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Operations Research @ Google

● The Operations Research (OR) team is mostly based in Paris and Cambridge 
(US)

● Started ~15 years ago, currently 40+ people
● Mission: Optimize Google

○ Internal consulting: build and help build optimization applications
○ Tools: develop core optimization algorithms

● Other software engineers with OR backgrounds are distributed throughout 
the company



Combinatorial optimization
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Solvers

MIPLP SAT CP Graph
VRP

3 2

9
8

61

6

4
1
5

2
8
9

7
5

3

4

8

3
6

4

9

5

8 7

6



OR-Tools
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Tech Stack Overview

● Apache 2.0 licence
● C++ Framework with SWIG/pybind11 wrappers in .Net, Python, Java 

Go (internal), WASM

● Uses external dependencies (abseil, protobuf and third party solvers 
Gurobi, SCIP, CoinOR CBC/CLP, CPLEX, XPRESS)

● Packages available:  
○ C# Google.OrTools on nuget.org
○ Java ortools-java on maven
○ Python ortools on pypi.org

https://www.nuget.org/packages/Google.OrTools/
https://www.nuget.org/
https://mvnrepository.com/artifact/com.google.ortools/ortools-java
https://mvnrepository.com/
https://pypi.org/project/ortools/
https://pypi.org/


OSS Ecosystem support
● Ecosystem integration is mandatory to help adoption.
● C++ ecosystem have no strong consensus for a package manager

○ Windows: vcpkg (increasing adoption, backed by Microsoft),
○ brew on macOS X (popular)
○ Linux distros package managers (packages are often outdated)

User profiles:
● Academic: Python, (julia)
● Industry: .Net holding, mostly python now
● Devops/startupers: Go / node.js / python (WASM early adopter ?)
● Java: fading out ?
● C++: no usage visibility (proprietary software ?)

https://vcpkg.info/
https://brew.sh/
https://repology.org/
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What is CP-SAT-LP?



A Breakthrough: CP vs CP-SAT
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CP-SAT-LP influence
● Conflict Directed Clause Learning was a breakthrough in the SAT 

community in 1999-2000.
● This revolution can benefit the rest of the combinatorial optimization 

community.
● CP-SAT-LP is a reboot of an hybrid Constraint Programming solver, an 

Integer Linear Programming solver, and a MaxSAT solver on top of a 
CDCL SAT solver.

● The key takeaway is that CDCL allows investing more time in costly 
techniques that benefit only on a subset of problems.

● This work is inspired by Chuffed and by Peter Stuckey's presentation 
Search is dead

● It is a follow-up of our CPAIOR 2020 masterclass presentation.

https://people.eng.unimelb.edu.au/pstuckey/PPDP2013.pdf
https://www.youtube.com/watch?v=lmy1ddn4cyw


The CP-SAT-LP solver architecture
A complete reimplementation of a Constraint 
Programming Solver on top of a SAT engine.

A rich modeling layer that offers linear arithmetic 
and more complex discrete optimization 
constraints (including scheduling and routing 
constraints).

Complemented by a Simplex that solves a 
(dynamic) linear relaxation of the problem.

Enriched by MIP techniques (presolve, cuts, 
branching heuristics) extended to cover the 
Constraint Programming layer.

SAT engine

Integer variable encoding

Constraint 
Propagation 

Simplex, cuts, MIP 
heuristics

Portfolio of Search heuristics and Large 
Neighborhood Search



Encoding Integer Variables on top of SAT
Order encoding is dynamic.

• The solver creates integer literals (x <= 5) on demand, and uses them 
everywhere

• Creating new Boolean literals attached to integer literals is only done when 
branching. Conflict resolution expands integer literals until it falls back on 
existing Boolean literals

Value encoding is static
• (x == value) Boolean variables are created during presolve
• The intuition is that in the majority of cases, if you need value encoding, you 

should not use integer variables



Most CP constraints are expanded
We expand:

Element, Table (positive and negative), Automaton (regular), Inverse, Alldiff (when 
it is close to a permutation, or small enough), Reservoir

We keep:

• Boolean constraints (and, or, xor) 
• Linear constraints (with half-reification aka indicator constraints)
• min, max, product, division, modulo with fixed mod argument
• Alldiff (all variables should take a different value) when not a permutation
• Circuit (hamiltonian path)
• Scheduling constraint (no_overlap, cumulative, no_overlap_2d)
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The Best of all Worlds
(Max)SAT:
● Core based search
● Model reductions
● Clause Learning

Constraint Programming:
● Rich modeling layer (structure is not lost in the solver)
● Advanced deduction algorithms

Linear Integer Programming: 
● Linear Relaxation + Cuts
● Presolve

Meta-heuristics
● Fast solution improvement techniques
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Why this is (NP) hard

1. This is combinatorial optimization.
2. Lots of knowledge is hidden (commercial), forgotten (coder has left the 

team), or lost (team was disbanded).
3. Finding good solutions is mostly luck. Good solvers have 100s of 

dedicated heuristics.
4. Proving optimality, or finding better lower bounds of the objective 

function uses hard math, and complex combinations of scattered 
information.

