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The load balancing problem

e Finite buffer size of 0 at each server

e Knowledge of number of jobs at each server

Objective: minimize blocking probability
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Join the Shortest Queue

e JSQ is optimal for general inter-arrival times and exponential service times (Hordijk
and Koole (1990), Sparaggis et al. (1993)




Join the Shortest Queue

e JSQ is optimal for general inter-arrival times and exponential service times (Hordijk
and Koole (1990), Sparaggis et al. (1993)

- Performance analysis is complicated
- How to dimension the system (number of servers, buffer size)?

- No results on general service times

e Similar optimality results for JSQ with infinite buffer: arbitrary arrival process, service
time distribution with decreasing hazard rate

- counterexample of Whitt

- No easy way to compute performance
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Asymptotic analysis: infinite buffer

o JSQ(d)

— Pioneering work of Vdvenskaya et al. and Mitzenmacher (1996): introduced
mean-field limits for exponential service times

— Bramson et al. (2012): mean-field for FIFO and decreasing hazard rate

o JSQ

— Graham (2000): mean field, exponential
— Eschenfeldt and Gamarnik (2015): heavy-traffic, exponential

o JIQ

— Stolyar (2015): mean-field optimality, exponential
— Mukherjee et al. (2016) Halfin-Whitt and diffusion, exponential
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Asymptotic analysis: finite buffer

e JSQ(d)
— Xie et al. (2015): mean-field, exponential
— Mukhopadhyay et al. (2015): mean-field, exponential, heterogeneous server speeds
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- Mostly limited to exponential distribution

- Even then, mainly mean-field limits




Asymptotic analysis: finite buffer

e JSQ(d)
— Xie et al. (2015): mean-field, exponential
— Mukhopadhyay et al. (2015): mean-field, exponential, heterogeneous server speeds

Mostly limited to exponential distribution

Even then, mainly mean-field limits

e no simple formulas for performance measures = no simple dimensioning rules
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Insensitivity

e Erlang formula (1917) for blocking is insensitive to higher moments of the service time
distribution.

Erlang formula = simple and robust dimensioning rule
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e 1970s onwards lots on interest in insensitive process-sharing networks: Muntz,
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e What are the requirements for a policy to be insensitive? Quasi-reversibility (partial
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+

Insensitivity = robustness with respect to service time distribution

Closed-form stationary distribution = formulae for performance measures

+
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Insensitivity

e Erlang formula (1917) for blocking is insensitive to higher moments of the service time
distribution.

Erlang formula = simple and robust dimensioning rule

e 1970s onwards lots on interest in insensitive process-sharing networks: Muntz,
Schassberger, Whittle, Kelly

e What are the requirements for a policy to be insensitive? Quasi-reversibility (partial
balance equations)

+

Insensitivity = robustness with respect to service time distribution

Closed-form stationary distribution = formulae for performance measures

+

- suboptimality

e Bonald and Proutire (2002): insensitive bandwidth-sharing networks
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e Bonald, Proutiere, Jonckheere (2004): optimal insensitive load balancing policy
Route an arrival to server 2 with probability:

Hi—xi

Zjej_wj.

pi(T1,...,Ty) =
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Insensitive load balancing

J5Q,

Reversible  Power-of-d,

JIQ,...

e Bonald, Proutiere, Jonckheere (2004): optimal insensitive load balancing policy
Route an arrival to server 2 with probability:

Hz-—azi

Zjej_wj.

pi(T1,...,Ty) =

+ Explicit stationary distribution for all job-size disitributions.

