Modeling and solving problems with SAT

Jean-Marie Lagniez 14th December 2023 GDR ROD & RADIA

Outline

2 MUS

3 Team Formation

Introduction

- SAT solvers are generally efficient when it comes to tackle NP-hard problems and beyond NP problems
- To do so, we have to write our lovely problems into a set of clauses
- But sometimes that does not work as expected :'(
- Two different case studies where such a situation occurs will be presented and discussed:
 - MUS extraction
 - Team Formation

The SAT problem

- $\Sigma = (\neg a \lor \neg b \lor \neg c)$ $\land (a \lor c)$ $\land (a \lor b)$ $\land (\neg b \lor \neg c)$
- Propositional variables: *a*, *b*, *c*
- Literals: *a*, ¬*a*
- Clauses: $a \lor \neg b$ (the constraints)
- CNF formula: Σ
- SAT problem: can we find an interpretation *I* of the variables that satisfies the formula?

 $\Sigma = (\neg a \lor \neg b \lor \neg c)$ $\land (a \lor c)$

b c

 $\wedge (a \lor b)$

а

Conclusion

The SAT problem

- Propositional variables: *a*, *b*, *c*
- Literals: *a*, ¬*a*
- Clauses: $a \vee \neg b$ (the constraints)
- CNF formula: Σ
- SAT problem: can we find an interpretation $\mathcal I$ of the variables that satisfies the formula?

 $\Sigma = (\neg a \lor \neg b \lor \neg c)$ $\land (a \lor c)$

b c

 $\wedge (a \vee b)$

а

Conclusion

The SAT problem

- Propositional variables: *a*, *b*, *c*
- Literals: *a*, ¬*a*
- Clauses: $a \vee \neg b$ (the constraints)
- CNF formula: Σ
- SAT problem: can we find an interpretation *I* of the variables that satisfies the formula?

The SAT problem

- Propositional variables: *a*, *b*, *c*
 - Literals: *a*, ¬*a*
- Clauses: $a \vee \neg b$ (the constraints)
- CNF formula: Σ
- SAT problem: can we find an interpretation *I* of the variables that satisfies the formula?
- Try all the possibility: illusory!

Number of instructions	Time needed
$2^3 = 8$	immediate
$2^{37} = 80 imes 10^9$	1 second
$2^{56} = 8 imes 10^{16}$	pprox 277 hours
$2^{60} = 10^{18}$	166 days
$2^{128} = 340 imes 10^{38}$	\geq 3 billion of years

 $\Sigma = (\neg a \lor \neg b \lor \neg c)$ $\land (a \lor c)$

Ь

С

 $\wedge (a \vee b)$

а

What is a CDCL SAT solver?

• Extend DPLL SAT solver with:

- Clause learning and non-chronological backtracking
 - Exploit UIPs
 - Minimize learned clauses
 - Opportunistically delete clauses
- Can restart the current search
- Lazy data structures
 - Watched literals
- Conflict-guiding branching
 - Lightweight branching heuristics
 - Phase saving

CDCL SAT solver ingredients

• Affectation, unit propagation

- heuristic to choose the next variable to assign
- heuristic to choose its polarity
- unit propagation

$$\Sigma = \{\alpha_1 : \mathbf{a} \lor d\} \qquad \neg \mathbf{a} \longrightarrow d_{\alpha_1}$$

- Conflict analysis and learning
 - implication graph
 - learning

back-jumping

Constructing and analyzing the implication graph

Conflict graph construction

$$\begin{array}{lll} \alpha_1 : \mathbf{a} \lor \mathbf{d} & \alpha_2 : \mathbf{a} \lor \neg \mathbf{c} \lor \neg \mathbf{f} & \alpha_3 : \neg \mathbf{d} \lor \mathbf{j} \lor \mathbf{f} \\ \alpha_4 : \mathbf{b} \lor \mathbf{h} & \alpha_5 : \neg \mathbf{c} \lor \neg \mathbf{e} \lor \mathbf{i} & \alpha_6 : \neg \mathbf{i} \lor \neg \mathbf{j} \lor \neg \mathbf{g} \\ \alpha_7 : \mathbf{e} \lor \neg \mathbf{k} & \alpha_8 : \mathbf{e} \lor \neg \mathbf{h} \lor \mathbf{k} & \alpha_9 : \neg \mathbf{c} \lor \neg \mathbf{e} \lor \neg \mathbf{i} \lor \mathbf{g} \end{array}$$

Affectation, Propagation

Conflict graph construction

$$\begin{array}{lll} \alpha_1: a \lor d & \alpha_2: a \lor \neg c \lor \neg f & \alpha_3: \neg d \lor j \lor f \\ \alpha_4: b \lor h & \alpha_5: \neg c \lor \neg e \lor i & \alpha_6: \neg i \lor \neg j \lor \neg g \\ \alpha_7: e \lor \neg k & \alpha_8: e \lor \neg h \lor k & \alpha_9: \neg c \lor \neg e \lor \neg i \lor g \end{array}$$

Affectation, Propagation

Conflict graph construction

$$\begin{array}{lll} \alpha_{1}: \mathbf{a} \lor d & \alpha_{2}: \mathbf{a} \lor \neg c \lor \neg f & \alpha_{3}: \neg d \lor j \lor f \\ \alpha_{4}: \mathbf{b} \lor h & \alpha_{5}: \neg c \lor \neg e \lor i & \alpha_{6}: \neg i \lor \neg j \lor \neg g \\ \alpha_{7}: e \lor \neg k & \alpha_{8}: e \lor \neg h \lor k & \alpha_{9}: \neg c \lor \neg e \lor \neg i \lor g \end{array}$$

Affectation, Propagation

Conflict graph construction

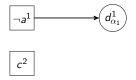
$$\begin{array}{lll} \alpha_{1}: \mathbf{a} \lor d & \alpha_{2}: \mathbf{a} \lor \neg c \lor \neg f & \alpha_{3}: \neg d \lor j \lor f \\ \alpha_{4}: \mathbf{b} \lor h & \alpha_{5}: \neg c \lor \neg e \lor i & \alpha_{6}: \neg i \lor \neg j \lor \neg g \\ \alpha_{7}: e \lor \neg k & \alpha_{8}: e \lor \neg h \lor k & \alpha_{9}: \neg c \lor \neg e \lor \neg i \lor g \end{array}$$

Affectation, Propagation

Conflict graph construction

$$\begin{array}{lll} \alpha_{1}: \mathbf{a} \lor d & \alpha_{2}: \mathbf{a} \lor \neg c \lor \neg f & \alpha_{3}: \neg d \lor j \lor f \\ \alpha_{4}: \mathbf{b} \lor h & \alpha_{5}: \neg c \lor \neg e \lor i & \alpha_{6}: \neg i \lor \neg j \lor \neg g \\ \alpha_{7}: e \lor \neg k & \alpha_{8}: e \lor \neg h \lor k & \alpha_{9}: \neg c \lor \neg e \lor \neg i \lor g \end{array}$$

