
Modeling and solving problems with SAT

Jean-Marie Lagniez
14th December 2023
GDR ROD & RADIA

Introduction MUS Team Formation Conclusion

Outline

1 Introduction

2 MUS

3 Team Formation

4 Conclusion

2 / 37
▲

Introduction MUS Team Formation Conclusion

Introduction

SAT solvers are generally efficient when it comes to tackle
NP-hard problems and beyond NP problems

To do so, we have to write our lovely problems into a set of clauses

But sometimes that does not work as expected :’(

Two different case studies where such a situation occurs will be
presented and discussed:

MUS extraction
Team Formation

3 / 37
▲

Introduction MUS Team Formation Conclusion

The SAT problem

Σ = (¬a ∨ ¬b ∨ ¬c)
∧ (a ∨ c)
∧ (a ∨ b)
∧ (¬b ∨ ¬c)

Propositional variables: a, b, c

Literals: a,¬a

Clauses: a ∨ ¬b (the constraints)

CNF formula: Σ

SAT problem: can we find an interpretation I of
the variables that satisfies the formula?

Try all the possibility: illusory!

Number of instructions Time needed
23 = 8 immediate
237 = 80× 109 1 second
256 = 8× 1016 ≈ 277 hours
260 = 1018 166 days
2128 = 340× 1038 ≥ 3 billion of years

4 / 37
▲

Introduction MUS Team Formation Conclusion

The SAT problem

Σ = (¬a ∨ ¬b ∨ ¬c)
∧ (a ∨ c)
∧ (a ∨ b)
∧ (¬b ∨ ¬c)a b c

⊥ ⊥ ⊥

Propositional variables: a, b, c

Literals: a,¬a

Clauses: a ∨ ¬b (the constraints)

CNF formula: Σ

SAT problem: can we find an interpretation I of
the variables that satisfies the formula?

Try all the possibility: illusory!

Number of instructions Time needed
23 = 8 immediate
237 = 80× 109 1 second
256 = 8× 1016 ≈ 277 hours
260 = 1018 166 days
2128 = 340× 1038 ≥ 3 billion of years

4 / 37
▲

Introduction MUS Team Formation Conclusion

The SAT problem

Σ = (¬a ∨ ¬b ∨ ¬c)
∧ (a ∨ c)
∧ (a ∨ b)
∧ (¬b ∨ ¬c)a b c

⊤ ⊥ ⊥

Propositional variables: a, b, c

Literals: a,¬a

Clauses: a ∨ ¬b (the constraints)

CNF formula: Σ

SAT problem: can we find an interpretation I of
the variables that satisfies the formula?

Try all the possibility: illusory!

Number of instructions Time needed
23 = 8 immediate
237 = 80× 109 1 second
256 = 8× 1016 ≈ 277 hours
260 = 1018 166 days
2128 = 340× 1038 ≥ 3 billion of years

4 / 37
▲

Introduction MUS Team Formation Conclusion

The SAT problem

Σ = (¬a ∨ ¬b ∨ ¬c)
∧ (a ∨ c)
∧ (a ∨ b)
∧ (¬b ∨ ¬c)a b c

⊤ ⊥ ⊥

Propositional variables: a, b, c

Literals: a,¬a

Clauses: a ∨ ¬b (the constraints)

CNF formula: Σ

SAT problem: can we find an interpretation I of
the variables that satisfies the formula?

Try all the possibility: illusory!

Number of instructions Time needed
23 = 8 immediate
237 = 80× 109 1 second
256 = 8× 1016 ≈ 277 hours
260 = 1018 166 days
2128 = 340× 1038 ≥ 3 billion of years

4 / 37
▲

Introduction MUS Team Formation Conclusion

What is a CDCL SAT solver?

Extend DPLL SAT solver with:
Clause learning and non-chronological backtracking

Exploit UIPs
Minimize learned clauses
Opportunistically delete clauses

Can restart the current search

Lazy data structures
Watched literals

Conflict-guiding branching
Lightweight branching heuristics
Phase saving

5 / 37
▲

Introduction MUS Team Formation Conclusion

CDCL SAT solver ingredients
Affectation, unit propagation

heuristic to choose the next variable to assign
heuristic to choose its polarity
unit propagation