- Not very useful for 6 = oo. Is equivalent to Bernoulli routing (Jonckheere (2006))
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Objectives

e Performance measures in various asymptotic regimes

e Simple but non-trivial dimensioning rules




Objectives

e Performance measures in various asymptotic regimes
e Simple but non-trivial dimensioning rules
e Bounds for optimal policy

e Benchmarks for heuristics
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Generic {

Poisson arrivals rate A

e Buffer size : 0 at each server

Model

n PS servers, speed 1
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Preliminaries

o Let X(t) = (Xi(t))i=1,..n be the number of tasks in server ¢ at time ¢

e In state x, a task is routed to server ¢ with probability

9—%1

>0 —x5)

e |If the service times are i.i.d. exponential, then
1. X(t) is a Markov process (birth-death) on Z}
2. X(t) is reversible

(1)
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Preliminaries

o Let X(t) = (Xi(t))i=1,..n be the number of tasks in server ¢ at time ¢

e In state x, a task is routed to server ¢ with probability

9—%1

>0 —x5)

e |If the service times are i.i.d. exponential, then
1. X(t) is a Markov process (birth-death) on Z}

2. X(t) is reversible

e X (t) is insensitive to higher moments of the service time distribution.

(1)
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Stationary distribution

e X(t) has closed-form stationary distribution

A(x)P(x)
> yex PONA(Y)’

m(x) =

with @(x) = [];_, »~ ", and

o= (32

|9—x|) _ |60 —x|!

where ( 0« P Y

are the multinomial coefficients.

(2)

(3)
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Stationary distribution

e X(t) has closed-form stationary distribution

A(x)®(x)
T(x) = : (2)
> yex P(Y)A(Y)
with @(x) = [];_, »~ ", and
. |6 — x| x|
A = () )A, (3)
where ('g:i') = n'efg‘f 57 are the multinomial coefficients.
i=1\"" ")
e Blocking probability (apply PASTA): 7 (0)
T 10



Alternative representation

e Aggregate the servers according to the number of tasks.

o Let {S™(t) € 8};>0 be the number of servers with 7 jobs at time ¢, with

0

S={s¢e {O,l,...,n}‘gJrl : Zsi:n}.
i=0
e Local arrival rate 9 _ ;
Ai(s) = )\(——z)f@,
nf — s

_ o .
where 5 = > ._, s;.

(4)

&

11



Alternative representation

° S(”)(t) is a continuous-time jump Markov process on & with transition rates

S (1) SM(t) + e; —e;_1 at rate Ai_1(s),4 > 1;
S(n) (t) + e; — e;41 at rate s;41,
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Alternative representation

° S(”)(t) is a continuous-time jump Markov process on & with transition rates

S(n)(t) N S(n)(t) + e; — e;—1 at rate )\7;_1(8>,’i > 1; (5)
S(n) (t) + e; — e;41 at rate s;41,
o S (¢) inherits the insensitivity property of X (t)
Theorem 1. [Its stationary distribution is given by
_ 0 s
(m)(oy — () (R0 = 3)! (n) ( ! k) s 6

k=0

where p = A\/n is the load per server, and w(()n) 18 the probability of the state with
all servers empty, that is, s = 0 and s = (n,0,...,0).
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Alternative representation

Proof. Check that (™) (s) satisfies the local balance equations (sufficient condition)
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Alternative representation

Proof. Check that (™) (s) satisfies the local balance equations (sufficient condition)

Take two states s and s +e; —e;_1 € S.

(s +e —e1) AO—(i—1))si1 1
() (s) N nd — s (si + 1)
_ >\z’—1(3)
(si +1)

(7)

(8)
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Alternative representation

Proof. Check that (™) (s) satisfies the local balance equations (sufficient condition)

Take two states s and s +e; —e;_1 € S.

(s +e —e1) AO—(i—1))si1 1
() (s) N nd — s (si + 1)
_ >\z’—1(3)
(si +1)

(si + D™ (s +e; — eim1) = 7™ () Ai1(s)

(7)

(8)

(9)
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Alternative representation

Proof. Check that (™) (s) satisfies the local balance equations (sufficient condition)

Take two states s and s +e; —e;_1 € S.

(s +e —e1) AO—(i—1))si1 1

: 7

() (s) nb — s (s; +1) ()
>\z’—1(3)

=~ ©
(si+1)

(si + D™ (s +e; — eim1) = 7™ () Ai1(s) (9)

[]

Corollary 1. Using the PASTA property, the blocking probability is given by
n n (np)"’ (6"
B = =" . (10)

(n6)!
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Special case: Erlang loss system

e For 6 = 1, we get the classical M /M /n/n queue or the Erlang loss system.

