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The load balancing problem

• Finite buffer size of θ at each server

• Knowledge of number of jobs at each server

Objective: minimize blocking probability
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Join the Shortest Queue

• JSQ is optimal for general inter-arrival times and exponential service times (Hordijk

and Koole (1990), Sparaggis et al. (1993)
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Join the Shortest Queue

• JSQ is optimal for general inter-arrival times and exponential service times (Hordijk

and Koole (1990), Sparaggis et al. (1993)

- Performance analysis is complicated

- How to dimension the system (number of servers, buffer size)?

- No results on general service times

• Similar optimality results for JSQ with infinite buffer: arbitrary arrival process, service

time distribution with decreasing hazard rate

- counterexample of Whitt

- No easy way to compute performance
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Asymptotic analysis: infinite buffer

• JSQ(d)

– Pioneering work of Vdvenskaya et al. and Mitzenmacher (1996): introduced

mean-field limits for exponential service times

– Bramson et al. (2012): mean-field for FIFO and decreasing hazard rate

• JSQ

– Graham (2000): mean field, exponential

– Eschenfeldt and Gamarnik (2015): heavy-traffic, exponential

• JIQ

– Stolyar (2015): mean-field optimality, exponential

– Mukherjee et al. (2016) Halfin-Whitt and diffusion, exponential
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Asymptotic analysis: finite buffer

• JSQ(d)

– Xie et al. (2015): mean-field, exponential

– Mukhopadhyay et al. (2015): mean-field, exponential, heterogeneous server speeds
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Asymptotic analysis: finite buffer

• JSQ(d)

– Xie et al. (2015): mean-field, exponential

– Mukhopadhyay et al. (2015): mean-field, exponential, heterogeneous server speeds

- Mostly limited to exponential distribution

- Even then, mainly mean-field limits

• no simple formulas for performance measures⇒ no simple dimensioning rules
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Insensitivity

• Erlang formula (1917) for blocking is insensitive to higher moments of the service time

distribution.

Erlang formula = simple and robust dimensioning rule
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Insensitivity

• Erlang formula (1917) for blocking is insensitive to higher moments of the service time

distribution.

Erlang formula = simple and robust dimensioning rule

• 1970s onwards lots on interest in insensitive process-sharing networks: Muntz,

Schassberger, Whittle, Kelly

• What are the requirements for a policy to be insensitive? Quasi-reversibility (partial

balance equations)

+ Insensitivity⇒ robustness with respect to service time distribution

+ Closed-form stationary distribution⇒ formulae for performance measures

- suboptimality

• Bonald and Proutire (2002): insensitive bandwidth-sharing networks
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Insensitive load balancing

Reversible
JSQ,

Power-of-d,

JIQ,...

6



Insensitive load balancing

Reversible
JSQ,

Power-of-d,

JIQ,...

• Bonald, Proutière, Jonckheere (2004): optimal insensitive load balancing policy

Route an arrival to server i with probability:

pi(x1, . . . , xn) =
θi − xi∑
j θj − xj

.
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Insensitive load balancing

Reversible
JSQ,

Power-of-d,

JIQ,...

• Bonald, Proutière, Jonckheere (2004): optimal insensitive load balancing policy

Route an arrival to server i with probability:

pi(x1, . . . , xn) =
θi − xi∑
j θj − xj

.

+ Explicit stationary distribution for all job-size disitributions.

- Not very useful for θ =∞. Is equivalent to Bernoulli routing (Jonckheere (2006))
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Objectives

• Performance measures in various asymptotic regimes

• Simple but non-trivial dimensioning rules
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Objectives

• Performance measures in various asymptotic regimes

• Simple but non-trivial dimensioning rules

• Bounds for optimal policy

• Benchmarks for heuristics
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Model

Poisson arrivals rate λ

n PS servers, speed 1

{Generic

• Buffer size : θ at each server
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Preliminaries

• Let X(t) = (Xi(t))i=1,...n be the number of tasks in server i at time t

• In state x, a task is routed to server i with probability

θ − xi∑
j(θ − xj)

. (1)

• If the service times are i.i.d. exponential, then

1. X(t) is a Markov process (birth-death) on Zn+
2. X(t) is reversible
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Preliminaries

• Let X(t) = (Xi(t))i=1,...n be the number of tasks in server i at time t

• In state x, a task is routed to server i with probability

θ − xi∑
j(θ − xj)

. (1)