Σ = {α1 : a ∨ d} ¬a dα1

Conflict analysis and learning
implication graph
learning
back-jumping

Constructing and analyzing the implication graph

6 / 37
▲

Introduction MUS Team Formation Conclusion

Conflict graph construction

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

Affectation, Propagation

7 / 37
▲

Introduction MUS Team Formation Conclusion

Conflict graph construction

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

Affectation, Propagation

¬a1

7 / 37
▲

Introduction MUS Team Formation Conclusion

Conflict graph construction

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

Affectation, Propagation

¬a1

7 / 37
▲

Introduction MUS Team Formation Conclusion

Conflict graph construction

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

Affectation, Propagation

¬a1 d1
α1

7 / 37
▲

Introduction MUS Team Formation Conclusion

Conflict graph construction

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

Affectation, Propagation

¬a1 d1
α1

c2

7 / 37
▲

Introduction MUS Team Formation Conclusion

Conflict graph construction

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

Affectation, Propagation

¬a1 d1
α1

c2

7 / 37
▲

Introduction MUS Team Formation Conclusion

Conflict graph construction

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

Affectation, Propagation

¬a1 d1
α1

c2 ¬f 2α2

7 / 37
▲

Introduction MUS Team Formation Conclusion

Conflict graph construction

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

Affectation, Propagation

¬a1 d1
α1

c2 ¬f 2α2

j2α3

7 / 37
▲

Introduction MUS Team Formation Conclusion

Conflict graph construction

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

Affectation, Propagation

¬a1 d1
α1

c2 ¬f 2α2

j2α3

¬b3

7 / 37
▲

Introduction MUS Team Formation Conclusion

Conflict graph construction

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

Affectation, Propagation

¬a1 d1
α1

c2 ¬f 2α2

j2α3

¬b3

7 / 37
▲

Introduction MUS Team Formation Conclusion

Conflict graph construction

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

Affectation, Propagation

¬a1 d1
α1

c2 ¬f 2α2

j2α3

¬b3 h3α4

7 / 37
▲

Introduction MUS Team Formation Conclusion

Conflict graph construction

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

Affectation, Propagation

¬a1 d1
α1

c2 ¬f 2α2

j2α3

¬b3 h3α4

e4

7 / 37
▲

Introduction MUS Team Formation Conclusion

Conflict graph construction

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

Affectation, Propagation

¬a1 d1
α1

c2 ¬f 2α2

j2α3

¬b3 h3α4

e4

7 / 37
▲

Introduction MUS Team Formation Conclusion

Conflict graph construction

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

Affectation, Propagation

¬a1 d1
α1

c2 ¬f 2α2

j2α3

¬b3 h3α4

e4

i4α5

7 / 37
▲

Introduction MUS Team Formation Conclusion

Conflict graph construction

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

Affectation, Propagation

¬a1 d1
α1

c2 ¬f 2α2

j2α3

¬b3 h3α4

e4

i4α5

¬g4
α6

7 / 37
▲

Introduction MUS Team Formation Conclusion

Conflict graph construction

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

Affectation, Propagation

¬a1 d1
α1

c2 ¬f 2α2

j2α3

¬b3 h3α4

e4

i4α5

¬g4
α6

g4
α9

7 / 37
▲

Introduction MUS Team Formation Conclusion

Conflict graph construction

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

Affectation, Propagation

¬a1 d1
α1

c2 ¬f 2α2

j2α3

¬b3 h3α4

e4

i4α5

¬g4
α6

g4
α9

⊥

7 / 37
▲

Introduction MUS Team Formation Conclusion

Conflict graph construction

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

Affectation, Propagation

¬a1 d1
α1

c2 ¬f 2α2

j2α3

¬b3 h3α4

e4

i4α5

¬g4
α6

¬g4
α6

g4
α9

g4
α9

⊥

7 / 37
▲

Introduction MUS Team Formation Conclusion

Conflict graph construction

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

Affectation, Propagation

¬a1 d1
α1

c2 ¬f 2α2

j2α3

¬b3 h3α4

e4

i4α5

¬g4
α6

g4
α9

⊥

7 / 37
▲

Introduction MUS Team Formation Conclusion

Conflict graph construction

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

Affectation, Propagation

¬a1 d1
α1

c2 ¬f 2α2

j2α3

¬b3 h3α4

e4

i4α5

¬g4
α6

g4
α9

⊥

7 / 37
▲

Introduction MUS Team Formation Conclusion

Conflict graph analysis

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

¬a1 d1
α1

c2 ¬f 2α2

j2α3

¬b3 h3α4

e4

i4α5

¬g4
α6

g4
α7

⊥

Stops as soon as the resolvant has a unique literal from the last
decision level (FUIP)
δ is added to the clauses databases (ensure a systematic search)

8 / 37
▲

Introduction MUS Team Formation Conclusion

Conflict graph analysis

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

¬a1 d1
α1

c2 ¬f 2α2

j2α3

¬b3 h3α4

e4

i4α5

¬g4
α6

g4
α7

⊥⊥

Stops as soon as the resolvant has a unique literal from the last
decision level (FUIP)
δ is added to the clauses databases (ensure a systematic search)

8 / 37
▲

Introduction MUS Team Formation Conclusion

Conflict graph analysis

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

¬a1 d1
α1

c2 ¬f 2α2

j2α3

¬b3 h3α4

e4

i4α5

¬g4
α6

¬g4
α6

g4
α7

g4
α7

⊥

δ = g 4 ∨ ¬g 4

Stops as soon as the resolvant has a unique literal from the last
decision level (FUIP)
δ is added to the clauses databases (ensure a systematic search)

8 / 37
▲

Introduction MUS Team Formation Conclusion

Conflict graph analysis

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

¬a1 d1
α1

c2c2 ¬f 2α2

j2α3

¬b3 h3α4

e4e4

i4α5
i4α5

¬g4
α6

¬g4
α6

g4
α7

⊥

δ = ¬c2 ∨ ¬e4 ∨ ¬i4 ∨ g 4

Stops as soon as the resolvant has a unique literal from the last
decision level (FUIP)
δ is added to the clauses databases (ensure a systematic search)

8 / 37
▲

Introduction MUS Team Formation Conclusion

Conflict graph analysis

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

¬a1 d1
α1

c2c2 ¬f 2α2

j2α3
j2α3

¬b3 h3α4

e4e4

i4α5
i4α5

¬g4
α6

g4
α7

⊥

δ = ¬c2 ∨ ¬j2 ∨ ¬e4 ∨ ¬i4

Stops as soon as the resolvant has a unique literal from the last
decision level (FUIP)
δ is added to the clauses databases (ensure a systematic search)

8 / 37
▲

Introduction MUS Team Formation Conclusion

Conflict graph analysis

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

¬a1 d1
α1

c2c2 ¬f 2α2

j2α3
j2α3

¬b3 h3α4

e4e4

i4α5

¬g4
α6

g4
α7

⊥

δ = ¬c2 ∨ ¬j2 ∨ ¬e4

Stops as soon as the resolvant has a unique literal from the last
decision level (FUIP)
δ is added to the clauses databases (ensure a systematic search)

