
Modeling and Solving
Combinatorial Constrained Problems

with PyCSP3

Christophe Lecoutre
with Gilles Audemard and Nicolas Szczepanski

CRIL, Université d’Artois and CNRS, Lens, France

Journée industrielle GDR ROD et RADIA

Lyon – December 14, 2023

1

Constraint Programming (CP) Open-Source Tools

PyCSP3, Modeling Library since december 2019

• MIT Licence

• Github: https://github.com/xcsp3team/pycsp3

• Website: https://pycsp.org/

XCSP3, Integrated Format since november 2016

• Creative Commons (CC BY-SA 4.0) for specifications

• MIT Licence for any derived piece of software and benchmarks

• Website: https://xcsp.org/

ACE, Generic Constraint Solver since october 2020 (2000)

• MIT Licence

• Github: https://github.com/xcsp3team/ace

2

https://github.com/xcsp3team/pycsp3
https://pycsp.org/
https://xcsp.org/
https://github.com/xcsp3team/ace

A Complete CP Modeling/Solving Toolchain

Model PyCSP3

(Python 3)

Data
(JSON)

Compiler

XCSP3 Instance
(XML)

ACE Choco Mistral PicatSAT ... OR-Tools?

3

Outline

1 CP Modeling with Library PyCSP3

2 PyCSP3 for Education

3 PyCSP3 for Industry

4 CP Solving

5 Conclusion

4

PyCSP3

PyCSP3, Version 2.2 (December 2023)

• Github: https://github.com/xcsp3team/pycsp3

• Guide: https://arxiv.org/abs/2009.00326

• Available as a PyPi package

New functionalities of Version 2.2:

• new (control) structures ’If’ and ’Match’

• new derivated constraint forms (Hamming, Exist, NotExist, AllHold)

• new functions ’both’ and ’either’

• auto-adjustment of array indexing

• new predefined named tuple ’Task’

• new embedded versions of solvers ACE and Choco

PyCSP3 influences are XCSP3 and Numberjack.

5

https://github.com/xcsp3team/pycsp3
https://arxiv.org/abs/2009.00326

Warehouse Location Problem

Problem 034 on CSPLib.

“A company considers opening warehouses at some candidate locations
in order to supply its existing stores. Each possible warehouse has the
same maintenance cost, and a capacity designating the maximum
number of stores that it can supply. Each store must be supplied by
exactly one open warehouse.”

“The supply cost to a store depends on the warehouse. The objective is
to determine which warehouses to open, and which of these warehouses
should supply the various stores, such that the sum of the maintenance
and supply costs is minimized.”

6

Data (in JSON)

{
"fixedCost": 30,
"warehouseCapacities": [1,4,2,1,3],
"storeSupplyCosts":

[[100 ,24 ,11 ,25 ,30] ,[28 ,27 ,82 ,83 ,74] ,[74 ,97 ,71 ,96 ,70] ,
[2 ,55 ,73 ,69 ,61] ,[46 ,96 ,59 ,83 ,4] ,[42 ,22 ,29 ,67 ,59] ,
[1 ,5 ,73 ,59 ,56] ,[10 ,73 ,13 ,43 ,96] ,[93 ,35 ,63 ,85 ,46] ,[47 ,65 ,55 ,71 ,95]]

}

Note that:
• warehouseCapacities[i] indicates the maximum number of stores

that can be supplied by the ith warehouse
• storeSupplyCosts[i][j] indicates the cost of supplying the ith store
with the jth warehouse

7

Note that we can use tuple unpacking (“one line can suffice for
handling data”), and NumPy-like notations.