• If the service times are i.i.d. exponential, then

1. X(t) is a Markov process (birth-death) on Zn+
2. X(t) is reversible

• X(t) is insensitive to higher moments of the service time distribution.
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Stationary distribution

• X(t) has closed-form stationary distribution

π(x) =
Λ(x)Φ(x)∑
y∈X Φ(y)Λ(y)

, (2)

with Φ(x) =
∏n

i=1 µ
−xi, and

Λ(x) =
(|θ − x|
θ − x

)
λ
|x|
, (3)

where
(|θ−x|
θ−x
)

= |θ−x|!∏n
i=1(θ−xi)!

are the multinomial coefficients.
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Stationary distribution

• X(t) has closed-form stationary distribution

π(x) =
Λ(x)Φ(x)∑
y∈X Φ(y)Λ(y)

, (2)

with Φ(x) =
∏n

i=1 µ
−xi, and

Λ(x) =
(|θ − x|
θ − x

)
λ
|x|
, (3)

where
(|θ−x|
θ−x
)

= |θ−x|!∏n
i=1(θ−xi)!

are the multinomial coefficients.

• Blocking probability (apply PASTA): π(θ)
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Alternative representation

• Aggregate the servers according to the number of tasks.

• Let {S(n)(t) ∈ S}t≥0 be the number of servers with i jobs at time t, with

S = {s ∈ {0, 1, . . . , n}θ+1
:

θ∑
i=0

si = n}.

• Local arrival rate

λi(s) = λ
(θ − i)si
nθ − s̄ , (4)

where s̄ =
∑θ

i=0 isi.
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Alternative representation

• S(n)(t) is a continuous-time jump Markov process on S with transition rates

S
(n)

(t)→
{
S(n)(t) + ei − ei−1 at rate λi−1(s), i ≥ 1;

S(n)(t) + ei − ei+1 at rate si+1,
(5)

12



Alternative representation

• S(n)(t) is a continuous-time jump Markov process on S with transition rates

S
(n)

(t)→
{
S(n)(t) + ei − ei−1 at rate λi−1(s), i ≥ 1;

S(n)(t) + ei − ei+1 at rate si+1,
(5)

• S(n)(t) inherits the insensitivity property of X(t)

Theorem 1. Its stationary distribution is given by

π
(n)

(s) = π
(n)
0

(nθ − s̄)!
(nθ)!

(n
s

) θ∏
k=0

(
θ!

(θ − k)!
(nρ)

k

)sk
, (6)

where ρ = λ/n is the load per server, and π
(n)
0 is the probability of the state with

all servers empty, that is, s̄ = 0 and s = (n, 0, . . . , 0).
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Alternative representation

Proof. Check that π(n)(s) satisfies the local balance equations (sufficient condition)
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Alternative representation

Proof. Check that π(n)(s) satisfies the local balance equations (sufficient condition)

Take two states s and s+ ei − ei−1 ∈ S.

π(n)(s+ ei − ei−1)

π(n)(s)
=
λ(θ − (i− 1))si−1

nθ − s̄
1

(si + 1)
, (7)

=
λi−1(s)

(si + 1)
(8)
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Alternative representation

Proof. Check that π(n)(s) satisfies the local balance equations (sufficient condition)
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π(n)(s+ ei − ei−1)

π(n)(s)
=
λ(θ − (i− 1))si−1

nθ − s̄
1

(si + 1)
, (7)

=
λi−1(s)

(si + 1)
(8)

(si + 1)π
(n)

(s+ ei − ei−1) = π
(n)

(s)λi−1(s) (9)
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Alternative representation

Proof. Check that π(n)(s) satisfies the local balance equations (sufficient condition)

Take two states s and s+ ei − ei−1 ∈ S.

π(n)(s+ ei − ei−1)

π(n)(s)
=
λ(θ − (i− 1))si−1

nθ − s̄
1

(si + 1)
, (7)

=
λi−1(s)

(si + 1)
(8)

(si + 1)π
(n)

(s+ ei − ei−1) = π
(n)

(s)λi−1(s) (9)

Corollary 1. Using the PASTA property, the blocking probability is given by

B
(n)
θ = π

(n)
0

(nρ)nθ(θ!)n

(nθ)!
. (10)
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Special case: Erlang loss system

• For θ = 1, we get the classical M/M/n/n queue or the Erlang loss system.