8 / 37
▲

Introduction MUS Team Formation Conclusion

Conflict graph analysis

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

¬a1 d1
α1

c2c2 ¬f 2α2

j2α3
j2α3

¬b3 h3α4

e4e4

i4α5

¬g4
α6

g4
α7

⊥

δ = ¬c2 ∨ ¬j2 ∨ ¬e4

Stops as soon as the resolvant has a unique literal from the last
decision level (FUIP)
δ is added to the clauses databases (ensure a systematic search)

8 / 37
▲

Introduction MUS Team Formation Conclusion

Back-jumping

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

¬a1 d1
α1

c2 ¬f 2α2

j2α3

¬b3 h3α4

e4

δ1 = ¬c2 ∨ ¬j2α3
∨ ¬e4

9 / 37
▲

Introduction MUS Team Formation Conclusion

Back-jumping

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

¬a1 d1
α1

c2 ¬f 2α2

j2α3

δ1 = ¬c2 ∨ ¬j2α3
∨ ¬e

9 / 37
▲

Introduction MUS Team Formation Conclusion

Back-jumping

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

¬a1 d1
α1

c2 ¬f 2α2

j2α3

¬e2δ1

δ1 = ¬c2 ∨ ¬j2α3
∨ ¬e2

9 / 37
▲

Introduction MUS Team Formation Conclusion

Back-jumping

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

¬a1 d1
α1

c2 ¬f 2α2

j2α3

¬e2δ1

δ1 = ¬c2 ∨ ¬j2α3
∨ ¬e2

k2α7

9 / 37
▲

Introduction MUS Team Formation Conclusion

Back-jumping

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

¬a1 d1
α1

c2 ¬f 2α2

j2α3

¬e2δ1

δ1 = ¬c2 ∨ ¬j2α3
∨ ¬e2

k2α7
h2α8

9 / 37
▲

Introduction MUS Team Formation Conclusion

Back-jumping

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

¬a1 d1
α1

c2 ¬f 2α2

j2α3

¬e2δ1

δ1 = ¬c2 ∨ ¬j2α3
∨ ¬e2

k2α7
h2α8

b2α4

9 / 37
▲

Introduction MUS Team Formation Conclusion

Back-jumping

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

¬a1 d1
α1

c2 ¬f 2α2

j2α3

¬e2δ1

δ1 = ¬c2 ∨ ¬j2α3
∨ ¬e2

k2α7
h2α8

b2α4

¬i3

9 / 37
▲

Introduction MUS Team Formation Conclusion

Back-jumping

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

¬a1 d1
α1

c2 ¬f 2α2

j2α3

¬e2δ1

δ1 = ¬c2 ∨ ¬j2α3
∨ ¬e2

k2α7
h2α8

b2α4

¬i3

SATISFIABILITY PROVED

9 / 37
▲

Introduction MUS Team Formation Conclusion

Watched Literals
Unit propagation fires when all but one literal is assigned false
Idea: If two variables are either unassigned or one is assigned
true, no need to do anything
So just find two variables which satisfy this condition

α1 : ¬a ∨ b ∨ c α2 : ¬a ∨ ¬c ∨ ¬b α3 : ¬a ∨ c ∨ ¬b

Mapping between sentinel literals and the clauses they watch

a : {} b : {α1}
¬c : {α2}

When a literal x is propagated to true it is enough to consider the
clauses observed by ¬x and search another watched literal

Let us suppose that a is assigned to true

10 / 37
▲

Introduction MUS Team Formation Conclusion

Watched Literals
Unit propagation fires when all but one literal is assigned false
Idea: If two variables are either unassigned or one is assigned
true, no need to do anything
So just find two variables which satisfy this condition

α1 : ¬a ∨ b ∨ c α2 : ¬a ∨ ¬c ∨ ¬b α3 : ¬a ∨ c ∨ ¬b

Mapping between sentinel literals and the clauses they watch

a : {} b : {α1}
¬c : {α2}

When a literal x is propagated to true it is enough to consider the
clauses observed by ¬x and search another watched literal

Let us suppose that a is assigned to true

10 / 37
▲

Introduction MUS Team Formation Conclusion

Watched Literals
Unit propagation fires when all but one literal is assigned false
Idea: If two variables are either unassigned or one is assigned
true, no need to do anything
So just find two variables which satisfy this condition

α1 : ¬a ∨ b ∨ c α2 : ¬a ∨ ¬c ∨ ¬b α3 : ¬a ∨ c ∨ ¬b

Mapping between sentinel literals and the clauses they watch

a : {} b : {α1} c : {α3}
¬a : {α1, α3} ¬b : {α2} ¬c : {α2}

When a literal x is propagated to true it is enough to consider the
clauses observed by ¬x and search another watched literal

Let us suppose that a is assigned to true

10 / 37
▲

Introduction MUS Team Formation Conclusion

Watched Literals
Unit propagation fires when all but one literal is assigned false
Idea: If two variables are either unassigned or one is assigned
true, no need to do anything
So just find two variables which satisfy this condition

α1 : ¬a ∨ b ∨ c α2 : ¬a ∨ ¬c ∨ ¬b α3 : ¬a ∨ c ∨ ¬b

Mapping between sentinel literals and the clauses they watch

a : {} b : {α1} c : {α3}
¬a : {α1, α3} ¬b : {α2} ¬c : {α2}

When a literal x is propagated to true it is enough to consider the
clauses observed by ¬x and search another watched literal

