Unsatisfiable Set (MUS)

xVyVz xV -y xV -z
xVyVz wVzV-y
XV -y XV -z wV xV -z

o The formula is unsatisfiable: why?
o Subset of constraints minimally unsatisfiable

o Two approaches:

— constructive
— destructive

17137

+rdtan s o omatan ™ Contuton™
Minimal Unsatisfiable Set (MUS)

xVyVz xV -y xV -~z
—xVyVz
—x V oy XV -z

MUS!

o The formula is unsatisfiable: why?
o Subset of constraints minimally unsatisfiable

o Two approaches:

— constructive
— destructive

17137

+rdtan s o omatan ™ Contuton™
Minimal Unsatisfiable Set (MUS)

xVyVz xV -y xV -~z
—xVyVz
—x V oy XV -z

MUS!

o The formula is unsatisfiable: why?
o Subset of constraints minimally unsatisfiable

o Two approaches:

— constructive
— destructive

SAT Incremental

17137

From SAT to Incremental SAT
Solving the SAT problem

o Modern SAT solvers are based on the CDCL paradigm

o Dynamic heuristics:

— VSIDS, polarity, cleaning learned clauses and restart

Solving incrementally SAT
@ Successive calls of a SAT solver

o Keeping a lot of information between the different runs

— VSIDS, polarity, cleaning learned clauses and restart

18 /37

From SAT to Incremental SAT
Solving the SAT problem

o Modern SAT solvers are based on the CDCL paradigm

o Dynamic heuristics:

— VSIDS, polarity, cleaning learned clauses and restart

Solving incrementally SAT
@ Successive calls of a SAT solver

o Keeping a lot of information between the different runs

— VSIDS, polarity, cleaning learned clauses and restart
— learned clauses

18 /37

From SAT to Incremental SAT
Solving the SAT problem

o Modern SAT solvers are based on the CDCL paradigm

o Dynamic heuristics:

— VSIDS, polarity, cleaning learned clauses and restart

Solving incrementally SAT
@ Successive calls of a SAT solver

o Keeping a lot of information between the different runs

— VSIDS, polarity, cleaning learned clauses and restart
— learned clauses

Adding selectors

18 /37

Selectors

51VxVyVz —5 VXV -y 53V XV -z
—s4 V- xVyVz —s5 VXV w —SeVwVzV-y
=57V x V y —sgV xV -z —s9gVwV-axV -z

o To activate/deactivate the i*" clause :

— assign a; to false to activate the clause
— assign a; to true to deactivate the clause

o Used to know which initial clauses are participating to the
creation of each learned clause

—s1VxVyVz =S VXxV-y

51V s VXVz

19 /37

Selectors

51VxVyVz —5 VXV -y 53V XV -z
—s4 V- xVyVz —s5 VXV w —SeVwVzV-y
=57V x V y —sgV xV -z —s9gVwV-axV -z

o To activate/deactivate the i*" clause :

— assign a; to false to activate the clause
— assign a; to true to deactivate the clause

o Used to know which initial clauses are participating to the
creation of each learned clause

—s1VxVyVz =S VXxV-y

51V s VXVz
Selectors impact on the size of the clauses

19 /37

Let's test

@ 300 instances from the MUS competition 2011
o timeout = 2400 secondes

o memout = 7800 Mo

@ MUSer as MUS extractor

— defaults options

@ SAT solvers: GLUCOSE versus MINISAT

Intel XEON X5550 Quad-Core 2.66 GHz with 32Go of RAM

20/37

GLUCOSE VS. MINISAT

t (259 points) + 4
+ +
- +
1000 |- i . |
[g © 4]
f Gilucose 2.1 P Ea 4]
[(261 solved) ool o+ +]
o+
[v W # 1
+
[ty tiﬂ N + 1
PR
+ St
100 | ot 1
3 o . 1 1
[Rt T 1
E + 4+ T + +]
I s]
o
L . i{» 4
£
10 |- =+ 3
F o + +]
[o]
L + o+ i + 4
Lo+ ++ 4
+ /%
S Minisat 1
(273 solved)
1 ++ L L Lo L L Lo L L Lo L
1 10 100 1000

