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Introduction

o SAT solvers are generally efficient when it comes to tackle
NP-hard problems and beyond NP problems

o To do so, we have to write our lovely problems into a set of clauses
o But sometimes that does not work as expected :'(

o Two different case studies where such a situation occurs will be
presented and discussed:

o MUS extraction
o Team Formation
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The SAT problem

o Propositional variables: a, b, ¢

o Literals: a,—a

Y= (-aV-bV-c)
A (aVc) o Clauses: aV —b (the constraints)
A (aV b) o CNF formula: X
A (=bV =c)

o SAT problem: can we find an interpretation Z of
the variables that satisfies the formula?
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The SAT problem

Y =(-aV-bV-c)

A (aVc)

A (aV b)
a|b|c
T L] L

Propositional variables: a, b, c
Literals: a,—-a

Clauses: aV —b (the constraints)
CNF formula: X

SAT problem: can we find an interpretation Z of
the variables that satisfies the formula?

Try all the possibility: illusory!

Number of instructions ‘ Time needed
23 =38 immediate
237 = 80 x 10° 1 second
256 — 8 x 1016 ~ 277 hours
260 — 1018 166 days
2128 — 340 x 1038 > 3 billion of years
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What is a CDCL SAT solver?

o Extend DPLL SAT solver with:

o Clause learning and non-chronological backtracking

o Exploit UIPs
o Minimize learned clauses
o Opportunistically delete clauses

o Can restart the current search

o Lazy data structures
o Watched literals

o Conflict-quiding branching

o Lightweight branching heuristics
o Phase saving

5/37



B
CDCL SAT solver ingredients

o Affectation, unit propagation

o heuristic to choose the next variable to assign
o heuristic to choose its polarity
o unit propagation

= {o:aVd) —|a

o Conflict analysis and learning

o implication graph
o learning
o back-jumping

Constructing and analyzing the implication graph
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Conflict graph construction

ay:avd az:aV-ocV-f az:—~dVjVf
ag:bVh as:cV-oeVi ag:—iV—ojV-og
ar7:eV -k ag:eV-hVk ag:—cV-oeVaiVg

Affectation, Propagation
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Conflict graph construction
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Affectation, Propagation
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Conlflict graph construction
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Conflict graph analysis
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Conlflict graph analysis

ay:avd az:aV-cV-f az:~dVj VT
agq:bVh as:—cV-oeVi ag:—iV-ojV-og
ar7:eV -k ag:eV-hVk g :cV-eVaiVg

@ Stops as soon as the resolvant has a unique literal from the last
decision level (FUIP)

@ J is added to the clauses databases (ensure a systematic search)
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.,
Back-jumping

a1 :avd az:aV-ocV-f az:—~dVj VT
agq:bVh as:cV-eVi ag:i VoV g
a7:eV—-k ag:eV—-hVk ag:-cV-eV-aiVg

@ 61 =-c?V—j3, Vet
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Back-jumping
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Back-jumping
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Back-jumping

a1 :avd az:aV-ocV-f az:—~dVj VT
agq:bVh as:cV-eVi ag:i VoV og
ar:eV—-k ag:eV-hVk ag:-cV—-eV-iVg

SATISFIABILITY PROVED
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Watched Literals

@ Unit propagation fires when all but one literal is assigned false

o Idea: If two variables are either unassigned or one is assigned
true, no need to do anything

@ So just find two variables which satisfy this condition

a1 :—aVbVec apy:—-aV-cV-b az:—aVcV-b
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Qairoducion) T Mus eam Formation T Condusion
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Heavy-Tailed Phenomena

o Depth-first search procedures often exhibit a remarkable
variability in the time required to solve any problem instance

o Heavy-tailed behavior arises from the fact that wrong branching
decisions may lead to explore an exponentially large subtree that
contains no solutions

o Restarts provide good mechanisms to avoid such an issue
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Restarts

o Often it a good strategy to abandon what you do and restart

o for satisfiable instances the solver may get stuck in the unsatisfiable
part

o for unsatisfiable instances focusing on one part might miss short
proofs

= restart after the number of conflicts reached a restart limit

o Avoid to run into the same dead end

o by randomization (either on the decision variable or its phase)
o and/or just keep all the learned clauses

o For completeness dynamically increase restart limit

o arithmetically, geometrically, Luby, Inner/Outer, Glucose restart
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Reducing learned clauses

o CDCL SAT solvers learn clauses at each conflict

o Keeping all these clauses can slow down the unit propagation process
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o “Useless” learned clauses are periodically deleted (tp, t1 ... tk,...)