Let us suppose that a is assigned to true

10 / 37
▲

Introduction MUS Team Formation Conclusion

Watched Literals
Unit propagation fires when all but one literal is assigned false
Idea: If two variables are either unassigned or one is assigned
true, no need to do anything
So just find two variables which satisfy this condition

α1 : ¬a ∨ b ∨ c α2 : ¬a ∨ ¬c ∨ ¬b α3 : ¬a ∨ c ∨ ¬b

Mapping between sentinel literals and the clauses they watch

a : {} b : {α1} c : {α3}
¬a : {α1, α3} ¬b : {α2} ¬c : {α2}

When a literal x is propagated to true it is enough to consider the
clauses observed by ¬x and search another watched literal

Let us suppose that a is assigned to true

10 / 37
▲

Introduction MUS Team Formation Conclusion

Watched Literals
Unit propagation fires when all but one literal is assigned false
Idea: If two variables are either unassigned or one is assigned
true, no need to do anything
So just find two variables which satisfy this condition

α1 : ¬a ∨ b ∨ c α2 : ¬a ∨ ¬c ∨ ¬b α3 : ¬a ∨ c ∨ ¬b

Mapping between sentinel literals and the clauses they watch

a : {} b : {α1} c : {α3}
¬a : {α1, α3} ¬b : {α2} ¬c : {α2}

When a literal x is propagated to true it is enough to consider the
clauses observed by ¬x and search another watched literal

Let us suppose that a is assigned to true

10 / 37
▲

Introduction MUS Team Formation Conclusion

Watched Literals
Unit propagation fires when all but one literal is assigned false
Idea: If two variables are either unassigned or one is assigned
true, no need to do anything
So just find two variables which satisfy this condition

α1 : ¬a ∨ b ∨ c α2 : ¬a ∨ ¬c ∨ ¬b α3 : ¬a ∨ c ∨ ¬b

Mapping between sentinel literals and the clauses they watch

a : {} b : {α1} c : {α3}
¬a : {α1, α3} ¬b : {α2} ¬c : {α2}

When a literal x is propagated to true it is enough to consider the
clauses observed by ¬x and search another watched literal

Let us suppose that a is assigned to true

10 / 37
▲

Introduction MUS Team Formation Conclusion

Watched Literals
Unit propagation fires when all but one literal is assigned false
Idea: If two variables are either unassigned or one is assigned
true, no need to do anything
So just find two variables which satisfy this condition

α1 : ¬a ∨ b ∨ c α2 : ¬a ∨ ¬c ∨ ¬b α3 : ¬a ∨ c ∨ ¬b

Mapping between sentinel literals and the clauses they watch

a : {} b : {α1} c : {α3, α1}
¬a : {α1, α3} ¬b : {α2} ¬c : {α2}

When a literal x is propagated to true it is enough to consider the
clauses observed by ¬x and search another watched literal

Let us suppose that a is assigned to true

10 / 37
▲

Introduction MUS Team Formation Conclusion

Watched Literals
Unit propagation fires when all but one literal is assigned false
Idea: If two variables are either unassigned or one is assigned
true, no need to do anything
So just find two variables which satisfy this condition

α1 : ¬a ∨ b ∨ c α2 : ¬a ∨ ¬c ∨ ¬b α3 : ¬a ∨ c ∨ ¬b

Mapping between sentinel literals and the clauses they watch

a : {} b : {α1} c : {α3, α1}
¬a : {α1, α3} ¬b : {α2} ¬c : {α2}

When a literal x is propagated to true it is enough to consider the
clauses observed by ¬x and search another watched literal

Let us suppose that a is assigned to true

10 / 37
▲

Introduction MUS Team Formation Conclusion

Watched Literals
Unit propagation fires when all but one literal is assigned false
Idea: If two variables are either unassigned or one is assigned
true, no need to do anything
So just find two variables which satisfy this condition

α1 : ¬a ∨ b ∨ c α2 : ¬a ∨ ¬c ∨ ¬b α3 : ¬a ∨ c ∨ ¬b

Mapping between sentinel literals and the clauses they watch

a : {} b : {α1} c : {α3, α1}
¬a : {α1, α3} ¬b : {α2} ¬c : {α2}

When a literal x is propagated to true it is enough to consider the
clauses observed by ¬x and search another watched literal

Let us suppose that a is assigned to true

10 / 37
▲

Introduction MUS Team Formation Conclusion

Watched Literals
Unit propagation fires when all but one literal is assigned false
Idea: If two variables are either unassigned or one is assigned
true, no need to do anything
So just find two variables which satisfy this condition

α1 : ¬a ∨ b ∨ c α2 : ¬a ∨ ¬c ∨ ¬b α3 : ¬a ∨ c ∨ ¬b

Mapping between sentinel literals and the clauses they watch

a : {} b : {α1} c : {α3, α1}
¬a : {α1, α3} ¬b : {α2, α3} ¬c : {α2}

When a literal x is propagated to true it is enough to consider the
clauses observed by ¬x and search another watched literal

Let us suppose that a is assigned to true

10 / 37
▲

Introduction MUS Team Formation Conclusion

Watched Literals
Unit propagation fires when all but one literal is assigned false
Idea: If two variables are either unassigned or one is assigned
true, no need to do anything
So just find two variables which satisfy this condition

α1 : ¬a ∨ b ∨ c α2 : ¬a ∨ ¬c ∨ ¬b α3 : ¬a ∨ c ∨ ¬b

Mapping between sentinel literals and the clauses they watch

a : {} b : {α1} c : {α3, α1}
¬a : {} ¬b : {α2, α3} ¬c : {α2}

When a literal x is propagated to true it is enough to consider the
clauses observed by ¬x and search another watched literal