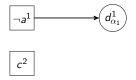
Affectation, Propagation



Conflict graph construction

$$\begin{array}{lll} \alpha_1 : \mathbf{a} \lor d & \alpha_2 : \mathbf{a} \lor \neg \mathbf{c} \lor \neg f & \alpha_3 : \neg d \lor j \lor f \\ \alpha_4 : \mathbf{b} \lor h & \alpha_5 : \neg \mathbf{c} \lor \neg \mathbf{e} \lor i & \alpha_6 : \neg i \lor \neg j \lor \neg g \\ \alpha_7 : \mathbf{e} \lor \neg k & \alpha_8 : \mathbf{e} \lor \neg h \lor k & \alpha_9 : \neg \mathbf{c} \lor \neg \mathbf{e} \lor \neg i \lor g \end{array}$$

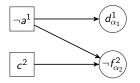
Affectation, Propagation



Conflict graph construction

$$\begin{array}{lll} \alpha_1 : \mathbf{a} \lor d & \alpha_2 : \mathbf{a} \lor \neg \mathbf{c} \lor \neg f & \alpha_3 : \neg \mathbf{d} \lor j \lor f \\ \alpha_4 : \mathbf{b} \lor h & \alpha_5 : \neg \mathbf{c} \lor \neg \mathbf{e} \lor i & \alpha_6 : \neg i \lor \neg j \lor \neg g \\ \alpha_7 : \mathbf{e} \lor \neg k & \alpha_8 : \mathbf{e} \lor \neg h \lor k & \alpha_9 : \neg \mathbf{c} \lor \neg \mathbf{e} \lor \neg i \lor g \end{array}$$

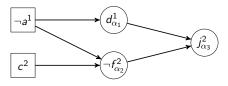
Affectation, Propagation



Conflict graph construction

$$\begin{array}{lll} \alpha_1 : \mathbf{a} \lor d & \alpha_2 : \mathbf{a} \lor \neg \mathbf{c} \lor \neg f & \alpha_3 : \neg \mathbf{d} \lor j \lor f \\ \alpha_4 : \mathbf{b} \lor h & \alpha_5 : \neg \mathbf{c} \lor \neg \mathbf{e} \lor i & \alpha_6 : \neg i \lor \neg j \lor \neg g \\ \alpha_7 : \mathbf{e} \lor \neg k & \alpha_8 : \mathbf{e} \lor \neg h \lor k & \alpha_9 : \neg \mathbf{c} \lor \neg \mathbf{e} \lor \neg i \lor g \end{array}$$

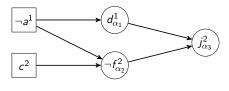
Affectation, Propagation



Conflict graph construction

$$\begin{array}{lll} \alpha_1 : \mathbf{a} \lor d & \alpha_2 : \mathbf{a} \lor \neg \mathbf{c} \lor \neg f & \alpha_3 : \neg \mathbf{d} \lor j \lor f \\ \alpha_4 : \mathbf{b} \lor h & \alpha_5 : \neg \mathbf{c} \lor \neg \mathbf{e} \lor i & \alpha_6 : \neg i \lor \neg j \lor \neg g \\ \alpha_7 : \mathbf{e} \lor \neg k & \alpha_8 : \mathbf{e} \lor \neg h \lor k & \alpha_9 : \neg \mathbf{c} \lor \neg \mathbf{e} \lor \neg i \lor g \end{array}$$

Affectation, Propagation

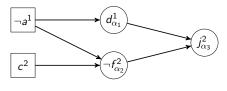


$$\neg b^3$$

Conflict graph construction

$$\begin{array}{lll} \alpha_1 : \mathbf{a} \lor d & \alpha_2 : \mathbf{a} \lor \neg \mathbf{c} \lor \neg f & \alpha_3 : \neg \mathbf{d} \lor j \lor f \\ \alpha_4 : \mathbf{b} \lor h & \alpha_5 : \neg \mathbf{c} \lor \neg \mathbf{e} \lor i & \alpha_6 : \neg i \lor \neg j \lor \neg g \\ \alpha_7 : \mathbf{e} \lor \neg k & \alpha_8 : \mathbf{e} \lor \neg h \lor k & \alpha_9 : \neg \mathbf{c} \lor \neg \mathbf{e} \lor \neg i \lor g \end{array}$$

Affectation, Propagation

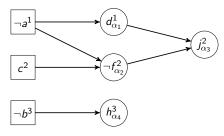


$$\neg b^3$$

Conflict graph construction

$$\begin{array}{lll} \alpha_1 : \mathbf{a} \lor d & \alpha_2 : \mathbf{a} \lor \neg \mathbf{c} \lor \neg f & \alpha_3 : \neg \mathbf{d} \lor j \lor f \\ \alpha_4 : \mathbf{b} \lor h & \alpha_5 : \neg \mathbf{c} \lor \neg \mathbf{e} \lor i & \alpha_6 : \neg i \lor \neg j \lor \neg g \\ \alpha_7 : \mathbf{e} \lor \neg k & \alpha_8 : \mathbf{e} \lor \neg h \lor k & \alpha_9 : \neg \mathbf{c} \lor \neg \mathbf{e} \lor \neg i \lor g \end{array}$$

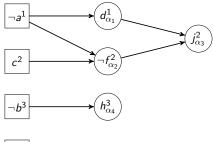
Affectation, Propagation



Conflict graph construction

$$\begin{array}{ll} \alpha_1 : \mathbf{a} \lor d & \alpha_2 : \mathbf{a} \lor \neg \mathbf{c} \lor \neg f & \alpha_3 : \neg \mathbf{d} \lor j \lor f \\ \alpha_4 : \mathbf{b} \lor h & \alpha_5 : \neg \mathbf{c} \lor \neg \mathbf{e} \lor i & \alpha_6 : \neg i \lor \neg j \lor \neg g \\ \alpha_7 : \mathbf{e} \lor \neg k & \alpha_8 : \mathbf{e} \lor \neg h \lor k & \alpha_9 : \neg \mathbf{c} \lor \neg \mathbf{e} \lor \neg i \lor g \end{array}$$

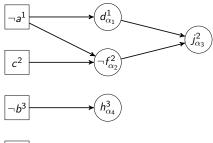
Affectation, Propagation



Conflict graph construction

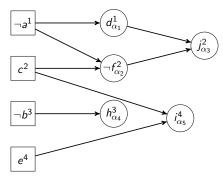
$$\begin{array}{lll} \alpha_1 : \mathbf{a} \lor d & \alpha_2 : \mathbf{a} \lor \neg \mathbf{c} \lor \neg f & \alpha_3 : \neg \mathbf{d} \lor j \lor f \\ \alpha_4 : \mathbf{b} \lor h & \alpha_5 : \neg \mathbf{c} \lor \neg \mathbf{e} \lor i & \alpha_6 : \neg i \lor \neg j \lor \neg g \\ \alpha_7 : \mathbf{e} \lor \neg k & \alpha_8 : \mathbf{e} \lor \neg h \lor k & \alpha_9 : \neg \mathbf{c} \lor \neg \mathbf{e} \lor \neg i \lor g \end{array}$$