5. Solvers are the results of large efforts (100s of work-years for CPLEX, 
Gurobi,  CP Optimizer).

6. One consequence is that research is slow/rare as the frontier is very far.
7. The nature of clause learning makes debugging difficult.
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Where we are
MaxSAT: Competitive robust solver. We do not participate in the challenge.
Constraint Programming: We won all gold medals in the last 5 years of the 
minizinc challenge.
Linear Integer Programming: Only solves pure ILP problems. Better than all 
open source solvers, closing in on the best commercial solvers, not 
competitive on average. Still CP-SAT can be good enough and it offers 
different performance characteristics.
Scheduling: competitive or better than state of the art on academic 
benchmarks. Better than commercial solvers on small to medium 
scheduling problems, misses heuristics for large instances.
Routing: Promising, hard, researchy, would benefit the routing library in 
OR-Tools.



MIP on SAT



Linear programming constraint
Bounded integer variables:      Xi ∈ [lbi, ubi]    Xi ∈ ℤ

Integer linear objective:           minimize  ∑i obji Xi     obji∈ ℤ

Pool of linear constraints:        [lhs <=] ∑i coeffi Xi  [<= rhs] coeffi∈ ℤ

Compared to a MIP solver: 
• Everything is integer (int64) and bounded. 
• “No overflow” precondition: min/max constraint activity fit on int64.
• “Optional”, all constraints in the pool already in the CP-SAT engine.



Initial pool content: Linear relaxation of CP model

Controlled by a parameter linearization_level:{0,1,2,3}

• linear constraint [level 1]
• Encoding of Boolean constraints [level 2]
• Half-reified linear constraint encoded with big M [level 2]
• Integer encoding: i.e. Integer = ∑ Boolean * value [level 2]
• …
• Implication graph & at most one: max clique [level 2]
• circuit constraint ⇒ dynamic subtour elimination cut [level 2]
• Product: McCormick inequalities [level 2]
• Scheduling relaxation [level 2]

Cuts



When to run the LP solver ?

Run at every node! But:

• Lowest propagator priority
• Run only for a short number of simplex iterations: 

LP dual simplex will continue at next node thanks to incrementality.
• Starts with empty LP and add constraints from the pool in small batches.
• Periodically remove constraints that have been BASIC (i.e not used) in the last 

xx optimal solutions.

Mainly at “level zero”: We also generate cuts.



What is it used for ?

Bounds propagation (with SAT explanations): 
• LP infeasibility
• Objective lower bound
• Variables lower/upper bound (reduced cost fixing)

Heuristics: 
• Branching: LP optimal value & reduced costs can be used.
• Large neighborhood search (i.e. RINS).



Our propagation is EXACT !

Even though LP solver is inexact, we just use its output as a “hint”.
• We use only int64 arithmetic (kind of adaptable fixed precision). 
• No epsilon! But have to deal with integer overflow (not too hard).
• vs MIP: simplify the code & complexity a lot.

First ingredient required for this: 
• Our base LP only use integer coefficients (we scale them for the LP solver).
• Any cuts we generate are also pure integer (not too hard actually).



Ingredient 2: Computing new valid linear constraints
Given any set of floating point constraint multipliers λ

i

Scale them to integer M
i
 = round(s * λ

i
) with a factor s (we use a power of 2) 

as large as possible and 
compute exactly:
      Sum_{positive M

i
}  M

i
 * (constraint

i
 <= rhs

i
)  

  + Sum_{negative M
i
}  M

i
 * (constraint

i
 >= lhs

i
)  

    =  new_linear_terms  <=  new_rhs

Details:
• Set to zero M

i
 with wrong sign (we usually only combine tight LP constraints)

• Make sure there is no integer overflow (could use int128 if needed)
• Can divide at the end using MIR cut like technique to reduce magnitude



Propagating the LP
LP infeasible: take dual ray as constraint multipliers, 
new constraint will give rise to a conflict (i.e. implied lower bound > rhs).