π
(n)

(s0) =
(nρ)(n−s0)

(n− s0)!
π

(n)
0 , (11)

where

π
(n)
0 =

∑
k≤n

(nρ)n−k

(n− k)!
, (12)
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Asymptotic analysis

1. Mean field limit

2. Large deviations

3. Halfin-Whitt limit

4. Moderate and small deviations
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Mean-field limit

• Limit n→∞, for a fixed ρ < 1.
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Mean-field limit

• Limit n→∞, for a fixed ρ < 1.

Theorem 2. Let y(0) = limn→∞
S(n)(0)

n . For exponentially distributed job-sizes, for

all t, S(n)(t)/n→ y(t), in probability, with y the solution of:

dyj(t)

dt
= ρ

θ − (j − 1)

θ −∑k kyk(t)
yj−1(t) + yj+1(t) (13)

− ρ θ − j
θ −∑k kyk(t)

yj(t)− yj(t), 0 < j < θ,

dyθ(t)

dt
= ρ

1

θ −∑k kyk(t)
yθ−1(t)− yθ(t), (14)

dy0(t)

dt
= y1(t)− ρ

θ

θ −∑k kyk(t)
y0(t). (15)
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Mean-field limit : steady-state solution

• The stationary point of the differential equations is obtained upon taking t→∞.

Theorem 3. For 0 < ρ ≤ 1, the unique steady-state solution of the system of equations

(13)–(15) is given by

p̂j =

(
θ − ĉ
ρ

)θ−j 1

(θ − j)!p̂θ, (16)

with p̂θ =
1∑θ

k=0

(
θ−ĉ
ρ

)k
1
k!

. (17)

where

ĉ = θ − ρζ−1
θ (1− ρ), (18)

with ζ−1
θ as the inverse function of the Erlang blocking viewed as a function of the

traffic intensity for a fixed buffer depth θ.

If ρ > 1, the unique solution is ĉ = θ, p̂j = 0, for j ≤ θ − 1 and p̂θ = 1 .
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Mean-field limit : interchange of limits

• Does an interchange of the order of limits lead to the same limit?

lim
t→∞

lim
n→∞

S(n)(t)

n
= lim

n→∞
lim
t→∞

S(n)(t)

n
? (19)
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Mean-field limit : interchange of limits

• Does an interchange of the order of limits lead to the same limit?

lim
t→∞

lim
n→∞

S(n)(t)

n
= lim

n→∞
lim
t→∞

S(n)(t)

n
? (19)

Proposition 1. For ρ < 1, π(n) converges point wise to p̂ when n and t converge to

infinity.

Proof. A corollary of Le Boudec’s result for reversible Markov process.

Remark 1. By insensitivity, p̂ is the limiting distribution of π(n) independent of the

specific job-size distribution
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Mean-field limit : blocking probability

• A lower bound on the blocking probability

Proposition 2. For θ > 0, the blocking probability of any non-anticipating and

size-unaware load balancing policy is greater than max(0, 1− ρ−1).

Proof. Cannot do better than the system with all the buffer and server capacity

pooled.
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Proposition 3. The limiting blocking probability of the insensitive load balancing

policy is given by

Bθ =

{
0 if ρ < 1;

1− ρ−1 otherwise.
(20)
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Mean-field limit : blocking probability

• A lower bound on the blocking probability

Proposition 2. For θ > 0, the blocking probability of any non-anticipating and

size-unaware load balancing policy is greater than max(0, 1− ρ−1).

Proof. Cannot do better than the system with all the buffer and server capacity

pooled.

• Blocking probability of the insensitive policy

Proposition 3. The limiting blocking probability of the insensitive load balancing

policy is given by

Bθ =

{
0 if ρ < 1;

1− ρ−1 otherwise.
(20)

• Insensitive policy is globally optimal in the mean-field limit

• Any empty space filling policy will achieve this...
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Asymptotic analysis

1. Mean field limit

2. Large deviations

3. Halfin-Whitt limit

4. Moderate and small deviations)
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Large deviations

• Let Pc = {q ∈ Rθ+ :
∑θ

i=0 qi = 1 and
∑θ

i=0 iqi = c}
• Define p ∈ Pc by

pk(c) :=
1

(θ − k)!

(
θ − c
ρ

)θ−k 1

ψ(c)
. (21)

where

ψ(c) =

θ∑
k=0

1

k!

(
θ − c
ρ

)k
, (22)
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Large deviations

• Let Pc = {q ∈ Rθ+ :
∑θ

i=0 qi = 1 and
∑θ

i=0 iqi = c}
• Define p ∈ Pc by

pk(c) :=
1

(θ − k)!