Figure: Solving time

21/37

GLUCOSE VS. MINISAT

- — - (25)poirﬁs) — - —
10000
L
Iy
4
1000 et
K]
Glucose 2.1 4
(261 solved - 1
+
I++ 4 1
100 VAl .
+
+
+ 4
il +
h
10 = .
. +
T]
Minisat B
(273 solved
1 L P L P L P L P
1 10 100 1000 10000

Figure: Number of SAT calls

21/37

Why GLucoSE is so inefficient?
o Main difference between GLUCOSE et MINISAT
— restart and cleaning strategy

@ GLUCOSE is entirely based on the LBD notion

o Each selector has its own decision level

22/37

Why GLucoSE is so inefficient?

2000
=}
=]
1800
=)
1600 = .
a =
1400 "=. .o
{-
1200
£ % o=
B, a &
g 1000 e .
=
2 ‘.’..l
S 800 oy
o = L]
600 - =
L =
5] ..f P
400 = "
=]
rall .
200 - $ B
=]
//. "
0

50 100 150 200 250 300 350 400 450 500
initial
22/37

Why GLucosE is so inefficient?

o Main difference between GLUCOSE et MINISAT

— restart and cleaning strategy

@ GLUCOSE is entirely based on the LBD notion

Each selector has its own decision level

o Then the LBD reflects the number of selectors of a learned clause

o We have to redefine the notion of LBD: improved LBD

22/37

Why GLucosE is so inefficient?

o Main difference between GLUCOSE et MINISAT

— restart and cleaning strategy

@ GLUCOSE is entirely based on the LBD notion

Each selector has its own decision level

o Then the LBD reflects the number of selectors of a learned clause

o We have to redefine the notion of LBD: improved LBD

Not considering selectors when computing the LBD

22/37

Updated LBD

taille LBD Imp. LBD
Instance #C moy. max moy. max moy. max
fdmus_b21.96 8541 1145 5980 1095 5945 8 7
longmult6 8853 694 3104 672 3013 1 61
dump_vc950 360419 522 36309 498 35873 8 307
g7n 15110 1098 16338 1049 16268 27 160

@ The new LBD looks more appropriate

o It really measures now how a clause is useful!

23 /37

GLucosk Improved LBD vs. cLucose de base

L (258 points) 4 1
4
I
1000 L + :
[R
r Glucose New LBD ++ + 1
[(272 solved) Ty +]
L + ,
+ RS
L + 1
+ + + & . + +
-+ T+
100 b e
3 S =
[N Lo]
e +
[2l 1
[e +4 -]
L + F+o+ ,
CoR
L " ,
"
10 | - ; 3
r b]
[b T *]
L +++]
L i ,
n
3 N b Glucose 2.1 —
I + o (261 solved)
1 L L Lo L L Lo L L Lo L
1 10 100 1000

Figure: Solving time
24137

A

GLucose Improved LBD vs. MINISAT

t (267 points) + q
+ i+
+
1000 | N B = o
t Glucose New LBD N + N b
[+]
[(272 solved) n ot L + |
r e+ |
A
I A LR
4 N
o et
100 i
[+ e 7 # 7
[..]
[+ + 4: T]
4
[it i
++ +++ +
L P i
L ++ 4
e
A
. +/+
10 b . .
C +]
[n]
[t +5 & +]
i b]
T
L+ i
+
1 * + Minisat]
b (273 solved)
| +
1 L L Lo L L Lo L L Lo L
1 10 100 1000

Figure: Solving time
25137

A

The clauses are too long

The main procedures depend on the size of the clauses
o Conflict analysis
— put the initial literals at the front of the clause
o Unit propagation
— search for a initial literal or a literal satisfied

— push the selector to the end of the clause

o Simplification procedure

— only check for the watched literals

o LBD recalculation

— save the number of selectors
— stop once we are sure that only selectors remain