Let us suppose that a is assigned to true

10 / 37
▲

Introduction MUS Team Formation Conclusion

Heavy-Tailed Phenomena

Depth-first search procedures often exhibit a remarkable
variability in the time required to solve any problem instance
Heavy-tailed behavior arises from the fact that wrong branching
decisions may lead to explore an exponentially large subtree that
contains no solutions
Restarts provide good mechanisms to avoid such an issue

11 / 37
▲

Introduction MUS Team Formation Conclusion

Restarts

Often it a good strategy to abandon what you do and restart
for satisfiable instances the solver may get stuck in the unsatisfiable
part
for unsatisfiable instances focusing on one part might miss short
proofs

⇒ restart after the number of conflicts reached a restart limit

Avoid to run into the same dead end
by randomization (either on the decision variable or its phase)
and/or just keep all the learned clauses

For completeness dynamically increase restart limit
arithmetically, geometrically, Luby, Inner/Outer, Glucose restart

12 / 37
▲

Introduction MUS Team Formation Conclusion

Reducing learned clauses

CDCL SAT solvers learn clauses at each conflict

Keeping all these clauses can slow down the unit propagation process

“Useless” learned clauses are periodically deleted (t0, t1 . . . tk , . . .)

α1 α2 α3 α4 α5 α3. αk αnαk α5 α2 α1 αn α3. α3 α4αk α5 α2 α1 αn α3. α3 α4

Deleting too much clauses make the learning process useless

However, identify if a clause will be useful in the future is a hard task!

13 / 37
▲

Introduction MUS Team Formation Conclusion

Reducing learned clauses

CDCL SAT solvers learn clauses at each conflict

Keeping all these clauses can slow down the unit propagation process

“Useless” learned clauses are periodically deleted (t0, t1 . . . tk , . . .)

α1 α2 α3 α4 α5 α3. αk αn

αk α5 α2 α1 αn α3. α3 α4αk α5 α2 α1 αn α3. α3 α4

Deleting too much clauses make the learning process useless

However, identify if a clause will be useful in the future is a hard task!

13 / 37
▲

Introduction MUS Team Formation Conclusion

Reducing learned clauses

CDCL SAT solvers learn clauses at each conflict

Keeping all these clauses can slow down the unit propagation process

“Useless” learned clauses are periodically deleted (t0, t1 . . . tk , . . .)

α1 α2 α3 α4 α5 α3. αk αn

αk α5 α2 α1 αn α3. α3 α4

αk α5 α2 α1 αn α3. α3 α4

Deleting too much clauses make the learning process useless

However, identify if a clause will be useful in the future is a hard task!

13 / 37
▲

Introduction MUS Team Formation Conclusion

Reducing learned clauses

CDCL SAT solvers learn clauses at each conflict

Keeping all these clauses can slow down the unit propagation process

“Useless” learned clauses are periodically deleted (t0, t1 . . . tk , . . .)

α1 α2 α3 α4 α5 α3. αk αnαk α5 α2 α1 αn α3. α3 α4

αk α5 α2 α1 αn α3. α3 α4

Deleting too much clauses make the learning process useless

However, identify if a clause will be useful in the future is a hard task!

13 / 37
▲

Introduction MUS Team Formation Conclusion

Reducing learned clauses

CDCL SAT solvers learn clauses at each conflict

Keeping all these clauses can slow down the unit propagation process

“Useless” learned clauses are periodically deleted (t0, t1 . . . tk , . . .)

α1 α2 α3 α4 α5 α3. αk αnαk α5 α2 α1 αn α3. α3 α4αk α5 α2 α1 αn α3. α3 α4

αk α5 α2 α1 αn

Deleting too much clauses make the learning process useless

However, identify if a clause will be useful in the future is a hard task!

13 / 37
▲

Introduction MUS Team Formation Conclusion

Reducing learned clauses

CDCL SAT solvers learn clauses at each conflict

Keeping all these clauses can slow down the unit propagation process

“Useless” learned clauses are periodically deleted (t0, t1 . . . tk , . . .)

α1 α2 α3 α4 α5 α3. αk αnαk α5 α2 α1 αn α3. α3 α4αk α5 α2 α1 αn α3. α3 α4

αk α5 α2 α1 αn

Deleting too much clauses make the learning process useless

However, identify if a clause will be useful in the future is a hard task!

13 / 37
▲

Introduction MUS Team Formation Conclusion

Estimate the clauses’ utility

The VSIDS measure
Keeping clauses that are often – and recently – used in the conflict
analysis process
Dynamic measure
A clause useful in the past will be useful again in the future!

The LBD measure
Represent the number of decision-levels in the learned clause
Static measure
Keeping clauses with a small LBD

The PSM measure
Represent the number of literals assigned to false by Progress
Saving interpretation
Static measure
Keeping clauses with a small PSM

14 / 37
▲

Introduction MUS Team Formation Conclusion

CDCL algorithm

Input: a CNF formula Σ
Output: SAT or UNSAT
∆ = ∅ // learnt clauses database1
while (true) do2

if (!propagate()) then3
if ((c = analyzeConflict()) == ∅) then returnUNSAT ;4
∆ = ∆ ∪ {c};5
if (timeToRestart() then backtrack to level 0;6
else7

backtrack to the assertion level of c ;8

else9
ℓ = decide();10
if (ℓ == null) then return SAT ;11
assert ℓ in a new decision level;12
if (timeToReduce()) then clean(∆);13