LP Optimal (or dual feasible): take dual LP values as constraint multipliers 
+ add objective (scaled by same integer factor s):

    new_linear_terms + s * objective_linear_term <= new_rhs + s * objective_var

Normal propagation of this new constraint:
• Push LP lower bound of objective var
• Push upper (or lower) bound of variables (i.e. reduced cost fixing !)



Explanation of a linear constraint
Ex:       X + Y + 3*Z <= 6   with    (X>=1), (Y>=1), (Z>=0)

Compute: slack = rhs - implied_lower_bound = 6 - 2 = 4
Upper bound of Z:  LB_of_Z + ⌊slack / 3⌋ = 1
Basic explanation:  lower bound of all other variables (X>=1)(Y>=1)
But slack of 3 is enough: relaxation “budget” of 1

2 options: (X>=0)(Y>=1) or (X>=1)(Y>=0)  

we can choose during conflict resolution !



Generic MIP Cuts - Still exact here

Constraint aggregation: 

• Chvatal Gomory (get multipliers λi from B-1.ej)
• MIR heuristic (combine small number of constraints)
• Zero half cuts (heuristic mod 2)

Cut generation on the new constraint: 
Various integer rounding heuristic (MIR), knapsack, and cover heuristics

Basic cut management: 
Sort by efficacy and orthogonality, keep number of cuts in check.



How to improve CP-SAT-LP?



Proprietary + Confidential

Controversial statements
How did we get there ? How do we continue improving performance ?
In other words, how do we improve a CP solver ?
Answer: by looking at MIP solvers.
This does not literally mean becoming a MIP solver.
It means:
● Focusing on benchmarks
● Integrating ideas from all communities
● Presolve is critical
● Linear relaxations and cuts help

CP-SAT-LP is a CP solver on top of a SAT engine with a big emphasis on the 
linear sub-model.



LP cuts on CP constraints

Take the edge-finder on a no-overlap constraint. It can propagate
intervals {i1, .., in} push interval i0

This is part of the CP propagation algorithm.  Bounds are passed on to the LP 
relaxation

But the LP values can violate basic CP constraints: LP-intervals overlap, optional 
intervals could push the 'other' interval more

This raises the question of which constraints to communicate between the CP and 
the LP engines



Flexible Job-Shop Scheduling
M machines, N jobs (each an ordered list of tasks t1, … tk).

Each task can run on subset of the M machines (possibly with different durations).

Goal is to minimize makespan.

Model uses optional intervals and one no_overlap constraint per machine.
LP relaxation:
  For each task :         ∑ presence_literal = 1
  For each machine: ∑ presence_literal * interval_size <= span 
 ...
8 threads, 15 min, from 205 to 246 proven out of 313 “classical” instances.



More Scheduling Cuts
(extended energetic relaxation)
Lifting energetic cuts

• For a time window [a, b], the basic cut takes all intervals contained in [a, b]
• Lifting adds contribution from intervals that must intersect with [a, b]

A A

minimum contribution of task A to 
the interval

a    b



Completion Time Cuts

Smith rule: sum(pi * ei) >= ½(sum(pi^2) 
+ sum(pi)^2)

• This cut pushes tasks apart
• Can be adapted to cumulative by 

dividing pi by the capacity max
• Can be adapted to no_overlap_2d 

with the same idea
• Can be lifted by incorporating 

intervals that must intersect with 
proper scaling

p1

p1

p3

p3

p2

∑ p(i)

p2



Dealing with Energy
In the PSPLIB, the duration and the demand are fixed per recipe.

Thus the energy of a demand can be linearized as 
sum (recipe_i_bool_var * fixed_energy_i)

This structure is discovered by inspecting the model.

This is very effective on the PSPLIB as the energetic cuts take into account the 
Boolean variables of the selected recipes.

This is also useful for 2d packing with rotating boxes (energy is constant) or non 
fixed energy.



Conclusion



● CP-SAT-LP is a very good CP solver 😀
● In CP-SAT-LP, the linear relaxation is on by default.

● Clause Learning is critical as it offsets the cost of running the simplex.

● It implements the Scheduling on MIP literature from the 80s, 90s and 

subsequent improvements.

● It could incorporate different relaxation/specialized (expensive) propagation 

algorithms, provided they can be explained, or provided they can be useful at 

the root node.

Conclusion



What's next?
● Reduce encoding size

● Incorporate cost management techniques from CSP solvers

● MIP improvements (cuts, presolve)

● Improved scheduling (branching heuristics, LNS, propagation, modeling)

● Non violation based Local Search?

● Progress on Routing (branching heuristics, LNS, propagation)



Thank you