Affectation, Propagation



$$\begin{array}{lll} \alpha_1 : \mathbf{a} \lor d & \alpha_2 : \mathbf{a} \lor \neg \mathbf{c} \lor \neg f & \alpha_3 : \neg \mathbf{d} \lor j \lor f \\ \alpha_4 : \mathbf{b} \lor h & \alpha_5 : \neg \mathbf{c} \lor \neg \mathbf{e} \lor i & \alpha_6 : \neg i \lor \neg j \lor \neg g \\ \alpha_7 : \mathbf{e} \lor \neg k & \alpha_8 : \mathbf{e} \lor \neg h \lor k & \alpha_9 : \neg \mathbf{c} \lor \neg \mathbf{e} \lor \neg i \lor g \end{array}$$

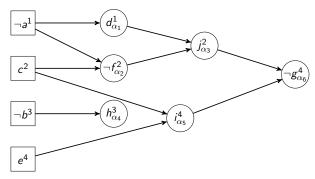
Affectation, Propagation



$$\begin{array}{lll} \alpha_1 : \mathbf{a} \lor d & \alpha_2 : \mathbf{a} \lor \neg \mathbf{c} \lor \neg f & \alpha_3 : \neg \mathbf{d} \lor j \lor f \\ \alpha_4 : \mathbf{b} \lor h & \alpha_5 : \neg \mathbf{c} \lor \neg \mathbf{e} \lor i & \alpha_6 : \neg i \lor \neg j \lor \neg g \\ \alpha_7 : \mathbf{e} \lor \neg k & \alpha_8 : \mathbf{e} \lor \neg h \lor k & \alpha_9 : \neg \mathbf{c} \lor \neg \mathbf{e} \lor \neg i \lor g \end{array}$$

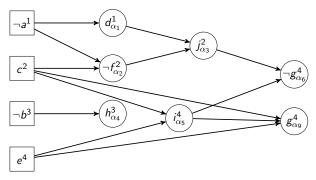
Affectation, Propagation

٨



$$\begin{array}{lll} \alpha_1 : \mathbf{a} \lor d & \alpha_2 : \mathbf{a} \lor \neg \mathbf{c} \lor \neg f & \alpha_3 : \neg \mathbf{d} \lor j \lor f \\ \alpha_4 : \mathbf{b} \lor h & \alpha_5 : \neg \mathbf{c} \lor \neg \mathbf{e} \lor i & \alpha_6 : \neg i \lor \neg j \lor \neg g \\ \alpha_7 : \mathbf{e} \lor \neg k & \alpha_8 : \mathbf{e} \lor \neg h \lor k & \alpha_9 : \neg \mathbf{c} \lor \neg \mathbf{e} \lor \neg i \lor g \end{array}$$

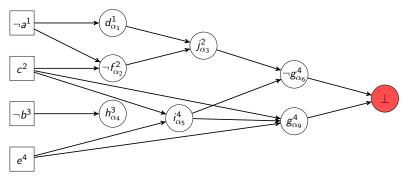
Affectation, Propagation



Conflict graph construction

$$\begin{array}{lll} \alpha_1 : \mathbf{a} \lor d & \alpha_2 : \mathbf{a} \lor \neg \mathbf{c} \lor \neg f & \alpha_3 : \neg \mathbf{d} \lor j \lor f \\ \alpha_4 : \mathbf{b} \lor h & \alpha_5 : \neg \mathbf{c} \lor \neg \mathbf{e} \lor i & \alpha_6 : \neg i \lor \neg j \lor \neg g \\ \alpha_7 : \mathbf{e} \lor \neg k & \alpha_8 : \mathbf{e} \lor \neg h \lor k & \alpha_9 : \neg \mathbf{c} \lor \neg \mathbf{e} \lor \neg i \lor g \end{array}$$

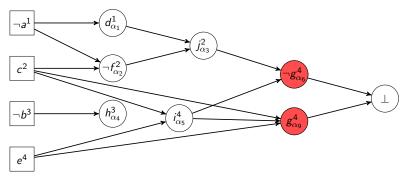
Affectation, Propagation



Conflict graph construction

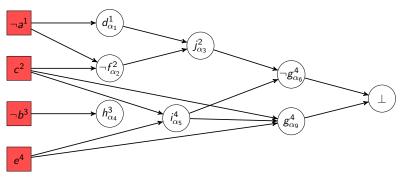
$$\begin{array}{lll} \alpha_1 : \mathbf{a} \lor d & \alpha_2 : \mathbf{a} \lor \neg \mathbf{c} \lor \neg f & \alpha_3 : \neg \mathbf{d} \lor j \lor f \\ \alpha_4 : \mathbf{b} \lor h & \alpha_5 : \neg \mathbf{c} \lor \neg \mathbf{e} \lor i & \alpha_6 : \neg i \lor \neg j \lor \neg g \\ \alpha_7 : \mathbf{e} \lor \neg k & \alpha_8 : \mathbf{e} \lor \neg h \lor k & \alpha_9 : \neg \mathbf{c} \lor \neg \mathbf{e} \lor \neg i \lor g \end{array}$$

Affectation, Propagation



$$\begin{array}{lll} \alpha_1 : \mathbf{a} \lor d & \alpha_2 : \mathbf{a} \lor \neg \mathbf{c} \lor \neg f & \alpha_3 : \neg d \lor j \lor f \\ \alpha_4 : \mathbf{b} \lor h & \alpha_5 : \neg \mathbf{c} \lor \neg \mathbf{e} \lor i & \alpha_6 : \neg i \lor \neg j \lor \neg g \\ \alpha_7 : \mathbf{e} \lor \neg k & \alpha_8 : \mathbf{e} \lor \neg h \lor k & \alpha_9 : \neg \mathbf{c} \lor \neg \mathbf{e} \lor \neg i \lor g \end{array}$$