15 / 37
▲

Introduction MUS Team Formation Conclusion

CDCL algorithm

Input: a CNF formula Σ
Output: SAT or UNSAT
∆ = ∅ // learnt clauses database1
while (true) do2

if (!propagate()) then3
if ((c = analyzeConflict()) == ∅) then returnUNSAT ;4
∆ = ∆ ∪ {c};5
if (timeToRestart() then backtrack to level 0;6
else7

backtrack to the assertion level of c ;8

else9
ℓ = decide();10
if (ℓ == null) then return SAT ;11
assert ℓ in a new decision level;12
if (timeToReduce()) then clean(∆);13

15 / 37
▲

Introduction MUS Team Formation Conclusion

Outline

1 Introduction

2 MUS

3 Team Formation

4 Conclusion

16 / 37
▲

Introduction MUS Team Formation Conclusion

Minimal Unsatisfiable Set (MUS)

x ∨ y ∨ z x ∨ ¬y x ∨ ¬z

¬x ∨ y ∨ z x ∨ w w ∨ z ∨ ¬y

¬x ∨ ¬y ¬x ∨ ¬z w ∨ ¬x ∨ ¬z

UNSAT

The formula is unsatisfiable: why?
Subset of constraints minimally unsatisfiable
Two approaches:
→ constructive
→ destructive

SAT Incremental

17 / 37
▲

Introduction MUS Team Formation Conclusion

Minimal Unsatisfiable Set (MUS)

x ∨ y ∨ z x ∨ ¬y x ∨ ¬z

¬x ∨ y ∨ z x ∨ w w ∨ z ∨ ¬y

¬x ∨ ¬y ¬x ∨ ¬z w ∨ ¬x ∨ ¬z

The formula is unsatisfiable: why?
Subset of constraints minimally unsatisfiable
Two approaches:
→ constructive
→ destructive

SAT Incremental

17 / 37
▲

Introduction MUS Team Formation Conclusion

Minimal Unsatisfiable Set (MUS)

x ∨ y ∨ z x ∨ ¬y x ∨ ¬z

¬x ∨ y ∨ z x ∨ w w ∨ z ∨ ¬y

¬x ∨ ¬y ¬x ∨ ¬z w ∨ ¬x ∨ ¬z

The formula is unsatisfiable: why?
Subset of constraints minimally unsatisfiable
Two approaches:
→ constructive
→ destructive

SAT Incremental

17 / 37
▲

Introduction MUS Team Formation Conclusion

Minimal Unsatisfiable Set (MUS)

x ∨ y ∨ z x ∨ ¬y x ∨ ¬z

¬x ∨ y ∨ z x ∨ w w ∨ z ∨ ¬y

¬x ∨ ¬y ¬x ∨ ¬z w ∨ ¬x ∨ ¬z

SAT

The formula is unsatisfiable: why?
Subset of constraints minimally unsatisfiable
Two approaches:
→ constructive
→ destructive

SAT Incremental

17 / 37
▲

Introduction MUS Team Formation Conclusion

Minimal Unsatisfiable Set (MUS)

x ∨ y ∨ z x ∨ ¬y x ∨ ¬z

¬x ∨ y ∨ z x ∨ w w ∨ z ∨ ¬y

¬x ∨ ¬y ¬x ∨ ¬z w ∨ ¬x ∨ ¬z

The formula is unsatisfiable: why?
Subset of constraints minimally unsatisfiable
Two approaches:
→ constructive
→ destructive

SAT Incremental

17 / 37
▲

Introduction MUS Team Formation Conclusion

Minimal Unsatisfiable Set (MUS)

x ∨ y ∨ z x ∨ ¬y x ∨ ¬z

¬x ∨ y ∨ z x ∨ w w ∨ z ∨ ¬y

¬x ∨ ¬y ¬x ∨ ¬z w ∨ ¬x ∨ ¬z

UNSAT

The formula is unsatisfiable: why?
Subset of constraints minimally unsatisfiable
Two approaches:
→ constructive
→ destructive

SAT Incremental

17 / 37
▲

Introduction MUS Team Formation Conclusion

Minimal Unsatisfiable Set (MUS)

x ∨ y ∨ z x ∨ ¬y x ∨ ¬z

¬x ∨ y ∨ z x ∨ w w ∨ z ∨ ¬y

¬x ∨ ¬y ¬x ∨ ¬z w ∨ ¬x ∨ ¬z

The formula is unsatisfiable: why?
Subset of constraints minimally unsatisfiable
Two approaches:
→ constructive
→ destructive

SAT Incremental

17 / 37
▲

Introduction MUS Team Formation Conclusion

Minimal Unsatisfiable Set (MUS)

x ∨ y ∨ z x ∨ ¬y x ∨ ¬z

¬x ∨ y ∨ z x ∨ w w ∨ z ∨ ¬y

¬x ∨ ¬y ¬x ∨ ¬z w ∨ ¬x ∨ ¬z

MUS!

The formula is unsatisfiable: why?
Subset of constraints minimally unsatisfiable
Two approaches:
→ constructive
→ destructive

SAT Incremental

17 / 37
▲

Introduction MUS Team Formation Conclusion

Minimal Unsatisfiable Set (MUS)

x ∨ y ∨ z x ∨ ¬y x ∨ ¬z

¬x ∨ y ∨ z x ∨ w w ∨ z ∨ ¬y

¬x ∨ ¬y ¬x ∨ ¬z w ∨ ¬x ∨ ¬z

MUS!