File Warehouse.py

from pycsp3 import *

cost , capacities , costs = data
nWarehouses , nStores = len(capacities), len(costs)

w[i] is the warehouse supplying the ith store
w = VarArray(size=nStores , dom=range(nWarehouses))

satisfy(
capacities of warehouses must not be exceeded
Count(w, value=j) <= capacities[j] for j in range(nWarehouses)

)

minimize(
minimizing the overall cost
Sum(costs[i][w[i]] for i in range(nStores)) + NValues(w) * cost

)

8

Regular Constraints for TTP

• No team can play more than two consecutive home/away games

• Global constraint regular

q

q01

q11 q12

q02

0

1

10

0

1

0

1

q, q01 , q02 , q11 , q12 = states = "q", "q01", "q02", "q11", "q12"
t = [(q, 0, q01), (q, 1, q11), ..., (q02 , 1, q11), (q12 , 0, q01)]
A = Automaton(start=q, final=states [1:], transitions=t)

satisfy(
at most 2 consecutive games at home , or consecutive games away
h[i] in A for i in range(nTeams)

)

9

Control Structure Match

Arithmetic Target (from Minizinc Challenge 2022)

...
computing values associated with all elements
[

Match(
x[i],
Cases={

VAL: z1[i] == numbers[index[i]],
ADD: z1[i] == z1[left[i]] + z1[right[i]],
SUB: z1[i] == z1[left[i]] - z1[right[i]],
MUL: z1[i] == z1[left[i]] * z1[right[i]],
DIV: z1[i] * z1[right[i]] == z1[left[i]],
NO: z1[i] == 0

}
) for i in M

],
...

10

Control Structure If

Arithmetic Target (from Minizinc Challenge 2022)

...
distributivity of multiplication
[

If(
x[i] in {ADD , SUB}, x[left[i]] == MUL , x[right[i]] == MUL ,
Then=[

z1[left[left[i]]] != z1[left[right[i]]],
z1[left[left[i]]] != z1[right[right[i]]],
z1[right[left[i]]] != z1[left[right[i]]],
z1[right[left[i]]] != z1[right[right[i]]]]

) for i in M
],
...

11

Stable Marriage

w_rankings , m_rankings = data # ranking by women and men
n = len(w_rankings)
Men , Women = range(n), range(n)

wf[m] is the wife of the man m
wf = VarArray(size=n, dom=Women)

hb[w] is the husband of the woman w
hb = VarArray(size=n, dom=Men)

satisfy(
spouses must match
Channel(wf, hb),

if m prefers another woman o to his wife , o prefers her husband to m
[

If(
m_rankings[m][o] < m_rankings[m][wf[m]],
Then=w_rankings[o][hb[o]] < w_rankings[o][m]

) for m in Men for o in Women
],

if w prefers another man o to her husband , o prefers his wife to w
[

If(
w_rankings[w][o] < w_rankings[w, hb[w]],
Then=m_rankings[o][wf[o]] < m_rankings[o][w]

) for w in Women for o in Men
]

) 12

Outline

1 CP Modeling with Library PyCSP3

2 PyCSP3 for Education

3 PyCSP3 for Industry

4 CP Solving

5 Conclusion

13

PyCSP3 for Education Understanding Constraints

AllDifferent AllDifferentMatrix AllEqual
Cardinality Channel Circuit
Count Cumulative Decreasing
Element ElementMatrix Extension
Increasing Intension LexDecreasing

LexIncreasing MDD Maximum
Minimum NValues NoOverlap
Regular Sum Knapsack*

BinPacking* Hybrid* Precedence*

See, e.g., https://pycsp.org/documentation/constraints/element/

*: New Jupyter Notebooks

14

https://pycsp.org/documentation/constraints/lement/

PyCSP3 for Education Understanding Models

AllInterval BIBD BoardColoration
CryptoPuzzle FlowShopScheduling GolombRuler
LabeledDice MagicSequence Queens

RectanglePacking SubgraphIsomorphism Sudoku
TrafficLights Warehouse

BACP Blackhole Layout
Mario Nonogram Quasigroup
RCPSP SocialGolfers SportScheduling

StableMarriage Vellino

Amaze Diagnosis OpenStacks
PizzaVoucher RackConfiguration TravelingTournament

See, e.g., https://pycsp.org/documentation/models/COP/PizzaVoucher/

15

https://pycsp.org/documentation/models/COP/PizzaVoucher/

PyCSP3 for Education Piloting Solvers

It is possible in Python to

• run a solver (ACE or Choco) and get solutions

• perform some form of incremental solving

See, e.g., https://pycsp.org/documentation/solving/IncrementalSolving/

A Jupyter Notebook is about to be posted about how to set solving
options.