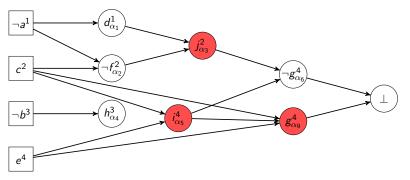
Affectation, Propagation



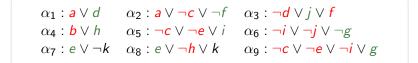
Conflict graph construction

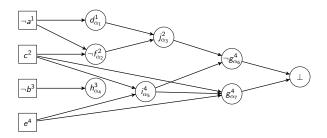
$$\begin{array}{lll} \alpha_1 : \mathbf{a} \lor d & \alpha_2 : \mathbf{a} \lor \neg \mathbf{c} \lor \neg f & \alpha_3 : \neg d \lor j \lor f \\ \alpha_4 : \mathbf{b} \lor h & \alpha_5 : \neg \mathbf{c} \lor \neg \mathbf{e} \lor i & \alpha_6 : \neg i \lor \neg j \lor \neg g \\ \alpha_7 : \mathbf{e} \lor \neg k & \alpha_8 : \mathbf{e} \lor \neg h \lor k & \alpha_9 : \neg \mathbf{c} \lor \neg \mathbf{e} \lor \neg i \lor g \end{array}$$

Affectation, Propagation

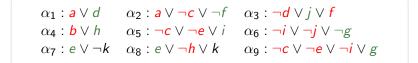


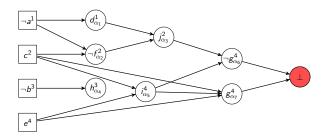
Conclusion





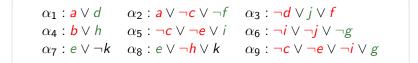
Conclusion

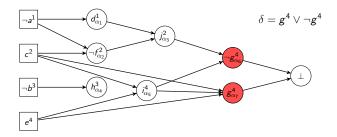




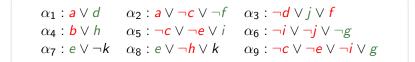
.

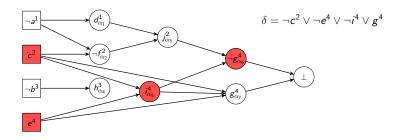
Conclusion



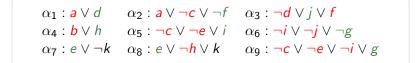


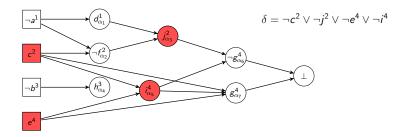
Conclusion



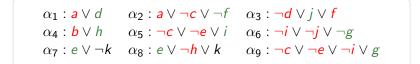


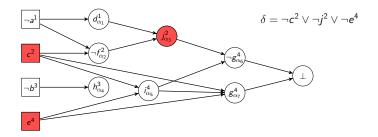
Conclusion





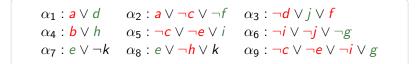
Conclusion

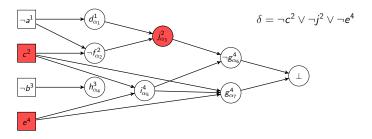




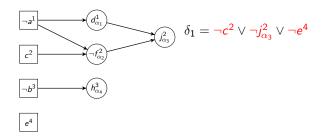
.

Conclusion

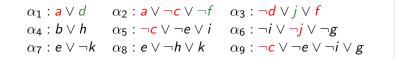


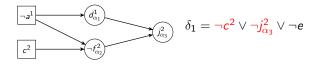


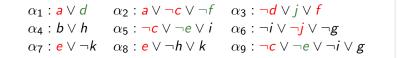
- Stops as soon as the resolvant has a unique literal from the last decision level (FUIP)
- δ is added to the clauses databases (ensure a systematic search)



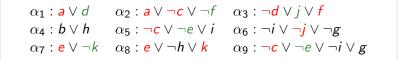
Conclusion

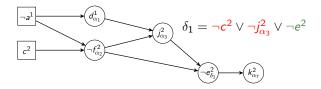


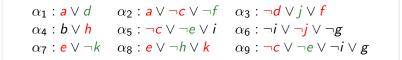


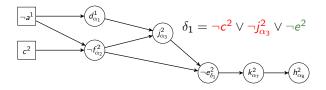


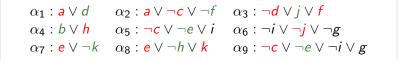


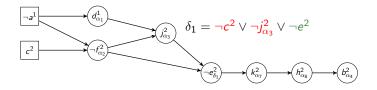


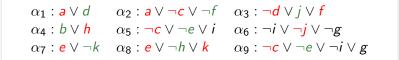


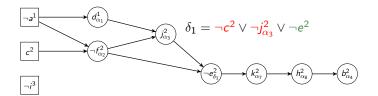




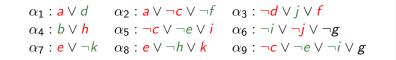


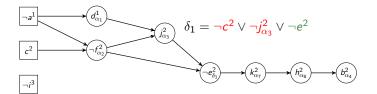






Back-jumping





SATISFIABILITY PROVED

- Unit propagation fires when all but one literal is assigned false
- Idea: If two variables are either unassigned or one is assigned true, no need to do anything
- So just find two variables which satisfy this condition

 $\alpha_1: \neg a \lor b \lor c \quad \alpha_2: \neg a \lor \neg c \lor \neg b \quad \alpha_3: \neg a \lor c \lor \neg b$

- Unit propagation fires when all but one literal is assigned false
- Idea: If two variables are either unassigned or one is assigned true, no need to do anything
- So just find two variables which satisfy this condition

 $\alpha_1: \neg a \lor b \lor c \quad \alpha_2: \neg a \lor \neg c \lor \neg b \quad \alpha_3: \neg a \lor c \lor \neg b$

- Unit propagation fires when all but one literal is assigned false
- Idea: If two variables are either unassigned or one is assigned true, no need to do anything
- So just find two variables which satisfy this condition

 $\alpha_1 : \neg a \lor b \lor c \quad \alpha_2 : \neg a \lor \neg c \lor \neg b \quad \alpha_3 : \neg a \lor c \lor \neg b$

• Mapping between sentinel literals and the clauses they watch

$$a: \{\}$$
 $b: \{\alpha_1\}$ $c: \{\alpha_3\}$ $\neg a: \{\alpha_1, \alpha_3\}$ $\neg b: \{\alpha_2\}$ $\neg c: \{\alpha_2\}$

- Unit propagation fires when all but one literal is assigned false
- Idea: If two variables are either unassigned or one is assigned true, no need to do anything
- So just find two variables which satisfy this condition

 $\alpha_1: \neg a \lor b \lor c \quad \alpha_2: \neg a \lor \neg c \lor \neg b \quad \alpha_3: \neg a \lor c \lor \neg b$

• Mapping between sentinel literals and the clauses they watch

$$a: \{\}$$
 $b: \{\alpha_1\}$ $c: \{\alpha_3\}$ $\neg a: \{\alpha_1, \alpha_3\}$ $\neg b: \{\alpha_2\}$ $\neg c: \{\alpha_2\}$

• When a literal *x* is propagated to true it is enough to consider the clauses observed by $\neg x$ and search another watched literal