(nP)(n_SO)W(n)
(n—sg)! 77

7™ (s0) =

where
)n k

(n) (np
Z “ (n — k)

(11)

(12)
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Asymptotic analysis

1. Mean field limit

2. Large deviations

3. Halfin-Whitt limit

4. Moderate and small deviations

&
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Mean-field limit

e Limit n — oo, for a fixed p < 1.
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Mean-field limit

e Limit n — oo, for a fixed p < 1.

Theorem 2. Let y(0) = lim,_

S (nn)(o). For exponentially distributed job-sizes, for

all t, S(")(t)/n — y(t), in probability, with y the solution of:

dyj(t) 60— (j—1) |

T SR O R (13)

. ;_;jy v — v, 0<5 <0,
k k

dye(t) 1

TS ST (14)
dy()(t) . 0

PP 1(t) — P > kyk(t)yo(t)' (15)
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Mean-field limit : steady-state solution

e The stationary point of the differential equations is obtained upon taking t — oc.

Theorem 3. For 0 < p < 1, the unique steady-state solution of the system of equations

13)—(15)) is given by
0 — c>
— Do, (16)
( (H—ﬁ'

1

P
> o (5°) @
k=0 ) k!

(17)

with pg =

where

¢=0—pl (1—p), (18)
with Ce_l as the inverse function of the Erlang blocking viewed as a function of the
traffic intensity for a fixed buffer depth 6.

If p > 1, the unique solution is ¢ = 0, p; =0, for 3 < 0 —1 andpg =1 .
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Mean-field limit : interchange of limits

e Does an interchange of the order of limits lead to the same limit?

8w st
lim lim = lim lim
t—00 n—00 n n—00 t—00 n

7

(19)
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Mean-field limit : interchange of limits

e Does an interchange of the order of limits lead to the same limit?

8w st
lim lim = lim lim
t—00 n—00 n n—00 t—00 n

? (19)

Proposition 1. For p < 1, 7 converges point wise to p when m and t converge to
infinity.

Proof. A corollary of Le Boudec's result for reversible Markov process. []

Remark 1. By insensitivity, p is the limiting distribution of () independent of the
specific job-size distribution
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Mean-field limit : blocking probability

e A lower bound on the blocking probability

Proposition 2. For 0 > 0, the blocking probability of any non-anticipating and
size-unaware load balancing policy is greater than max(0, 1 — p_l).

Proof. Cannot do better than the system with all the buffer and server capacity
pooled. ]
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Mean-field limit : blocking probability

e A lower bound on the blocking probability

Proposition 2. For 0 > 0, the blocking probability of any non-anticipating and
size-unaware load balancing policy is greater than max(0, 1 — p_l).

Proof. Cannot do better than the system with all the buffer and server capacity
pooled. ]

e Blocking probability of the insensitive policy
Proposition 3. The limiting blocking probability of the insensitive load balancing

policy s given by
0 ' 1;
By = { ihp< (20)

1 —p ' otherwise.
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Mean-field limit : blocking probability

A lower bound on the blocking probability

Proposition 2. For 0 > 0, the blocking probability of any non-anticipating and
size-unaware load balancing policy is greater than max(0, 1 — p_l).

Proof. Cannot do better than the system with all the buffer and server capacity
pooled. ]

Blocking probability of the insensitive policy

Proposition 3. The limiting blocking probability of the insensitive load balancing

policy s given by
0 ' 1;
By = { ihp< (20)

1 —p ' otherwise.

Insensitive policy is globally optimal in the mean-field limit

Any empty space filling policy will achieve this...
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2. Large deviations

Asymptotic analysis
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Large deviations

o Let P. ={q € Ri : Zfzo q; = 1 and Zf:@ iq; = C}

e Define p € P, by
1 0 —c\'"
ple) = (6 — k)! ( p >

1 <9—c>k
Ok! o)

where

ME

P(c) =

i

1
W(c)

(21)

(22)
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Large deviations

o Let P. ={q € Ri : Zfzo q; = 1 and Zf:@ iq; = c}
e Define p € P, by

pr(c) = 1 (9 _ C>9—k )

(@ —Fk)I\ p P(c)
where
01 /6 —c\"

e Note that p(¢é) is the steady-state solution of the mean-field limit.