The formula is unsatisfiable: why?
Subset of constraints minimally unsatisfiable
Two approaches:
→ constructive
→ destructive

SAT Incremental

17 / 37
▲

Introduction MUS Team Formation Conclusion

From SAT to Incremental SAT
Solving the SAT problem

Modern SAT solvers are based on the CDCL paradigm
Dynamic heuristics:
→ VSIDS, polarity, cleaning learned clauses and restart

Solving incrementally SAT
Successive calls of a SAT solver
Keeping a lot of information between the different runs
→ VSIDS, polarity, cleaning learned clauses and restart

→ learned clauses

Adding selectors

18 / 37
▲

Introduction MUS Team Formation Conclusion

From SAT to Incremental SAT
Solving the SAT problem

Modern SAT solvers are based on the CDCL paradigm
Dynamic heuristics:
→ VSIDS, polarity, cleaning learned clauses and restart

Solving incrementally SAT
Successive calls of a SAT solver
Keeping a lot of information between the different runs
→ VSIDS, polarity, cleaning learned clauses and restart
→ learned clauses

Adding selectors

18 / 37
▲

Introduction MUS Team Formation Conclusion

From SAT to Incremental SAT
Solving the SAT problem

Modern SAT solvers are based on the CDCL paradigm
Dynamic heuristics:
→ VSIDS, polarity, cleaning learned clauses and restart

Solving incrementally SAT
Successive calls of a SAT solver
Keeping a lot of information between the different runs
→ VSIDS, polarity, cleaning learned clauses and restart
→ learned clauses

Adding selectors

18 / 37
▲

Introduction MUS Team Formation Conclusion

Selectors
¬s1 ∨ x ∨ y ∨ z ¬s2 ∨ x ∨ ¬y ¬s3 ∨ x ∨ ¬z
¬s4 ∨ ¬x ∨ y ∨ z ¬s5 ∨ x ∨ w ¬s6 ∨ w ∨ z ∨ ¬y
¬s7 ∨ ¬x ∨ ¬y ¬s8 ∨ ¬x ∨ ¬z ¬s9 ∨ w ∨ ¬x ∨ ¬z

To activate/deactivate the ith clause :
→ assign ai to false to activate the clause
→ assign ai to true to deactivate the clause

Used to know which initial clauses are participating to the
creation of each learned clause

¬s1 ∨ x ∨ y ∨ z ¬s2 ∨ x ∨ ¬y

¬s1 ∨ ¬s2 ∨ x ∨ z

Selectors impact on the size of the clauses

19 / 37
▲

Introduction MUS Team Formation Conclusion

Selectors
¬s1 ∨ x ∨ y ∨ z ¬s2 ∨ x ∨ ¬y ¬s3 ∨ x ∨ ¬z
¬s4 ∨ ¬x ∨ y ∨ z ¬s5 ∨ x ∨ w ¬s6 ∨ w ∨ z ∨ ¬y
¬s7 ∨ ¬x ∨ ¬y ¬s8 ∨ ¬x ∨ ¬z ¬s9 ∨ w ∨ ¬x ∨ ¬z

To activate/deactivate the ith clause :
→ assign ai to false to activate the clause
→ assign ai to true to deactivate the clause

Used to know which initial clauses are participating to the
creation of each learned clause

¬s1 ∨ x ∨ y ∨ z ¬s2 ∨ x ∨ ¬y

¬s1 ∨ ¬s2 ∨ x ∨ z

Selectors impact on the size of the clauses

19 / 37
▲

Introduction MUS Team Formation Conclusion

Let’s test

300 instances from the MUS competition 2011

timeout = 2400 secondes

memout = 7800 Mo

MUSer as MUS extractor
→ defaults options

SAT solvers: glucose versus minisat

Intel XEON X5550 Quad-Core 2.66 GHz with 32Go of RAM

20 / 37
▲

Introduction MUS Team Formation Conclusion

glucose vs. minisat

 1

 10

 100

 1000

 1 10 100 1000

Minisat
(273 solved)

Glucose 2.1
(261 solved)

(259 points)

Figure: Solving time
21 / 37

▲

Introduction MUS Team Formation Conclusion

glucose vs. minisat

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

Minisat
(273 solved)

Glucose 2.1
(261 solved)

(259 points)

Figure: Number of SAT calls

21 / 37
▲

Introduction MUS Team Formation Conclusion

Why glucose is so inefficient?

Main difference between glucose et minisat
→ restart and cleaning strategy

glucose is entirely based on the LBD notion

Each selector has its own decision level

Then the LBD reflects the number of selectors of a learned clause

We have to redefine the notion of LBD: improved LBD

Not considering selectors when computing the LBD

22 / 37
▲

Introduction MUS Team Formation Conclusion

Why glucose is so inefficient?

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 50 100 150 200 250 300 350 400 450 500

as
su

m
p
ti

o
n

initial
22 / 37

▲

Introduction MUS Team Formation Conclusion

Why glucose is so inefficient?

Main difference between glucose et minisat
→ restart and cleaning strategy

glucose is entirely based on the LBD notion

Each selector has its own decision level

Then the LBD reflects the number of selectors of a learned clause

We have to redefine the notion of LBD: improved LBD

Not considering selectors when computing the LBD

22 / 37
▲

Introduction MUS Team Formation Conclusion

Why glucose is so inefficient?

Main difference between glucose et minisat
→ restart and cleaning strategy

glucose is entirely based on the LBD notion

Each selector has its own decision level

Then the LBD reflects the number of selectors of a learned clause

We have to redefine the notion of LBD: improved LBD

Not considering selectors when computing the LBD

22 / 37
▲

Introduction MUS Team Formation Conclusion

Updated LBD

taille LBD Imp. LBD
Instance #C moy. max moy. max moy. max

fdmus b21 96 8541 1145 5980 1095 5945 8 71
longmult6 8853 694 3104 672 3013 11 61
dump vc950 360419 522 36309 498 35873 8 307
g7n 15110 1098 16338 1049 16268 27 160

The new LBD looks more appropriate

It really measures now how a clause is useful!