- Unit propagation fires when all but one literal is assigned false
- Idea: If two variables are either unassigned or one is assigned true, no need to do anything
- So just find two variables which satisfy this condition

 $\alpha_1: \neg a \lor b \lor c \quad \alpha_2: \neg a \lor \neg c \lor \neg b \quad \alpha_3: \neg a \lor c \lor \neg b$

• Mapping between sentinel literals and the clauses they watch

$$a: \{\}$$
 $b: \{\alpha_1\}$ $c: \{\alpha_3\}$ $\neg a: \{\alpha_1, \alpha_3\}$ $\neg b: \{\alpha_2\}$ $\neg c: \{\alpha_2\}$

When a literal x is propagated to true it is enough to consider the clauses observed by ¬x and search another watched literal

- Unit propagation fires when all but one literal is assigned false
- Idea: If two variables are either unassigned or one is assigned true, no need to do anything
- So just find two variables which satisfy this condition

 $\alpha_1: \neg a \lor b \lor c \quad \alpha_2: \neg a \lor \neg c \lor \neg b \quad \alpha_3: \neg a \lor c \lor \neg b$

• Mapping between sentinel literals and the clauses they watch

$$a: \{\}$$
 $b: \{\alpha_1\}$ $c: \{\alpha_3\}$ $\neg a: \{\alpha_1, \alpha_3\}$ $\neg b: \{\alpha_2\}$ $\neg c: \{\alpha_2\}$

When a literal x is propagated to true it is enough to consider the clauses observed by ¬x and search another watched literal

- Unit propagation fires when all but one literal is assigned false
- Idea: If two variables are either unassigned or one is assigned true, no need to do anything
- So just find two variables which satisfy this condition

 $\alpha_1: \neg a \lor b \lor c \quad \alpha_2: \neg a \lor \neg c \lor \neg b \quad \alpha_3: \neg a \lor c \lor \neg b$

• Mapping between sentinel literals and the clauses they watch

$$a: \{\}$$
 $b: \{\alpha_1\}$ $c: \{\alpha_3\}$ $\neg a: \{\alpha_1, \alpha_3\}$ $\neg b: \{\alpha_2\}$ $\neg c: \{\alpha_2\}$

When a literal x is propagated to true it is enough to consider the clauses observed by ¬x and search another watched literal

- Unit propagation fires when all but one literal is assigned false
- Idea: If two variables are either unassigned or one is assigned true, no need to do anything
- So just find two variables which satisfy this condition

 $\alpha_1: \neg a \lor b \lor c \quad \alpha_2: \neg a \lor \neg c \lor \neg b \quad \alpha_3: \neg a \lor c \lor \neg b$

• Mapping between sentinel literals and the clauses they watch

$$a: \{\}$$
 $b: \{\alpha_1\}$ $c: \{\alpha_3, \alpha_1\}$ $\neg a: \{\alpha_1, \alpha_3\}$ $\neg b: \{\alpha_2\}$ $\neg c: \{\alpha_2\}$

When a literal x is propagated to true it is enough to consider the clauses observed by ¬x and search another watched literal

- Unit propagation fires when all but one literal is assigned false
- Idea: If two variables are either unassigned or one is assigned true, no need to do anything
- So just find two variables which satisfy this condition

 $\alpha_1: \neg a \lor b \lor c \quad \alpha_2: \neg a \lor \neg c \lor \neg b \quad \alpha_3: \neg a \lor c \lor \neg b$

• Mapping between sentinel literals and the clauses they watch

$$a: \{\}$$
 $b: \{\alpha_1\}$ $c: \{\alpha_3, \alpha_1\}$ $\neg a: \{\alpha_1, \alpha_3\}$ $\neg b: \{\alpha_2\}$ $\neg c: \{\alpha_2\}$

When a literal x is propagated to true it is enough to consider the clauses observed by ¬x and search another watched literal

Let us suppose that *a* is assigned to true

- Unit propagation fires when all but one literal is assigned false
- Idea: If two variables are either unassigned or one is assigned true, no need to do anything
- So just find two variables which satisfy this condition

 $\alpha_1: \neg a \lor b \lor c \quad \alpha_2: \neg a \lor \neg c \lor \neg b \quad \alpha_3: \neg a \lor c \lor \neg b$

• Mapping between sentinel literals and the clauses they watch

$$a: \{\}$$
 $b: \{\alpha_1\}$ $c: \{\alpha_3, \alpha_1\}$ $\neg a: \{\alpha_1, \alpha_3\}$ $\neg b: \{\alpha_2\}$ $\neg c: \{\alpha_2\}$

When a literal x is propagated to true it is enough to consider the clauses observed by ¬x and search another watched literal

Let us suppose that *a* is assigned to true

- Unit propagation fires when all but one literal is assigned false
- Idea: If two variables are either unassigned or one is assigned true, no need to do anything
- So just find two variables which satisfy this condition

 $\alpha_1: \neg a \lor b \lor c \quad \alpha_2: \neg a \lor \neg c \lor \neg b \quad \alpha_3: \neg a \lor c \lor \neg b$

• Mapping between sentinel literals and the clauses they watch

$$a: \{\}$$
 $b: \{\alpha_1\}$ $c: \{\alpha_3, \alpha_1\}$ $\neg a: \{\alpha_1, \alpha_3\}$ $\neg b: \{\alpha_2, \alpha_3\}$ $\neg c: \{\alpha_2\}$

When a literal x is propagated to true it is enough to consider the clauses observed by ¬x and search another watched literal

Let us suppose that *a* is assigned to true

- Unit propagation fires when all but one literal is assigned false
- Idea: If two variables are either unassigned or one is assigned true, no need to do anything
- So just find two variables which satisfy this condition

 $\alpha_1: \neg a \lor b \lor c \quad \alpha_2: \neg a \lor \neg c \lor \neg b \quad \alpha_3: \neg a \lor c \lor \neg b$

• Mapping between sentinel literals and the clauses they watch

$$a: \{\}$$
 $b: \{\alpha_1\}$ $c: \{\alpha_3, \alpha_1\}$ $\neg a: \{\}$ $\neg b: \{\alpha_2, \alpha_3\}$ $\neg c: \{\alpha_2\}$

When a literal x is propagated to true it is enough to consider the clauses observed by ¬x and search another watched literal

Heavy-Tailed Phenomena

- Depth-first search procedures often exhibit a remarkable variability in the time required to solve any problem instance
- Heavy-tailed behavior arises from the fact that wrong branching decisions may lead to explore an exponentially large subtree that contains no solutions
- Restarts provide good mechanisms to avoid such an issue

Restarts

- Often it a good strategy to abandon what you do and restart
 - for satisfiable instances the solver may get stuck in the unsatisfiable part
 - for unsatisfiable instances focusing on one part might miss short proofs
 - \Rightarrow restart after the number of conflicts reached a restart limit
- Avoid to run into the same dead end