[aa]oz]as]as]as] - [erfan]
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Reducing learned clauses

o CDCL SAT solvers learn clauses at each conflict
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Reducing learned clauses

o CDCL SAT solvers learn clauses at each conflict

Keeping all these clauses can slow down the unit propagation process

o “Useless” learned clauses are periodically deleted (tp, t1 ... tk,...)

[ak]os[az]on]an]

Deleting too much clauses make the learning process useless

o However, identify if a clause will be useful in the future is a hard task!
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Estimate the clauses’ utility

o The VSIDS measure

o Keeping clauses that are often — and recently — used in the conflict
analysis process

o Dynamic measure

o A clause useful in the past will be useful again in the future!

o The LBD measure

o Represent the number of decision-levels in the learned clause
o Static measure
o Keeping clauses with a small LBD

o The PSM measure

o Represent the number of literals assigned to false by Progress
Saving interpretation

o Static measure

o Keeping clauses with a small PSM
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CDCL algorithm

Input: a CNF formula X
Output: SAT or UNSAT

1 A= // learnt clauses database
2 while (true) do

0 N O U s~ W

10
11
12
13

if (propagate()) then
if ((c = analyzeConflict()) == () then returnUNSAT ;
A=AU{c}
if (timeToRestart() then backtrack to level 0;
else
Lbacktrack to the assertion level of ¢;

else
¢ = decide();
if (¢ == null) then return SAT ;
assert ¢ in a new decision level;
if (timeToReduce()) then clean(A);
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+nrodeon e v Famaton T conelton ™
Minimal Unsatisfiable Set (MUS)

xVyVz xV -y xV -z

xVyVz xVw wVzV-y

XV -y XV -z wV xV -z
UNSAT

o The formula is unsatisfiable: why?

o Subset of constraints minimally unsatisfiable
o Two approaches:

— constructive
— destructive
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o Subset of constraints minimally unsatisfiable

o Two approaches:
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+rdtan s o omatan ™ Contuton™
Minimal Unsatisfiable Set (MUS)

xVyVz xV -y xV -~z
—xVyVz
—x V oy XV -z

MUS!

o The formula is unsatisfiable: why?
o Subset of constraints minimally unsatisfiable

o Two approaches:

— constructive
— destructive

SAT Incremental
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From SAT to Incremental SAT
Solving the SAT problem

o Modern SAT solvers are based on the CDCL paradigm

o Dynamic heuristics:

— VSIDS, polarity, cleaning learned clauses and restart

Solving incrementally SAT
@ Successive calls of a SAT solver

o Keeping a lot of information between the different runs

— VSIDS, polarity, cleaning learned clauses and restart
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From SAT to Incremental SAT
Solving the SAT problem

o Modern SAT solvers are based on the CDCL paradigm

o Dynamic heuristics:

— VSIDS, polarity, cleaning learned clauses and restart

Solving incrementally SAT
@ Successive calls of a SAT solver

o Keeping a lot of information between the different runs

— VSIDS, polarity, cleaning learned clauses and restart
— learned clauses

Adding selectors
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Selectors

51VxVyVz —5 VXV -y 53V XV -z
—s4 V- xVyVz —s5 VXV w —SeVwVzV-y
=57V x V y —sgV xV -z —s9gVwV-axV -z

o To activate/deactivate the i*" clause :

— assign a; to false to activate the clause
— assign a; to true to deactivate the clause

o Used to know which initial clauses are participating to the
creation of each learned clause

—s1VxVyVz =S VXxV-y

51V s VXVz
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Selectors

51VxVyVz —5 VXV -y 53V XV -z
—s4 V- xVyVz —s5 VXV w —SeVwVzV-y
=57V x V y —sgV xV -z —s9gVwV-axV -z

o To activate/deactivate the i*" clause :

— assign a; to false to activate the clause
— assign a; to true to deactivate the clause

o Used to know which initial clauses are participating to the
creation of each learned clause

—s1VxVyVz =S VXxV-y

51V s VXVz
Selectors impact on the size of the clauses
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Let's test