We plan to permit a dialog with the solver while letting it alive.

16

https://pycsp.org/documentation/solving/IncrementalSolving/

Outline

1 CP Modeling with Library PyCSP3

2 PyCSP3 for Education

3 PyCSP3 for Industry

4 CP Solving

5 Conclusion

17

Managing Airport Issues

From 25 types of (global) constraints, you can write models for (almost)
any kind of integer problems. For example, in airport contexts;

• Airport Check-in Counter Allocation Problem (ACCAP) with fixed
opening/closing times
See ACCAP on GitHub (pycsp3-models)

• Deviation from target landing times
See AirCraftLanding on GitHub (pycsp3-models)

• Airport Resources at Paris Charles de Gaulle International Airport
(contract with CRIL)

• Check-in Desk Scheduling Optimisation
• Parking Scheduling Optimisation

18

https://github.com/xcsp3team/pycsp3-models/tree/main/realistic/ACCAP
https://github.com/xcsp3team/pycsp3-models/tree/main/realistic/AircraftLanding

Various Realistic/Industrial Problems

On GitHub pycsp3-models:

• RCPSP and its variants
Cyclic RCPSP, MRCPSP, RCPSP/MAX, RCPSP/WET, ...

• VRP and its variants
CVRP, CVRP-TW, VRP, VRP-LC, ...

• Hoist Scheduling

• Benzenoide Generation

• Nurse Rostering

• Cargo Assembly in a coal supply chain

• Kidney Exchange

• ...

19

https://github.com/xcsp3team/pycsp3-models/tree/main/realistic/

Aircraft Assembly Line (ONERA, with data from Airbus)

...

x[i] is the starting time of the ith task
x = VarArray(size=nTasks , dom=range(takt * nStations + 1))

z[j] is the number of operators at the jth station
z = VarArray(size=nStations , dom=lambda i: range(stationMaxOperators[i] + 1))

satisfy(
respecting the final deadline
[x[i] + durations[i] <= takt * nStations for i in range(nTasks)],

respecting limit capacities of areas
[

Cumulative(
Task(origin=x[t], length=durations[t], height=usedAreaRooms[t][i])

for t in areaTasks[i]
) <= areaCapacities[i] for i in range(nAreas)

],

avoiding tasks using the same machine to overlap
[NoOverlap(tasks =[(x[j], durations[j]) for j in tasksPerMachine[i]])

for i in range(nMachines)]
)

minimize(
minimizing the number of operators
Sum(z)

)
20

Education for Industry

“Certificat Chef de projet IA at Dauphine
(en partenariat avec MINES & PR[AI]RIE)”

Course about CP and Optimization with PyCSP3:

• Public: Car industry engineers

• Interactive course
• Live coding
• Use of Jupyter Notebooks

• Nice Interaction/dialog wrt problems encountered by various
participants (in their companies)

21

Outline

1 CP Modeling with Library PyCSP3

2 PyCSP3 for Education

3 PyCSP3 for Industry

4 CP Solving

5 Conclusion

22

Successful Generic Techniques

Generic search-related techniques proven to be successful in many
constraint solvers, and in particular in ACE.

• restarts (2000)

• dom/wdeg (2004), and its variant wdegcacd (2019)

• nogood recording from restarts (2007)

• last-conflict reasoning (2009)

• solution-saving (2017, J. Vion@JFPC)

• BIVS (2017)

• frba/dom (2021), and pick/dom (2023)

• (existential) SAC at preprocessing?

23

ACE

Constraint Solver:

• ACE (AbsCon Essence)

• Written in Java (25,000 lines of code)

• Version 2.2 on GitHub in December 2023
(https://github.com/xcsp3team/ace)

Rather efficient (competitor to Picat)

• search ingredients mentioned earlier

• efficient propagators for some global constraints

But room for improvement on some items (large domains, certain
constraints, learning)

24

https://github.com/xcsp3team/ace

Successful Generic Techniques

Problem VRP (to be minimized) at XCSP3 Competition 2019

java ace Vrp-A-n38-k5.xml

Results:

• 757 in 2 minutes

• 1614 in 2 minutes without solution-saving

while:

• 754 in 2 minutes with the new heuristic pick/dom

• 770 with the VBS of XCSP3 Competition 2019

25

Successful Generic Techniques

Problem CommunityDetection (to be maximized) at MZN Challenge 2021

java ace CommunityDetection-rnd_n100_e50_s50_d30_c9_p30.xml

Results:

• 2937 in around 120 seconds

• 2139 in around 120 seconds without solution-saving

while:

• 2963 in 5s with the new heuristic pick/dom

• 2963 with the VBS of MZN Challenge 2021 (6 solvers out of 36)

26

Successful Generic Techniques

Problem MultiAgentPathFinding at Minizinc Challenge 2017

Observations:

1 The model used for the competition introduces many Boolean
variables. Consequently:

• PyCSP3 is very long for generating similar instances
• Choco (and other CP solvers) obtains poor results at the competition
• ACE is even worse (on similar XCSP3 instances)

2 A natural CP equivalent model offers:
• no difficulty at all for generating the instances
• ACE becoming a strong competitor

27

Search: Three Different Ways of Processing Conflicts

•

•

v = a

w = b

⊥

w ̸= b

•
x = ax = a

⊥

Queue

ϕ(
P |x=

a
)E

M

L

x y w z y . . . w

c1x

c2x

c1y

c2y

c3y

c1w

c2w

c1z c1y

c2y

c3y

c1w

c2w

Figure: Illustration of pivotal moments for collecting information about
conflicts: this correspond to early (E), midway (M) and late (L) processing of
conflicts

28

Comparison with the state-of-the-art

Search is not dead!

For optimization, look at the results of solver ACE:

• outperformed by Picat when search can be closed (in limited time)

• but serious competitor when long paths towards optimal solutions

However, this is only one important ingredient. And OR-Tools handle
three of them:

• search (CP approach)

• clause learning (SAT approach)

• relaxation (LP approach)

Remark: a XCSP3 Python parser planned to be developped soon → a
first step towards using OR-Tools from PyCSP3

29

Outline

1 CP Modeling with Library PyCSP3

2 PyCSP3 for Education

3 PyCSP3 for Industry

4 CP Solving

5 Conclusion

30

Simplicity of PyCSP3

• HiFi compilation preserving the structure (through XCSP3)

• Easy handling of data: “one line can suffice”

nPlanes , times , costs = data

• Educational purpose

• Useful for industry too

• Blackbox model: focus on modeling (and then, independent solving)

• Embedding several solvers (a unique command to compile and run):
• ACE and Choco (from a recurrent dialog with C. Prud’homme)
• . . .

• Incremental solving

• Very large pool of models (and data)

31

Intelligibility of PyCSP3

Digital use is more and more subject to legal expectations. In this
respect, and in its domain, PyCSP3 contributes to a general answer to
the pressure on digital technology.

Indeed, PyCSP3 has a high level of intelligibility:

• data are easy to check (due to JSON Technology)

• models are easily understandable (due to the way the library has
been conceived)

• problem instances can be easily checked (coarse-grained readable
XML structures)

• solutions can be easily checked/visualized/interpreted, by means of:
• Python interfaces
• Python tools about explainable constraint solving

32

And a Rich Ecosystem

And also:
• More than 60 Jupyter notebooks for gently learning CP

• 60 PyCSP3 models posted on CSPLib;
see https://www.csplib.org/Languages/PyCSP3/models/

• New repository, https://github.com/xcsp3team/pycsp3-models, with
more than 300 models from:

• scientific papers
• XCSP3 Competitions
• CSPLib
• Minizinc Challenges

• Website for analysing results:
• https://www.cril.univ-artois.fr/XCSP22
• https://www.cril.univ-artois.fr/XCSP23

And new forthcoming boosted versions of academic solvers ACE and
Choco :-)

33

https://www.csplib.org/Languages/PyCSP3/models/
https://github.com/xcsp3team/pycsp3-models
https://www.cril.univ-artois.fr/XCSP22/
https://www.cril.univ-artois.fr/XCSP23/

	CP Modeling with Library PyCSP3
	PyCSP3 for Education
	PyCSP3 for Industry
	CP Solving
	Conclusion