- by randomization (either on the decision variable or its phase)
- and/or just keep all the learned clauses
- For completeness dynamically increase restart limit
 - arithmetically, geometrically, Luby, Inner/Outer, Glucose restart

- CDCL SAT solvers learn clauses at each conflict
- Keeping all these clauses can slow down the unit propagation process

- CDCL SAT solvers learn clauses at each conflict
- Keeping all these clauses can slow down the unit propagation process
- "Useless" learned clauses are periodically deleted $(t_0, t_1 \dots t_k, \dots)$

Ω_1	a	(N2)	α_{\star}	α_{5}	$\ldots \alpha_k \alpha_n$
~1	∽2	~3	~4	~5	 a _k a _h

- CDCL SAT solvers learn clauses at each conflict
- Keeping all these clauses can slow down the unit propagation process
- "Useless" learned clauses are periodically deleted $(t_0, t_1 \dots t_k, \dots)$

$\alpha_k \alpha_5 \alpha_2 \alpha_1 \alpha_n$		$\ldots \alpha_3 \alpha_4$
--	--	----------------------------

- CDCL SAT solvers learn clauses at each conflict
- Keeping all these clauses can slow down the unit propagation process
- "Useless" learned clauses are periodically deleted $(t_0, t_1 \dots t_k, \dots)$

$\alpha_k \alpha_5 \alpha_2 \alpha_1 \alpha_n$		α ₃ α ₄
--	--	-------------------------------

- CDCL SAT solvers learn clauses at each conflict
- Keeping all these clauses can slow down the unit propagation process
- "Useless" learned clauses are periodically deleted $(t_0, t_1 \dots t_k, \dots)$

$\alpha_k \alpha_5$	$\alpha_2 \alpha_1$	α_n
---------------------	---------------------	------------

• Deleting too much clauses make the learning process useless

- CDCL SAT solvers learn clauses at each conflict
- Keeping all these clauses can slow down the unit propagation process
- "Useless" learned clauses are periodically deleted $(t_0, t_1 \dots t_k, \dots)$

$\alpha_k \alpha_5 \alpha_2$	$\alpha_1 \alpha_n$
------------------------------	---------------------

.

- Deleting too much clauses make the learning process useless
- However, identify if a clause will be useful in the future is a hard task!

Estimate the clauses' utility

• The VSIDS measure

- Keeping clauses that are often and recently used in the conflict analysis process
- Dynamic measure
- A clause useful in the past will be useful again in the future!

The LBD measure

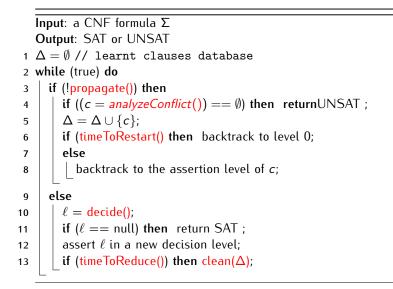
- Represent the number of decision-levels in the learned clause
- Static measure
- Keeping clauses with a small LBD
- The PSM measure
 - Represent the number of literals assigned to false by *Progress Saving* interpretation
 - Static measure
 - Keeping clauses with a small PSM

.

CDCL algorithm

```
Input: a CNF formula \Sigma
   Output: SAT or UNSAT
 1 \Delta = \emptyset // learnt clauses database
 2 while (true) do
      if (!propagate()) then
 3
         if ((c = analyzeConflict()) == \emptyset) then returnUNSAT;
 4
         \Delta = \Delta \cup \{c\};
 5
         if (timeToRestart() then backtrack to level 0;
 6
         else
 7
            backtrack to the assertion level of c;
 8
 9
      else
         \ell = \text{decide}();
10
         if (\ell == \text{null}) then return SAT;
11
         assert \ell in a new decision level;
12
13
         if (timeToReduce()) then clean(\Delta);
```


CDCL algorithm



Minimal Unsatisfiable Set (MUS)

- $x \lor y \lor z \qquad x \lor \neg y \qquad x \lor \neg z$ $\neg x \lor y \lor z \qquad x \lor w \qquad w \lor z \lor \neg y$ $\neg x \lor \neg y \qquad \neg x \lor \neg z \qquad w \lor \neg x \lor \neg z$ UNSAT
- The formula is unsatisfiable: why?
- Subset of constraints minimally unsatisfiable

.

- Two approaches:
 - \rightarrow constructive
 - \rightarrow destructive

Minimal Unsatisfiable Set (MUS)

$x \lor y \lor z$	$x \vee \neg y$	$x \vee \neg z$
$\neg x \lor y \lor z$	$x \lor w$	$w \lor z \lor \neg y$
$\neg x \lor \neg y$	$\neg x \lor \neg z$	$w \lor \neg x \lor \neg z$

- The formula is unsatisfiable: why?
- Subset of constraints minimally unsatisfiable

.

- Two approaches:
 - \rightarrow constructive
 - \rightarrow destructive

Minimal Unsatisfiable Set (MUS)

 $x \lor y \lor z$ $x \lor \neg y$ $x \lor \neg z$ $\neg x \lor y \lor z$ $x \lor w$ $w \lor z \lor \neg y$ $\neg x \lor \neg y$ $\neg x \lor \neg z$ $w \lor \neg x \lor \neg z$

- The formula is unsatisfiable: why?
- Subset of constraints minimally unsatisfiable
- Two approaches:
 - \rightarrow constructive
 - \rightarrow destructive

Minimal Unsatisfiable Set (MUS)

$$x \lor \neg y \qquad x \lor \neg z$$
$$\neg x \lor y \lor z \qquad x \lor w \qquad w \lor z \lor \neg y$$
$$\neg x \lor \neg y \qquad \neg x \lor \neg z \qquad w \lor \neg x \lor \neg z$$
SAT

- The formula is unsatisfiable: why?
- Subset of constraints minimally unsatisfiable

.