23 / 37
▲

Introduction MUS Team Formation Conclusion

glucose Improved LBD vs. glucose de base

 1

 10

 100

 1000

 1 10 100 1000

Glucose 2.1
(261 solved)

Glucose New LBD
(272 solved)

(258 points)

Figure: Solving time
24 / 37

▲

Introduction MUS Team Formation Conclusion

glucose Improved LBD vs. minisat

 1

 10

 100

 1000

 1 10 100 1000

Minisat
(273 solved)

Glucose New LBD
(272 solved)

(267 points)

Figure: Solving time
25 / 37

▲

Introduction MUS Team Formation Conclusion

The clauses are too long

The main procedures depend on the size of the clauses
Conflict analysis
→ put the initial literals at the front of the clause

Unit propagation
→ search for a initial literal or a literal satisfied
→ push the selector to the end of the clause

Simplification procedure
→ only check for the watched literals

LBD recalculation
→ save the number of selectors
→ stop once we are sure that only selectors remain

26 / 37
▲

Introduction MUS Team Formation Conclusion

glucoseInc vs. glucose de base

 1

 10

 100

 1000

 1 10 100 1000

Glucose 2.1
(261 solved)

Glucose Inc
(288 solved)

(261 points)

Figure: Solving time

27 / 37
▲

Introduction MUS Team Formation Conclusion

glucoseInc vs. minisat

 1

 10

 100

 1000

 1 10 100 1000

Minisat
(273 solved)

Glucose Inc
(288 solved)

(273 points)

Figure: Solving time
28 / 37

▲

Introduction MUS Team Formation Conclusion

Comparisons

 0

 500

 1000

 1500

 2000

 2500

 180 200 220 240 260 280 300

tim
e

nb instances

minisat
glucose

improved LBD
glucoseInc

Figure: Number of instances solved regarding the time

29 / 37
▲

Introduction MUS Team Formation Conclusion

Outline

1 Introduction

2 MUS

3 Team Formation

4 Conclusion

30 / 37
▲

Introduction MUS Team Formation Conclusion

Team Formation Problem
Team formation (TF) is the problem of deploying the least
expensive team of agents while covering a set of skills
A TF problem description is a tuple ⟨A,S , f , α⟩

where A = {a1, . . . , an} is a set of agents,
S = {s1, . . . , sm} is a set of skills,
f : A 7→ N is a deployment cost function,
and α : A 7→ 2S is an agent-to-skill function.

A team is a subset of agents T ⊆ A

One extends the cost function f to teams T as f (T) =
∑

ai∈T f (ai)

The agent-to-skill function α is extended to teams T as
α(T) =

⋃
ai∈T α(ai)

A team T ⊆ A is efficient if all skills from S are covered by T , i.e.,
when α(T) = S (it is almost equivalent to the Set Cover problem)
An optimal team is an efficient team minimizing the cost function
The corresponding decision problem asks, given a bound b ∈ N as
input, whether there exists an efficient team T such that f (T) ≤ b

31 / 37
▲

Introduction MUS Team Formation Conclusion

Example

An agenti has a deployment cost equal to i and a cover range
equal to i − 1

32 / 37
▲

Introduction MUS Team Formation Conclusion

Example

An agenti has a deployment cost equal to i and a cover range
equal to i − 1

32 / 37
▲

Introduction MUS Team Formation Conclusion

SAT encoding

We associate a boolean variable pi with each agent in ai ∈ A,
where pi is true if and only if the agent ai is present in the
deployed team.

Given a TF instance ⟨A,S , f , α⟩ and b ∈ N, a minimal efficient
team T exists if and only if:∧

sj∈S

∨
ai∈A|sj∈α(i)

pi (1)

∑
ai∈A

f (i)× pi ≤ b (2)

33 / 37
▲

Introduction MUS Team Formation Conclusion

And in practice ...

6 types of agent by cell with cover ranging from 1 to 6
b = 200

34 / 37
▲

Introduction MUS Team Formation Conclusion

And in practice ...

CaDiCaL:

...

c total process time since initialization: 1799.17 seconds

c total real time since initialization: 1800.08 seconds

c maximum resident set size of process: 2577.50 MB

c

c raising signal 2 (SIGINT)

LMHS:

...

o 230

s OPTIMUM FOUND

...

c CPU time: 373144 ms

c Real time: 373256 ms

35 / 37
▲

Introduction MUS Team Formation Conclusion

And in practice ...

CaDiCaL:

...

c total process time since initialization: 1799.17 seconds

c total real time since initialization: 1800.08 seconds

c maximum resident set size of process: 2577.50 MB

c

c raising signal 2 (SIGINT)

LMHS:

...

o 230

s OPTIMUM FOUND

...

c CPU time: 373144 ms

c Real time: 373256 ms

35 / 37
▲

Introduction MUS Team Formation Conclusion

Outline

1 Introduction

2 MUS

3 Team Formation

4 Conclusion

36 / 37
▲

Introduction MUS Team Formation Conclusion

Take away message

It is better to know how SAT solvers work to avoid some pitfalls

Sometimes the problem is the size of the encoding, then try to
encode your problem incrementally

SAT solvers are not always efficient when it comes to use
cardinality and/or pseudo boolean constraints

37 / 37
▲

	Introduction
	MUS
	Team Formation
	Conclusion