(21)

(22)

&
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Large deviations

Theorem 4. For p < 1, and q € P,,

(™ (g ¢ c
lim 110g< (g )) — (c— &) + log (‘“ )) ~ Drr(a(@)llp(e)),  (23)

n—oo n (") (p; &) Y (¢)

where D 1s the Kullback-Liebler divergence.

e exponential decay in n in the probability of observing any distribution other than p(¢é).
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Large deviations

Theorem 4. For p < 1, and q € P,,

(™ (g ¢ c
lim 110g< (g )) — (c— &) + log (‘“ )) ~ Drr(a(@)llp(e)),  (23)

n—o0 n (") (p; &) Y (¢)

where D 1s the Kullback-Liebler divergence.

e exponential decay in n in the probability of observing any distribution other than p(¢é).

e p(c) is the most likely distribution that is observed conditioned on c.
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Large deviations: blocking probability

Theorem 5. For p € (0,1),

5 1/2
lim B( )exp(nR(fyg ) ( Wn) = 1. (24)
n— 00 Qg p
where
Otk 0 — ¢
R(t) = log (2; E) —pt, Yo, = argtr?oagg) R(t) = T, (25)
0

O{g,p = ( ) ( — 1) . (26)

P PY6,p
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Large deviations: blocking probability

Theorem 5. For p € (0,1),

where

n—oo

0 th 0 — ¢
SSL) oty uy = arg max Ry = 2=,
! p

. (n) 2Tn 1/2
lim B, exp(nR(vs,)) = 1.

&0, p

A

t€(0,00)

(e )
— 1.
PY0,p

—1

Corollary 2. For 0 =1, vp, = =2 and oy, = 1. Thus,

P

Bgn) -~ en(l—p)pn(Qﬂ_n)—l/2.

(24)

(25)

(26)

(27)

&
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Asymptotic analysis

3. Halfin-Whitt-Jagerman limit

4.

&
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Halfin-Whitt-Jagerman limit

e Arrival rate A T oo. How should the number of servers scale?

n=p A\
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Halfin-Whitt-Jagerman limit

e Arrival rate A T oo. How should the number of servers scale?

n=p A\

p <1

+ High quality: Bén) ~ e O

- Low efficiency (low server utilisation):
n(1 — pg) servers empty

p>1

- Low quality: Bén) ~1—p!

+ High efficiency: utilisation ~ 1
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Halfin-Whitt-Jagerman limit

e Arrival rate A T oo. How should the number of servers scale?
n=p A\

p <1

p>1

: oo p(n) —Cn
- High quality: By~ e - Low quality: Bén) ~1—p!

- Low effici | tilisation): ici ilisati
ow efficiency (low server utilisation) + High efficiency: utilisation ~ 1

n(1 — pg) servers empty

e For & = 1, Quality and Efficiency Driven regime (H-W, Jagerman):

n = X4+ av/\ Square-root staffing rule

—1/2.

e Good quality: Bin) ~n Good efficiency: server utilization ~ 1

&
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Halfin-Whitt-Jagerman limit

e How high we can push p and still have asymptotically negligible blocking probability?
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Halfin-Whitt-Jagerman limit

e How high we can push p and still have asymptotically negligible blocking probability?

Theorem 6. For a € (—o0, 00), let

np =n —+ an'/FD), (28)
Then,
o0 MCE
lim Bén)ne/(eﬂ)/ exp | au — —— | du = 1. (29)
o p=1+ an 0/ (6+1)
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Halfin-Whitt-Jagerman limit: observations

Corollary 3. If p = 1:

1
0+ 1)16+1 1
Bén)"\/( + 1) F( )n—e/(eﬂ)’
0+ 1 0+ 1

where I' is the Gamma function.