- Two approaches:
 - \rightarrow constructive
 - \rightarrow destructive

Minimal Unsatisfiable Set (MUS)

$x \lor y \lor z$	$x \vee \neg y$	$x \lor \neg z$
$\neg x \lor y \lor z$	$x \lor w$	$w \lor z \lor \neg y$
$\neg x \lor \neg y$	$\neg x \lor \neg z$	$w \lor \neg x \lor \neg z$

- The formula is unsatisfiable: why?
- Subset of constraints minimally unsatisfiable
- Two approaches:
 - \rightarrow constructive
 - \rightarrow destructive

Minimal Unsatisfiable Set (MUS)

$x \lor y \lor z$	$x \lor \neg y$	$x \lor \neg z$
$\neg x \lor y \lor z$		$w \lor z \lor \neg y$
$\neg x \lor \neg y$	$\neg x \lor \neg z$	$w \vee \neg x \vee \neg z$
	UNSAT	

- The formula is unsatisfiable: why?
- Subset of constraints minimally unsatisfiable
- Two approaches:
 - \rightarrow constructive
 - \rightarrow destructive

Minimal Unsatisfiable Set (MUS)

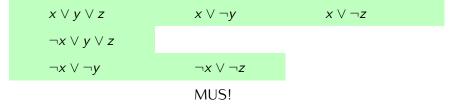
$x \lor y \lor z$	$x \lor \neg y$	$x \lor \neg z$
$\neg x \lor y \lor z$		$w \lor z \lor \neg y$
$\neg x \lor \neg y$	$\neg x \lor \neg z$	$w \lor \neg x \lor \neg z$

- The formula is unsatisfiable: why?
- Subset of constraints minimally unsatisfiable
- Two approaches:
 - \rightarrow constructive
 - \rightarrow destructive

Team Formation

Conclusion

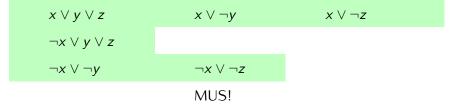
Minimal Unsatisfiable Set (MUS)



- The formula is unsatisfiable: why?
- Subset of constraints minimally unsatisfiable

- Two approaches:
 - \rightarrow constructive
 - \rightarrow destructive

Minimal Unsatisfiable Set (MUS)



- The formula is unsatisfiable: why?
- Subset of constraints minimally unsatisfiable
- Two approaches:
 - \rightarrow constructive
 - \rightarrow destructive

SAT Incremental

From SAT to Incremental SAT

Solving the SAT problem

- Modern SAT solvers are based on the CDCL paradigm
- Dynamic heuristics:
 - $\rightarrow~\text{VSIDS},$ polarity, cleaning learned clauses and restart

Solving incrementally SAT

- Successive calls of a SAT solver
- Keeping a lot of information between the different runs
 - $\rightarrow~\text{VSIDS},$ polarity, cleaning learned clauses and restart

From SAT to Incremental SAT

Solving the SAT problem

- Modern SAT solvers are based on the CDCL paradigm
- Dynamic heuristics:
 - $\rightarrow~\text{VSIDS},$ polarity, cleaning learned clauses and restart

Solving incrementally SAT

- Successive calls of a SAT solver
- Keeping a lot of information between the different runs
 - $\rightarrow~\text{VSIDS},$ polarity, cleaning learned clauses and restart
 - \rightarrow learned clauses

From SAT to Incremental SAT

Solving the SAT problem

- Modern SAT solvers are based on the CDCL paradigm
- Dynamic heuristics:
 - \rightarrow VSIDS, polarity, cleaning learned clauses and restart

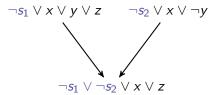
Solving incrementally SAT

- Successive calls of a SAT solver
- Keeping a lot of information between the different runs
 - $\rightarrow~\text{VSIDS},$ polarity, cleaning learned clauses and restart
 - \rightarrow learned clauses

Adding selectors

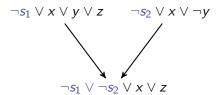
Selectors

- $\neg s_1 \lor x \lor y \lor z \qquad \neg s_2 \lor x \lor \neg y \qquad \neg s_3 \lor x \lor \neg z$
- $\neg s_4 \lor \neg x \lor y \lor z \qquad \neg s_5 \lor x \lor w \qquad \neg s_6 \lor w \lor z \lor \neg y$ $\neg s_7 \lor \neg x \lor \neg y \qquad \neg s_8 \lor \neg x \lor \neg z \qquad \neg s_9 \lor w \lor \neg x \lor \neg z$
- To activate/deactivate the ith clause :
 - \rightarrow assign a_i to false to activate the clause
 - \rightarrow assign a_i to true to deactivate the clause
- Used to know which initial clauses are participating to the creation of each learned clause



Selectors

- $\neg S_1 \lor x \lor y \lor z \qquad \neg S_2 \lor x \lor \neg y \qquad \neg S_3 \lor x \lor \neg z$
- $\neg s_4 \lor \neg x \lor y \lor z \qquad \neg s_5 \lor x \lor w \qquad \neg s_6 \lor w \lor z \lor \neg y$ $\neg s_7 \lor \neg x \lor \neg y \qquad \neg s_8 \lor \neg x \lor \neg z \qquad \neg s_9 \lor w \lor \neg x \lor \neg z$
- To activate/deactivate the ith clause :
 - \rightarrow assign a_i to false to activate the clause
 - \rightarrow assign a_i to true to deactivate the clause
- Used to know which initial clauses are participating to the creation of each learned clause



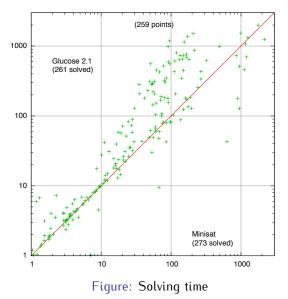
Selectors impact on the size of the clauses

Let's test

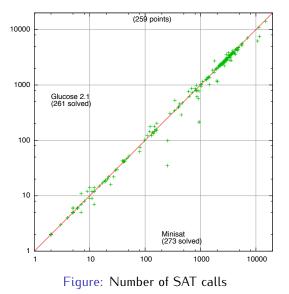
- 300 instances from the MUS competition 2011
- timeout = 2400 secondes
- memout = 7800 Mo
- MUSer as MUS extractor
 - \rightarrow defaults options
- SAT solvers: **GLUCOSE** versus **MINISAT**
- Intel XEON X5550 Quad-Core 2.66 GHz with 32Go of RAM

GLUCOSE VS. MINISAT

(MUS)



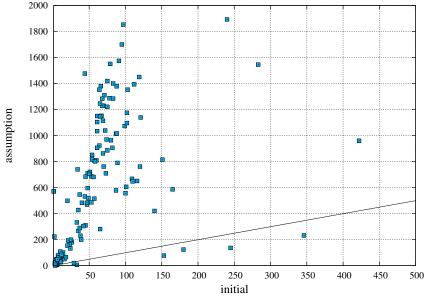
GLUCOSE VS. MINISAT



Why GLUCOSE is so inefficient?

- Main difference between GLUCOSE et MINISAT
 - \rightarrow restart and cleaning strategy
- GLUCOSE is entirely based on the LBD notion
- Each selector has its own decision level

Why GLUCOSE is so inefficient?



22 / 37

Why GLUCOSE is so inefficient?

- Main difference between GLUCOSE et MINISAT
 - ightarrow restart and cleaning strategy
- GLUCOSE is entirely based on the LBD notion
- Each selector has its own decision level
- Then the LBD reflects the number of selectors of a learned clause
- We have to redefine the notion of LBD: improved LBD

Why GLUCOSE is so inefficient?