26 /37

GLUCOSEInc vs. GLUCOSE de base

t (261 points) 1
+

1000 - +]
[N + + 1
r Glucose Inc + 1
r (288 solved) N + 1
L ++]

tor
L] 1
+ +
100 - e
b - e f
r + 4, + o4 +F,# i
[I S 1
[S L i
L L e Y 1
Y ey
L # o+ + B
+ R
+ + b +
10 Lt TEOR T
L + E
L I A]
L v n 1
+
t L N Glucose 2.1 q
| + o+ (261 solved)
1 L L Lo L L Lo L L Lo L

1 10 100 1000

Figure: Solving time

27 |37

GLUCOSEINc vs. MINISAT

t (273 points) 1
o+
1000 a + B
t Glucose Inc +]
[(288 solved) +]
L +++ * tr ++ 4
- 4
L b4 + 1
+ A o
100 + . +
3 e + 7
b + o 47 1
[+
L hy +m+ i
+ ﬁtw +
L £ i
5 =+
L o F i
- +F
S F T
1) AR .
L + +]
[= 1
+ 4 + + 1
L ¥ i
+
r “ Minisat q
(273 solved)
1 n Lo n Lo n Lo n
1 10 100 1000

Figure: Solving time

28 /37

Comparisons

2500

T
minisat —+—

glucose —<—
improved LBD —¢—
glucoselnc —5—

2000

a
/Y
-7

Mwﬁjﬁ

180 200 220 240 260 280 300

time
My
!

nb instances

Figure: Number of instances solved regarding the time

29 /37

Outline

© Team Formation

30/37

Team Formation Problem

o Team formation (TF) is the problem of deploying the least
expensive team of agents while covering a set of skills

o A TF problem description is a tuple (A, S, f, «)

o where A={a1,...,an} is a set of agents,

o S={s1,...,5m} is a set of skills,

o f: A— N is a deployment cost function,

o and o : A — 2° is an agent-to-skill function.

o Ateam is a subset of agents T C A
o One extends the cost function f to teams T as f(T) =", f(a:)
o The agent-to-skill function « is extended to teams T as
a(T) = U, er o(ai)
o Ateam T C A is efficient if all skills from S are covered by T, i.e,
when o(T) =S (it is almost equivalent to the Set Cover problem)

o An optimal team is an efficient team minimizing the cost function

@ The corresponding decision problem asks, given a bound b € N as
input, whether there exists an efficient team T such that f(T) < b

31/37

Example

@ An agent; has a deployment cost equal to i and a cover range
equalto i —1

32/37

Example

-»
z.
N

@ An agent; has a deployment cost equal to i and a cover range
equalto i —1

32/37

om0
SAT encoding

o We associate a boolean variable p; with each agent in a; € A,
where p; is true if and only if the agent a; is present in the
deployed team.

o Given a TF instance (A, S,f,a) and b € N, a minimal efficient
team T exists if and only if:

/\ \/ pi (1)

Sjes a;EAlSjEL)t(i)

D f(i)yxpi<b 2)

a;€EA

33/37

And in practice ...

o 6 types of agent by cell with cover ranging from 1 to 6
e b=200

34 /37

And in practice ...

o CaDiCalL:
c total process time since initialization: 1799.17 seconds
c total real time since initialization: 1800.08 seconds
¢ maximum resident set size of process: 2577.50 MB
c
c

raising signal 2 (SIGINT)

35/37

And in practice ...

o CaDiCalL:
c total process time since initialization: 1799.17 seconds
c total real time since initialization: 1800.08 seconds
¢ maximum resident set size of process: 2577.50 MB
c
c

raising signal 2 (SIGINT)
o LMHS:

o 230

s OPTIMUM FOUND

c CPU time: 373144 ms
c Real time: 373256 ms

35/37

Outline

@ Conclusion

36 /37

Take away message

o It is better to know how SAT solvers work to avoid some pitfalls

o Sometimes the problem is the size of the encoding, then try to
encode your problem incrementally

o SAT solvers are not always efficient when it comes to use
cardinality and/or pseudo boolean constraints

37137

	Introduction
	MUS
	Team Formation
	Conclusion