(
θ − c
ρ

)θ−k 1

ψ(c)
. (21)

where

ψ(c) =

θ∑
k=0

1

k!

(
θ − c
ρ

)k
, (22)

• Note that p(ĉ) is the steady-state solution of the mean-field limit.
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Large deviations

Theorem 4. For ρ < 1, and q ∈ Pc,

lim
n→∞

1

n
log

(
π(n)(q; c)

π(n)(p; ĉ)

)
= (c− ĉ) + log

(
ψ(c)

ψ(ĉ)

)
−DKL(q(c)‖p(c)), (23)

where DKL is the Kullback-Liebler divergence.

• exponential decay in n in the probability of observing any distribution other than p(ĉ).
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Large deviations

Theorem 4. For ρ < 1, and q ∈ Pc,

lim
n→∞

1

n
log

(
π(n)(q; c)

π(n)(p; ĉ)

)
= (c− ĉ) + log

(
ψ(c)

ψ(ĉ)

)
−DKL(q(c)‖p(c)), (23)

where DKL is the Kullback-Liebler divergence.

• exponential decay in n in the probability of observing any distribution other than p(ĉ).

• p(c) is the most likely distribution that is observed conditioned on c.
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Large deviations: blocking probability

Theorem 5. For ρ ∈ (0, 1),

lim
n→∞

B
(n)
θ exp(nR(γθ,ρ))

(
2πn

αθ,ρ

)1/2

= 1. (24)

where

R(t) = log

(
θ∑
k=0

tk

k!

)
− ρt, γθ,ρ = arg max

t∈(0,∞)
R(t) =

θ − ĉ
ρ

, (25)

αθ,ρ =
(1− ρ)
ρ

(
θ

ργθ,ρ
− 1

)
. (26)
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Large deviations: blocking probability

Theorem 5. For ρ ∈ (0, 1),

lim
n→∞

B
(n)
θ exp(nR(γθ,ρ))

(
2πn

αθ,ρ

)1/2

= 1. (24)

where

R(t) = log

(
θ∑
k=0

tk

k!

)
− ρt, γθ,ρ = arg max

t∈(0,∞)
R(t) =

θ − ĉ
ρ

, (25)

αθ,ρ =
(1− ρ)
ρ

(
θ

ργθ,ρ
− 1

)
. (26)

Corollary 2. For θ = 1, γθ,ρ = 1−ρ
ρ

−1
and αθ,ρ = 1. Thus,

B
(n)
1 ∼ en(1−ρ)

ρ
n
(2πn)

−1/2
. (27)
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Asymptotic analysis

1. Mean field limit

2. Large deviations

3. Halfin-Whitt-Jagerman limit

4. Moderate and small deviations

24



Halfin-Whitt-Jagerman limit

• Arrival rate λ ↑ ∞. How should the number of servers scale?

n = ρ−1λ
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Halfin-Whitt-Jagerman limit

• Arrival rate λ ↑ ∞. How should the number of servers scale?

n = ρ−1λ

ρ < 1

+ High quality: B
(n)
θ ∼ e−Cn

- Low efficiency (low server utilisation):

n(1− p̂0) servers empty

ρ > 1

- Low quality: B
(n)
θ ∼ 1− ρ−1

+ High efficiency: utilisation ∼ 1

• For θ = 1, Quality and Efficiency Driven regime (H-W, Jagerman):

n = λ+ α
√
λ Square-root staffing rule

• Good quality: B
(n)
1 ∼ n−1/2; Good efficiency: server utilization ∼ 1

25



Halfin-Whitt-Jagerman limit

• How high we can push ρ and still have asymptotically negligible blocking probability?
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Halfin-Whitt-Jagerman limit

• How high we can push ρ and still have asymptotically negligible blocking probability?

Theorem 6. For a ∈ (−∞,∞), let

nρ = n+ an
1/(θ+1)

. (28)

Then,

lim
n→∞

B
(n)
θ n

θ/(θ+1)
∫ ∞

0

exp

(
au− u(θ+1)

(θ + 1)!