- Main difference between GLUCOSE et MINISAT
 - ightarrow restart and cleaning strategy
- GLUCOSE is entirely based on the LBD notion
- Each selector has its own decision level
- Then the LBD reflects the number of selectors of a learned clause
- We have to redefine the notion of LBD: improved LBD

Not considering selectors when computing the LBD

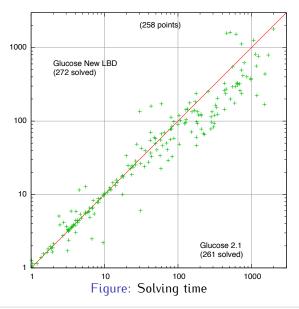
Updated LBD

		ta	ille	L	BD	lmp.	LBD
Instance	#C	moy.	max	moy.	max	moy.	max
fdmus_b21_96	8541	1145	5980	1095	5945	8	71
longmult6	8853	694	3104	672	3013	11	61
dump_vc950	360419	522	36309	498	35873	8	307
g7n	15110	1098	16338	1049	16268	27	160

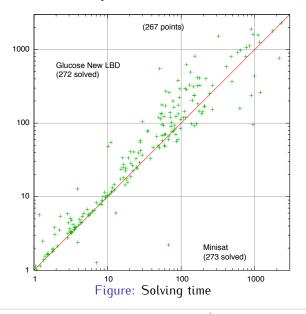
• The new LBD looks more appropriate

• It really measures now how a clause is useful!

GLUCOSE Improved LBD vs. GLUCOSE de base



GLUCOSE Improved LBD vs. MINISAT



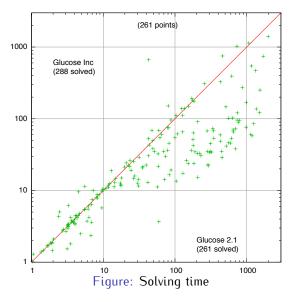
25 / 37

The clauses are too long

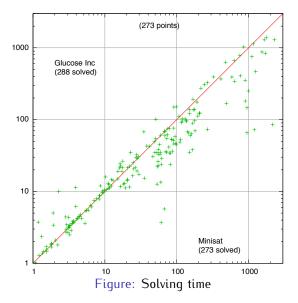
The main procedures depend on the size of the clauses

- Conflict analysis
 - ightarrow put the initial literals at the front of the clause
- Unit propagation
 - \rightarrow search for a initial literal or a literal satisfied
 - $\rightarrow~$ push the selector to the end of the clause
- Simplification procedure
 - \rightarrow only check for the watched literals
- LBD recalculation
 - $\rightarrow~$ save the number of selectors
 - $\rightarrow\,$ stop once we are sure that only selectors remain

GLUCOSEInc vs. GLUCOSE de base



GLUCOSEInc vs. MINISAT



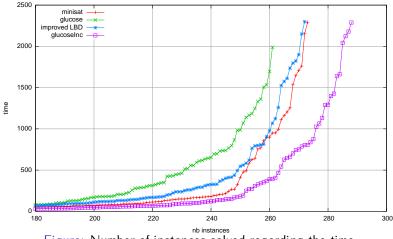


Figure: Number of instances solved regarding the time

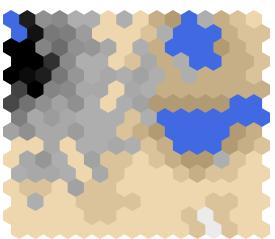
Outline

2 MUS

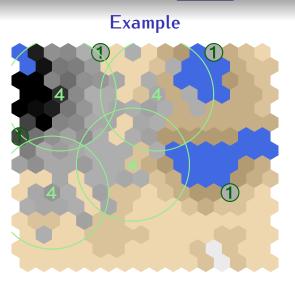
4 Conclusion

Team Formation Problem

- Team formation (TF) is the problem of deploying the least expensive team of agents while covering a set of skills
- A TF problem description is a tuple $\langle A, S, f, \alpha \rangle$
 - where $A = \{a_1, \ldots, a_n\}$ is a set of agents,
 - $S = \{s_1, \ldots, s_m\}$ is a set of skills,
 - $f: A \mapsto \mathbb{N}$ is a deployment cost function,
 - and $\alpha : A \mapsto 2^{S}$ is an agent-to-skill function.
- A team is a subset of agents $T \subseteq A$
- One extends the cost function f to teams T as $f(T) = \sum_{a_i \in T} f(a_i)$
- The agent-to-skill function α is extended to teams T as $\alpha(T) = \bigcup_{a_i \in T} \alpha(a_i)$
- A team $T \subseteq A$ is efficient if all skills from S are covered by T, i.e., when $\alpha(T) = S$ (it is almost equivalent to the Set Cover problem)
- An optimal team is an efficient team minimizing the cost function
- The corresponding decision problem asks, given a bound $b \in \mathbb{N}$ as input, whether there exists an efficient team T such that $f(T) \leq b$



• An agent_i has a deployment cost equal to *i* and a cover range equal to *i* – 1



 An agent_i has a deployment cost equal to i and a cover range equal to i - 1

SAT encoding

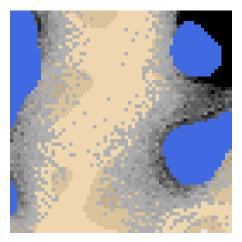
- We associate a boolean variable *p_i* with each agent in *a_i* ∈ *A*, where *p_i* is true if and only if the agent *a_i* is present in the deployed team.
- Given a TF instance ⟨A, S, f, α⟩ and b ∈ ℕ, a minimal efficient team T exists if and only if:

$$\bigwedge_{s_j \in S} \bigvee_{a_i \in A|s_j \in \alpha(i)} p_i \tag{1}$$

$$\sum_{a_i \in A} f(i) \times p_i \le b \tag{2}$$

33 / 37

And in practice



- 6 types of agent by cell with cover ranging from 1 to 6
- *b* = 200

34 / 37

And in practice ...

```
• CaDiCaL:
```

c total process time since initialization:	1799.17	seconds
c total real time since initialization:	1800.08	seconds
c maximum resident set size of process:	2577.50	MB
c		

```
c raising signal 2 (SIGINT)
```

- 35 / 37

And in practice ...

```
• CaDiCaL:
```

•••		
c total process time since initialization:	1799.17	seconds
c total real time since initialization:	1800.08	seconds
c maximum resident set size of process:	2577.50	MB
c		

```
c raising signal 2 (SIGINT)
```

• LMHS:

• • •

o 230

s OPTIMUM FOUND

. . .

c CPU time: 373144 ms

c Real time: 373256 ms

- 35 / 37

Outline

2 MUS

3 Team Formation

- 36 / 37

Take away message

- It is better to know how SAT solvers work to avoid some pitfalls
- Sometimes the problem is the size of the encoding, then try to encode your problem incrementally
- SAT solvers are not always efficient when it comes to use cardinality and/or pseudo boolean constraints