(30)
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Halfin-Whitt-Jagerman limit: observations

Corollary 3. If p = 1:

1
0+ 1)0+1 1
Bén) N (0 + 1) F( )n—e/(eﬂ)’ (30)
0+ 1 0+1
where I' is the Gamma function.
Corollary 4.
B™ ~ (0.5wn) "2, (31)

e Order of decay increases with 6: n 12 for =1 and n7! for 6 = oo

e Higher the 6, closer p can be to 1 for the same blocking probability

@ :



Trichotomy of ILB

__0_
p <1 Critical regime p, = 1 + an ¢+1 p>1
Blocking ~ e~ (O)n Blocking ~ nf+1 Blocking =1 — p—

e p < 1, the blocking is exponential small in n (Large deviations)

e Generalized HWJ: ;

pn =14 an 0+1,

e p > 1, the blocking is constant

1

&
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Asymptotic analysis

4. Moderate and small deviations

&
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Moderate deviations

Theorem 7 (Central limit). For p < 1,

1 . A a
NG ((S( )(OO))ogi<0 — n(p)ogz'<9) —— N(0, %),
where
>t =9(1,1,...,1) - (1,1,...,1)"
1
_< A)(9,9_1,...,1)-(0,0—1,---,1)T
0 — ¢
1/po 0 0
0 1/p 0
4+ /1 |
0 0 1/po—1

(32)

(33)
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Moderate deviations

e Define

_ o W+
Dy(z;a) = / exp | au — —— | du.

Theorem 8. For p =1 and z € Ry,

(85" (o0) By(2;0)
lim P >z | = =—,
n— 00 ne/(9+1) (DQ(O; O)

(34)

(35)
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Moderate deviations

e Define
R 00 4,0+
Dy(z;a) = / exp | au — —— | du. (34)
. (6 4+ 1)!
Theorem 8. For p =1 and z € Ry,
T (L Pol2:0) (35)
n— 00 n0/(0+1) (I)Q(O; O)

e Variations are visible only in 8 and 6 — 1.
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Moderate deviations

e Define
N 00 40D
DPy(z;a) = e au — — — | du. 34
(zia) = [ e (au - s (34)
Theorem 8. For p =1 and z € Ry,
lim P 99‘12 1) > 5 ) = 2020 (35)
n—00 n0/(0+1) (I)Q(0,0)
e Variations are visible only in 8 and 6 — 1.
e Number of servers having i jobs O(n(Hl)/(eH)).
T 31



Small deviations
Theorem 9. For p > 1,
(n) d -1
Sp-1(00) —— Geo(p ),

and the blocking probability is

Bén) ~1— p_l.

e Deviations are of constant size, and happen in 6 and 6 — 1.

(36)

(37)

&
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e Numerical results

Outline
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Numerical results

© *
O*

JIQ, custom
JIQ, exp
JSQ, custom
JSQ, exp
BLB, custom
BLB, exp

0.9

0.95

1.05

Figure 1: Comparison of the blocking probability for different load balancing policies. Number of servers is 20. Buffer size is 10.
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Numerical results

]-OO é T T T
10~ L |
& , 5 & © o © @ ° T
_9 | + x 8
10 — % ; ® —
[ *
*
1073 L % © _
. *
Sd [ * ° ]
[ % o ]
_5 | Sim, 6 = 2 + ]
5 , 4
10 F Theo, § =2
i 5 Sim, 6 = 3 ]
1076 L Theo, 0§ = 3 -
F Sim, § = 4 ]
10-7 : Theo, 0 =4 °
0.9 0.95 1 1.05 1.1

Figure 2: Comparison of the blocking probability computed from Theorems [§ and [9] with that obtained from simulations. Number
of servers is 200.
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e Open problems

Outline
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Open problems

e Is the HWJ scaling optimal?
e How does the optimality gaps for specific families of jobs-size distributions?
e Can similar results be established for sensitive policies like JSQ(d) or JIQ?

e Similar results for infinite buffer systems

&
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