@ 300 instances from the MUS competition 2011
o timeout = 2400 secondes

o memout = 7800 Mo

@ MUSer as MUS extractor

— defaults options

@ SAT solvers: GLUCOSE versus MINISAT

Intel XEON X5550 Quad-Core 2.66 GHz with 32Go of RAM
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GLUCOSE VS. MINISAT
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GLUCOSE VS. MINISAT
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Why GLucoSE is so inefficient?
o Main difference between GLUCOSE et MINISAT
— restart and cleaning strategy

@ GLUCOSE is entirely based on the LBD notion

o Each selector has its own decision level
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Why GLucosE is so inefficient?

o Main difference between GLUCOSE et MINISAT

— restart and cleaning strategy

@ GLUCOSE is entirely based on the LBD notion

Each selector has its own decision level

o Then the LBD reflects the number of selectors of a learned clause

o We have to redefine the notion of LBD: improved LBD
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Why GLucosE is so inefficient?

o Main difference between GLUCOSE et MINISAT

— restart and cleaning strategy

@ GLUCOSE is entirely based on the LBD notion

Each selector has its own decision level

o Then the LBD reflects the number of selectors of a learned clause

o We have to redefine the notion of LBD: improved LBD

Not considering selectors when computing the LBD
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Updated LBD

taille LBD Imp. LBD
Instance #C moy. max moy. max  moy. max
fdmus_b21.96 8541 1145 5980 1095 5945 8 7
longmult6 8853 694 3104 672 3013 1 61
dump_vc950 360419 522 36309 498 35873 8 307
g7n 15110 1098 16338 1049 16268 27 160

@ The new LBD looks more appropriate

o It really measures now how a clause is useful!
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The clauses are too long

The main procedures depend on the size of the clauses
o Conflict analysis
— put the initial literals at the front of the clause
o Unit propagation
— search for a initial literal or a literal satisfied

— push the selector to the end of the clause

o Simplification procedure

— only check for the watched literals

o LBD recalculation

— save the number of selectors
— stop once we are sure that only selectors remain
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GLUCOSEInc vs. GLUCOSE de base
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Comparisons
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Outline

© Team Formation
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Team Formation Problem

o Team formation (TF) is the problem of deploying the least
expensive team of agents while covering a set of skills

o A TF problem description is a tuple (A, S, f, «)

o where A={a1,...,an} is a set of agents,

o S={s1,...,5m} is a set of skills,

o f: A— N is a deployment cost function,

o and o : A — 2° is an agent-to-skill function.

o Ateam is a subset of agents T C A
o One extends the cost function f to teams T as f(T) =", f(a:)
o The agent-to-skill function « is extended to teams T as
a(T) = U, er o(ai)
o Ateam T C A is efficient if all skills from S are covered by T, i.e,
when o(T) =S (it is almost equivalent to the Set Cover problem)

o An optimal team is an efficient team minimizing the cost function

@ The corresponding decision problem asks, given a bound b € N as
input, whether there exists an efficient team T such that f(T) < b
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Example

@ An agent; has a deployment cost equal to i and a cover range
equalto i —1
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Example
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@ An agent; has a deployment cost equal to i and a cover range
equalto i —1
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om0
SAT encoding

o We associate a boolean variable p; with each agent in a; € A,
where p; is true if and only if the agent a; is present in the
deployed team.

o Given a TF instance (A, S,f,a) and b € N, a minimal efficient
team T exists if and only if:

/\ \/ pi (1)

Sjes a;EAlSjEL)t(i)

D f(i)yxpi<b 2)

a;€EA
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And in practice ...

o 6 types of agent by cell with cover ranging from 1 to 6
e b=200
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And in practice ...

o CaDiCalL:
c total process time since initialization: 1799.17 seconds
c total real time since initialization: 1800.08 seconds
¢ maximum resident set size of process: 2577.50 MB
c
c

raising signal 2 (SIGINT)
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And in practice ...

o CaDiCalL:
c total process time since initialization: 1799.17 seconds
c total real time since initialization: 1800.08 seconds
¢ maximum resident set size of process: 2577.50 MB
c
c

raising signal 2 (SIGINT)
o LMHS:

o 230

s OPTIMUM FOUND

c CPU time: 373144 ms
c Real time: 373256 ms
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Outline

@ Conclusion
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Take away message

o It is better to know how SAT solvers work to avoid some pitfalls

o Sometimes the problem is the size of the encoding, then try to
encode your problem incrementally

o SAT solvers are not always efficient when it comes to use
cardinality and/or pseudo boolean constraints
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