)
du = 1. (29)

• ρ = 1 + an−θ/(θ+1)
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Halfin-Whitt-Jagerman limit: observations

Corollary 3. If ρ = 1:

B
(n)
θ ∼

(θ + 1)!
1
θ+1

θ + 1
Γ
( 1

θ + 1

)
n
−θ/(θ+1)

, (30)

where Γ is the Gamma function.
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Halfin-Whitt-Jagerman limit: observations

Corollary 3. If ρ = 1:

B
(n)
θ ∼

(θ + 1)!
1
θ+1

θ + 1
Γ
( 1

θ + 1

)
n
−θ/(θ+1)

, (30)

where Γ is the Gamma function.

Corollary 4.
B

(n)
1 ∼ (0.5πn)

−1/2
. (31)

• Order of decay increases with θ: n−1/2 for θ = 1 and n−1 for θ =∞
• Higher the θ, closer ρ can be to 1 for the same blocking probability
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Trichotomy of ILB

ρ < 1 Critical regime ρn = 1 + an
− θ
θ+1 ρ > 1

Blocking ∼ e−C(θ)n Blocking ∼ n
−θ
θ+1 Blocking = 1− ρ−1

• ρ < 1, the blocking is exponential small in n (Large deviations)

• Generalized HWJ:

ρn = 1 + an
− θ
θ+1.

• ρ > 1, the blocking is constant
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Asymptotic analysis

1. Mean field limit

2. Large deviations

3. Halfin-Whitt-Jagerman limit

4. Moderate and small deviations
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Moderate deviations

Theorem 7 (Central limit). For ρ < 1,

1√
n

((
S

(n)
(∞)

)
0≤i<θ − n(p̂)0≤i<θ

)
d−−−→

n→∞
N (0,Σ), (32)

where

Σ
−1

= ψ(1, 1, . . . , 1) · (1, 1, . . . , 1)
>

−
(

1

θ − ĉ

)
(θ, θ − 1, . . . , 1) · (θ, θ − 1, . . . , 1)

>

+


1/p̂0 0 . . . 0

0 1/p̂1 . . . 0
... . . . . . . ...

0 0 . . . 1/p̂θ−1


(33)
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Moderate deviations

• Define

Φ̂θ(z; a) =

∫ ∞
z

exp

(
au− u(θ+1)

(θ + 1)!

)
du. (34)

Theorem 8. For ρ = 1 and z ∈ R+,

lim
n→∞

P

(
S

(n)
θ−1(∞)

nθ/(θ+1)
> z

)
=

Φ̂θ(z; 0)

Φ̂θ(0; 0)
, (35)
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Moderate deviations

• Define

Φ̂θ(z; a) =

∫ ∞
z

exp

(
au− u(θ+1)

(θ + 1)!

)
du. (34)

Theorem 8. For ρ = 1 and z ∈ R+,

lim
n→∞

P

(
S

(n)
θ−1(∞)

nθ/(θ+1)
> z

)
=

Φ̂θ(z; 0)

Φ̂θ(0; 0)
, (35)

• Variations are visible only in θ and θ − 1.
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Moderate deviations

• Define

Φ̂θ(z; a) =

∫ ∞
z

exp

(
au− u(θ+1)

(θ + 1)!

)
du. (34)

Theorem 8. For ρ = 1 and z ∈ R+,

lim
n→∞

P

(
S

(n)
θ−1(∞)

nθ/(θ+1)
> z

)
=

Φ̂θ(z; 0)

Φ̂θ(0; 0)
, (35)

• Variations are visible only in θ and θ − 1.

• Number of servers having i jobs O(n(i+1)/(θ+1)).
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Small deviations

Theorem 9. For ρ > 1,

S
(n)
θ−1(∞)

d−−−→
n→∞

Geo(ρ
−1

), (36)

and the blocking probability is

B
(n)
θ ∼ 1− ρ−1

. (37)

• Deviations are of constant size, and happen in θ and θ − 1.
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Outline

• Results for finite systems

• Asymptotic analysis

• Numerical results

• Open problems
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Numerical results
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1

Figure 1: Comparison of the blocking probability for different load balancing policies. Number of servers is 20. Buffer size is 10.
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Numerical results
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Figure 2: Comparison of the blocking probability computed from Theorems 5 and 9 with that obtained from simulations. Number
of servers is 200.
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Outline

• Results for finite systems

• Asymptotic analysis

• Numerical results

• Open problems
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Open problems

• Is the HWJ scaling optimal?

• How does the optimality gaps for specific families of jobs-size distributions?

• Can similar results be established for sensitive policies like JSQ(d) or JIQ?

• Similar results for infinite buffer systems
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